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ABSTRACT: 

 

This paper presents a global solution to building roof topological reconstruction from LiDAR point clouds. Starting with segmented 

roof planes from building LiDAR points, a BSP (binary space partitioning) algorithm is used to partition the bounding box of the 

building into volumetric cells, whose geometric features and their topology are simultaneously determined. To resolve the 

inside/outside labelling problem of cells, a global energy function considering surface visibility and spatial regularization between 

adjacent cells is constructed and minimized via graph cuts. As a result, the cells are labelled as either inside or outside, where the 

planar surfaces between the inside and outside form the reconstructed building model. Two LiDAR data sets of Yangjiang (China) 

and Wuhan University (China) are used in the study. Experimental results show that the completeness of reconstructed roof planes is 

87.5%. Comparing with existing data-driven approaches, the proposed approach is global. Roof faces and edges as well as their 

topology can be determined at one time via minimization of an energy function. Besides, this approach is robust to partial absence of 

roof planes and tends to reconstruct roof models with visibility-consistent surfaces. 

 

 

                                                                 

*  Corresponding author, jshan@purdue.edu.  

1. INTRODUCTION 

Automated reconstruction of building roof models is of a 

current research interest in 3D city modelling. (Airborne) 

LiDAR (Light Detection and Ranging) technology can directly 

collect dense, accurate 3D point clouds over building roofs, 

from which 3D building models may be automatically 

reconstructed. In spite of many efforts made in the past two 

decades (Haala and Kada, 2010), building roof reconstruction 

remains to be an open issue, largely due to the insufficiency of 

the data and the complexity of the actual building roofs (Xiong 

et al., 2014). 

 

Various studies on roof model reconstruction from LiDAR 

point clouds have been reported (Brenner, 2005; Haala and 

Kada, 2010; Rottensteiner et al., 2014). Among these studies, 

model-driven methods assume a building is an assembly of roof 

primitives (e.g., gable roof and hipped roof), which and whose 

topology are predefined in a model library (Tarsha-Kurdi et al., 

2007). To extract roof primitives from LiDAR point clouds, 

techniques such as invariant moments (Maas and Vosselman, 

1999), graph matching (Oude Elberink and Vosselman, 2009; 

Verma et al., 2006; Xiong et al., 2014), Support Vector 

Machine (SVM) (Henn et al., 2013; Satari et al., 2012), 

RANdom SAmple Consensus (RANSAC) (Henn et al., 2013) 

and Reversible Jump Markov Chain Monte Carlo (RJMCMC) 

(Huang et al., 2013) are used. However, these approaches tend 

to fail when reconstructing complex roof shapes. To alleviate 

this problem, complex roof shapes are usually decomposed into 

simple ones that  are defined in the model library (Kada and 

McKinley, 2009). Among the reported studies, 2D-plans (Henn 

et al., 2013; Kada and McKinley, 2009), graph matching 

technique (Oude Elberink and Vosselman, 2009; Verma et al., 

2006; Xiong et al., 2014) and convexity analysis (Lin et al., 

2013) are used for this purpose. Unlike the aforementioned 

approaches, Huang et al. (2013) extract roof primitives one by 

one from LiDAR points by using the RJMCMC technique. 

Although these model-driven approaches could perform well for 

sparse data, they are limited to roof primitives predefined in the 

model library. If the roof shape is complex or not predefined in 

the model library, the model reconstruction may fail (Kim and 

Shan, 2011). 

 

Among reported studies, the data-driven approaches are more 

flexible and work well for complex roof models. It is often 

assumed that a building is a polyhedron consisting of roof 

planes. Geometric features of a roof model, such as edges and 

vertices can be determined by the intersection of adjacent roof 

planes (Perera and Maas, 2014; Sampath and Shan, 2010). As a 

result, roof model reconstruction is mostly through roof plane 

extraction from building LiDAR point clouds. A review of these 

studies can be found in (Yan et al., 2014). The difficulty is to 

determine the topologic relations among the segmented roof 

planes (Kim and Shan, 2011). To address this issue, roof 

topology is described as an adjacency matrix (Sampath and 

Shan, 2010) or roof topology graph (RTG) (Oude Elberink and 

Vosselman, 2009; Perera and Maas, 2014; Verma et al., 2006; 

Xiong et al., 2014), which can be derived from a  connectivity 

analysis of the segmented roof planes. However, the roof 

topology derived from the aforementioned methods is based on 

a local decision, i.e., the connectivity analysis is independently 

carried out for every two or several segmented roof planes. Due 

to incomplete roof planes arising from occlusion or sparse point 

clouds, such  derived roof topology are likely invalid and 

inconsistent. 
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This paper presents a global solution to roof topologic 

reconstruction from airborne LiDAR point clouds. A binary 

label optimization approach via graph cuts (Boykov et al., 2001) 

is used for this purpose. Under this framework, roof features, 

including roof faces and edges as well as their topology are all 

determined at one time or globally. Comparing to conventional 

methods, the proposed approach has two distinctions. First, the 

topological reconstruction is formulated as an optimization 

problem, to which a global solution can assure the consistency 

among all parts of the building and determine roof features at 

one time. Second, the graph cuts approach is a demonstrated 

optimization technique, which can fill data gap and create roof 

models with closed surfaces. The rest of this paper is structured 

as follows. Section 2 describes the workflow of the approach. 

Section 3 presents a space partitioning approach using 

segmented roof planes, in which the bounding box of a building 

is partitioned into volumetric cells. Section 4 formulates the 

roof reconstruction task as an inside-outside labelling problem 

of cells derived from space partitioning, to which a global 

solution based on graph cuts is presented and roof faces 

between the inside and outside cells are determined. Results 

from two data sets are presented and discussed in Section 5. 

Section 6 presents our concluding remarks.   

 

2. WORKFLOW OF THE APPROACH 

This section outlines the workflow of the proposed approach. 

Once roof planes are segmented from building LiDAR points, 

the bounding box of the building is recursively partitioned into 

(volumetric) cells, where roof planes are intersected and 

possible roof features (e.g., roof faces and edges) as well as 

their topology can be determined. To look for the correct roof 

faces and edges, a global energy function is formed and 

minimized via graph cuts. As a result, the cells are labelled as 

inside or outside, where the planar surfaces (i.e., roof faces) and 

edges between the inside and outside cells are the reconstructed 

roof model.  

 
 (e)         (f) 

Figure 1. The workflow of the proposed approach: (a) roof 

LiDAR points and segmented roof planes (black lines), (b) 

detected facades (grey lines), (c) cells derived from space 

partitioning using segmented roof planes and detected facades 

(dashed rectangle is the bounding box of the building), (d) 

binary (inside/outside) labelling of cells, where the inside ones 

are shown in polygons filled with grey, (e) extracted building 

surfaces shown in different shades, and (f) roof faces after 

merging spatially connected building surfaces.  

 

Figure 1 illustrates the workflow of the proposed approach. By 

using the segmented roof planes and facades derived from 

building boundary and step edges (Figure 1b), the bounding 

box of a building is first partitioned into cells (Figure 1c). Then, 

a binary labelling of these cells is conducted via graph cuts 

(Figure 1d), and building surfaces which correspond to the 

faces of reconstructed building model are extracted (Figure 1e). 

As a result, roof faces and edges as well as their topology are all 

determined. Finally, spatially connected coplanar roof faces are 

merged and the roof model is reconstructed (Figure 1f). 

Comparing to existing approaches, the proposed approach is a 

global solution, i.e., roof faces and edges as well as their 

topology are simultaneously determined at one time. It 

reconstructs roof models with visibility-consistent surfaces. 

 

3. SPACE PARTITIONING 

Space partitioning is a necessary step for surface reconstruction 

via  graph cuts (Chauve et al., 2010; Oesau et al., 2014). It can 

be accomplished via various approaches, such as voxel 

rasterization (Chehata et al., 2009; Paris et al., 2006), 3D 

Delaunay triangulation (Labatut et al., 2007; Labatut et al., 

2009) and space subdivision by hyperplanes (Chauve et al., 

2010; Oesau et al., 2014). Note that the surfaces of the 

reconstructed building are the subset of the volumetric surfaces 

derived from space partitioning. To reconstruct the roof model 

from the building LiDAR points, we use the segmented roof 

planes derived from multi-model fitting (Yan et al., 2014) to 

partition the building space. 

 

However, as shown in Figure 1a, building facades (vertical 

walls) may not be available in airborne LiDAR points. To 

resolve this issue, the building boundary and step edges are first 

extracted, from which facades planes are derived (Perera and 

Maas, 2014; Sampath and Shan, 2010). In this work, building 

boundary is traced from roof LiDAR points using a concave 

hull algorithm (Park and Oh, 2013). As for step edges, they are 

derived from a height discontinuity analysis (Sohn et al., 2008) 

of neighbouring roof LiDAR points. Then, an orientation 

regularization of the detected boundary and step edges is 

conducted (Zhang et al., 2012). Figure 2 presents an example of 

this approach. Extracted building boundary and step edges are 

shown in Figure 2a. They are then regularized with the help of a 

dominant direction derived from the longest boundary (cf. 

Figure 2b). Finally, these line features are extruded vertically to 

create facades as shown in Figure 1b. 

 

 
(a)    (b) 

Figure 2. Detected building boundary (outer line segments) and 

step edges (inner line segments): (a) building boundary and step 

edges and (b) orientation regularization. 

 

Having extracted building planes, we first construct a cell 

complex (Damiand, 2015) for the bounding box of the building 

(a) (b) 

(c) (d) 
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(cf. Figure 3a). Similar to the half-edge data structure, the cell 

complex is a B-rep structure to represent topology and geometry. 

A benefit of such data structure is that it can provide an efficient 

manipulation of topology in volumes. As shown in Figure 1c, 

the next step uses a binary space partitioning (BSP) algorithm 

(Thibault and Naylor, 1987) to partition the bounding box into 

spatially connected cells. Figure 3 illustrates the procedure of 

space partitioning with a splitting plane (BSP plane). Benefiting 

from the cell complex data structure, the topology between 

derived cells can be preserved (cf. Figure 3d).  

 

 
                (c)              (d) 

Figure 3. Workflow of space partitioning with a splitting plane: 

(a) bounding box ABCDEFGH and given splitting plane P; (b) 

newly generated vertices I, L, J and K; (c) newly generated 

edges IL, IJ, JK and LK; (d) newly generated face LIJK. 

 

4. ROOF FACES AND THEIR TOPOLOGY 

The roof model reconstruction task can be formulated as an 

optimal inside/outside labelling of cells derived from space 

partitioning, where the surfaces between inside and outside cells 

form the reconstructed building model. As shown in Figure 1d, 

each cell is labelled as inside (i.e., occupied cell) or outside (i.e., 

empty cell). As a result, the facets corresponding to the edges 

between occupied and empty cells form a surface of the 

reconstructed building. Such a binary labelling problem can be 

formulated as a global energy minimization problem (Chauve et 

al., 2010; Verdie, 2013), which can be resolved via the min-cut 

theorem in graph cuts (Boykov et al., 2001). 

 

4.1 Visibility analysis 

In this study, the binary labelling problem is noted as a visibility 

analysis of roof LiDAR points to determine whether a cell is in 

front of or behind the fitted roof planes. In other words, a cell in 

front of a roof plane fitted to more LiDAR points is more likely 

to be visible (i.e., outside cells), whereas a cell behind a roof 

plane fitted to more LiDAR points is more likely to be invisible 

(i.e., inside cells). 

 

Figure 4 illustrates the visibility analysis of roof LiDAR points, 

where 12 cells are derived from the space partitioning step 

using building planes. Given a LiDAR point p and its fitting 

roof plane P, a line of sight from an assumed camera center o to 

the point p is created (i.e., line op). Along this line of sight, the 

cells behind roof plane P are invisible (e.g., cells 1 and 3), 

whereas others are visible (e.g., cell 11). As a result, the LiDAR 

point p is taken as a point supporting visibility of cell 11, and a 

point supporting invisibility of cells 1 and 3. For each LiDAR 

point, this process is conducted. As a result, for each cell c, a 

visibility vector Xc(a, b) can be derived, where a and b are 

respectively the number of supporting points of cell visibility 

and invisibility. 

 

 
 

Figure 4. Visibility analysis of cells: the two dark solid lines are 

the facade planes derived from the building boundary; the dash 

line is the facade plane derived from step edge; the short dash 

lines with arrows are the normal directions of corresponding 

building planes.  

 

4.2 Energy function and minimization 

From the visibility analysis of cells, the binary labelling task 

can be formulated as a minimization of the energy function  
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where f is a binary labelling of cells and δ(.) is an indicator 

function, N is the derived neighbourhood from cell adjacency 

graph and C represents the set of cells. The binary labelling task 

is to assign a cell p ϵ C a label fp (1 for outside/visible cells and 

0 for inside/invisible cells) such that the labelling f minimizes 

the energy E(f). Two energy terms, i.e., data term (the first term) 

and regularization term (the second term) are considered in the 

energy formula. The data term measures the visibility of cells. It 

is actually the sum of the number of supporting points of cell’s 

visibility and invisibility. The regularization term measures the 

label inconsistency between adjacent cells. For each pair of 

adjacent cells p and q, wpq is  the similarity between p and q, 

and A(p, q) is the area of facet shared by cells p and q. Note that 

β is a parameter favouring small area surfaces (Verdie, 2013). 

 

For each cell p ϵ C, ap and bp are respectively the number of 

supporting points of cell’s visibility and invisibility of cell p. 

The data cost between cell p and its assigned label fp can be 

calculated as 

1
( )

0

p vis p

p p

p vis p

a d f
V f

b d f

 
 

 
                    

(2) 

where dvis is a constant value which is set to 1 in this paper. As 

for the regularization term, wpq is calculated as 

max(min( , ),min( , ), )pq p q p q visw a a b b d

            

(3) 

By using the min-cut theorem, the above energy minimization 

problem in Equation 1 can be resolved. 

 

(a) 
(b) 
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4.3 Surface extraction and merging 

According to the above binary labelling of cells, the surfaces 

between inside and outside cells are extracted and form an 

estimated model (cf. Figure 1e). However, roof faces may be 

partitioned into several planar surfaces in the process of space 

partitioning. Therefore, spatially connected coplanar roof faces 

should be merged after surface extraction. As discussed in 

Section 3, the roof faces and edges as well as their topology 

have been determined after space partitioning. Based on the 

spatial connectivity of extracted surfaces, spatially connected 

coplanar roof faces can be merged (cf. Figure 1f) and the roof 

model of LiDAR points is reconstructed. 

 

Given segmented roof LiDAR points, Figure 5 illustrates the 

workflow of roof model reconstruction. Roof and facade planes 

are first derived and they partittion the building bounding box 

into cells, where the possible roof faces and edges are 

determined (Figure 5a). Based on the energy function defined in 

Equation 1, a binary labeling of cells is conducted. As a result, 

cells are labled as the outside (empty cells in Figure 5b) and 

inside (occupied cells in Figure 5b), where the surfaces between 

inside and outside cells are extracted (Figure 5c). Finally, the 

spatially connected coplanar surfaces are merged and the 

estiamted roof model is reconstructed as shown in Figure 5d. 

 
(a)    (b) 

 
(c)    (d) 

Figure 5 Segmented roof LiDAR points and reconstructed 

model: (a)space partitioning, (b) binary labeling of cells, 

(c)surface extraction and (d) reconstucted model. Roof point 

clouds are colored by their planar segments.  

 

5. RESULTS AND DISCUSSION 

5.1 Experiments 

Two airborne LiDAR data sets over city Yangjiang (China) and 

Wuhan (China) were used for evaluation. Both of them were 

captured with a Trimble Harrier 68i system. The test site in 

Yangjiang (cf. Figure 6a) is located in residential areas with 

detached houses. Its point density is 2~3pts/m2. The test site in 

Wuhan (cf. Figure 6b) is seated to the south of Wuhan 

University and characterized by dense buildings with tree 

clutter. Its point density is about 5pts/m2.  

 

Roof LiDAR points and their fitted planes are the input for 

reconstruction. In this study, we use the global optimization 

approach (Yan et al., 2014) to extract roof planes from roof 

LiDAR points. Reconstructed roof models are shown in Figure 

7. There are 23 buildings in Yangjiang test site and 16 buildings 

in Wuhan test site. However, due to occlusion from trees, some 

building boundaries (cf. the building in the rectangular region 

in Figure 6b) are extremely irregular, which may lead to a 

wrong regularization of building boundary (cf. the building in 

the rectangular region in Figure 7b). 

 

  
(a)   (b) 

Figure 6. Ortho images of the two test sites: (a)Yangjiang and 

(b)Wuhan. 

 

 

 
(a)   (b) 

Figure 7 Reconstructed roof models (β = 0.55): (a) Yangjiang 

and (b)Wuhan. 

 

5.2 Assessment 

5.2.1 Reconstruction. To evaluate the performance of our 

approach, we compare it with one recently reported model-

based graph matching approach (Xiong et al., 2014). Figure 8 

illustrates the qualitative evaluation on 8 buildings of Yangjiang 

(a-d) and Wuhan (e-h) with varying point densities and roof 

structures. Both approaches perform well with roof LiDAR 

points and most of the roof planes are successfully 

reconstructed. However, due to the limitation of roof primitives 

defined in model library, the graph matching approach may fail 

when reconstructing complex roof structures. As shown in 

Figure 8e, the flat roof top visible in the reference image is not 

reconstructed by the graph-matching method, whereas our 

global solution yields the right result. Besides, since the 

topology among adjacent roof planes belonging to different roof 

primitives is not fully considered, the graph matching approach 

may fail when assembling roof primitives. Figure 9 further 

illustrates the situation of Figure 8e. As shown in the 

rectangular region in Figure 9a, there are two pitched roof 
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primitives on the large flat roof plane, and both of them are 

successfully reconstructed as shown in Figure 9b and c. 

However, since the topology between the two pitched roof 

primitives is not considered, the graph matching approach fails 

at the intersection of the two roof primitives (cf. the elliptical 

region in Figure 9b). As for our global approach, the topology 

between the two pitched roof primitives is well preserved 

(Figure 9c).  

 

  

  

  

  

  

  

  

  
Figure 8. Comparison of roof model reconstruction. From left to 

right: images, results from the graph matching approach, and 

results from our global solution. (a-d): Yangjiang, (e-h): Wuhan. 

 

     
(a)  (b)  (c) 

Figure 9. Topologic reconstruction (Figure 8e) between two 

roof primitives: (a) image, (b) from the graph matching 

approach, and (c) from our global approach. 

 

However, the proposed approach is dependent on the 

completeness of input roof planes. Completeness is the correctly 

segmented roof planes from roof LiDAR points. Table 1 lists 

the completeness of reconstructed roof model using our global 

approach as shown in Figure 8. It is observed in Table 1 that the 

completeness of segmented roof planes is 92.9%. Most of the 

roof planes are correctly segmented from roof LiDAR points. 

As for the reconstructed models, the completeness of 

reconstructed roof planes is 87.5%, a decrease of 5.4% from the 

segmentation results and an increase of 6.2% compared to the 

graph-matching approach. Note that most of the missed planes 

in the reconstructed buildings are flat roofs whose neighbouring 

facade planes are missed due to the failure in extracting step 

edges. As a result, some roof edges and topology cannot be 

derived from space partitioning. To reconstruct a visibility-

consistency surface, minimization of the energy function may 

get rid of roof planes with incomplete edges. As for the model-

based graph matching approach, flat roof planes can be 

correctly reconstructed even when their neighbouring facade 

planes are missed (cf. Figure 8c). 

 

Bld ID #Pls %CompA %CompB-1 %CompB-2 

a 3 66.7 100 100 

b 10 70 90 90 

c 11 90.9 81.8 72.7 

d 10 90 100 100 

e 18 94.4 88.9 88.9 

f 8 75 87.5 75 

g 19 63.2 94.7 73.7 

h 3 100 100 100 

Average 81.3 92.9 87.5 

Table 1. Completeness of reconstructed roof models. Bld ID: 

building label (cf. Figure 8); #Pls: the number of reference roof 

planes; %CompA: the completeness of reconstructed roof 

planes using the graph matching approach; %CompB-1: the 

completeness of segmented roof planes; %CompB-2: the 

completeness of reconstructed roof planes using the proposed 

global approach. 

 

Figure 10 illustrates the outside/inside labelling of the derived 

cells when a facade is missed. For example, due to the absence 

of facade plane F between roof plane A and B, the roof edges 

determined by the intersection of plane A and F, B and F are 

missed (Figure 10a). As a result, roof plane A is not 

reconstructed in Figure 10b. Besides, roof planes may be missed 

in the segmentation results. Figure 11 illustrates the 

reconstructed roof models using incomplete roof planes. 

Although some segmented roof planes are missed, our global 

approach still outputs a visibility-consistency surface of a 

building. 

 

 
(a)   (b) 

Figure 10. Profile of a reconstruced flat roof: (a) missed facade 

F and (b) labelled gray cell. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

missed plane 
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(a) 

 

(b) 

 
(c) 

Figure 11. Reconstructed roof models (building in Figure 8d) 

from incomplete roof planes. (a)~(c): roof planes in the 

elliptical areas (left images) are missed. 

 

5.2.2 Parameter sensitivity. Binary labelling problem can 

be resolved via various approaches. The advantage of the 

proposed global approach is that spatial regularization (i.e., the 

regularization term in Equation 1) of surfaces is considered. To 

demonstrate this, we first illustrate a reconstructed roof model 

without considering spatial regularization. As shown in Figure 

12, minimization of the energy function makes a hard 

assignment of labels to cells, which results in a topologically 

incorrect roof model where its surface is not closed. However, 

this problem can be well fixed using the proposed approach. As 

shown in Figure 11 a, b and c, the proposed approach tends to 

output roof models with closed surfaces even when some roof 

planes are missed. 

 

 
 

Figure 12. Reconstructed building in Figure 8d without 

considering the regularization term in Equation 1. 

 

The β i Equation 1 is an essential parameter in the global 

optimization approach. A smaller β results in a building model 

with large surface area, whereas a larger one produces a 

building model with small surface area. Figure 13 provides an 

example of reconstructed roof models under different β values. 

As shown in Figure 13a, b and c, the number of planar surfaces 

derived from reconstructed model decrease with the increase in 

parameter β. Finally, a cubic building model is created (Figure 

13d), and the surface area of the reconstructed model is minimal. 

From the above discussion, it can be noted that the global 

approach is able to create the building roof model in different 

levels of details (LoD). However, the detail of the roof models 

is sensitive to the value of β, and may not conform to the LoD 

specification defined in (Gröger et al., 2012). 

 

 

 
(a)  (b) 

 

 
(c)  (d) 

Figure 13. Reconstruced roof model (building in Figure 8d) 

under different β values: (a) β = 0, (b) β = 0.55, (c) β = 1.0 and 

(d) β = 1.5. 

 

From the above discussion, the proposed approach can 

determine roof edges and topology without a recursive local 

connectivity analysis of the segmented roof planes, which can 

avoid incorrect topology in ambiguous cases. However, the 

proposed approach is somewhat sensitive to missing building 

planes, which may in turn miss roof edges in the process of 

space partitioning. Notably, other factors such as incorrect 

labelling of cells may also affect the quality of the reconstructed 

roof model. As shown in Figure 14, due to the lack of sufficient 

LiDAR points supporting the visibility of derived cells, a 

narrow small part of the building in the elliptical area is 

wrongly labelled as outside or visible space. 

 

 
Figure 14. Building roof model derived from wrong labelling of 

cells. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-379-2016

 
384



 

 

6. CONCLUSIONS 

This paper presents a global optimization solution to roof 

topology reconstruction from airborne LiDAR points. Starting 

from segmented roof planes, the building space is partitioned to 

possible roof edges with their topology. Then, the roof model is 

determined by minimizing a global energy function via graph 

cuts. Results from two sets of airborne LiDAR data sets depict 

that the completeness of reconstructed roof planes is 87.5%, a 

slight increase of 6.2% compared to the graph-matching 

approach.  

 

Compared to the existing reconstruction approaches based on 

local topology analysis, the proposed approach is a global 

solution. Roof faces and edges as well as their topology are 

determined at the same time by minimizing the energy function. 

This can avoid topologic errors resultant from local connectivity 

analysis among roof planes. Another property of the proposed 

approach is that it is robust to incomplete roof planes due to 

occlusion. Note that the global approach tends to output 

visibility-consistent building surfaces even using incomplete 

roof planes. However, it is helpless when the input 

segmentation result completely misses a plane. Under such a 

situation, the reconstruction outcome will be erroneous and a 

model-based solution, e.g., the graph-matching approach, 

should be considered as a more reliable alternative.     
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