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ABSTRACT:

The paper presents a new data-driven approach to generate CityGML building models from airborne laser scanning data. The approach

is based on image processing methods applied to an interpolated height map and avoids shortcomings of established methods for plane

detection like Hough transform or RANSAC algorithms on point clouds. The improvement originates in an interpolation algorithm that

generates a height map from sparse point cloud data by preserving ridge lines and step edges of roofs. Roof planes then are detected

by clustering the height map’s gradient angles, parameterizations of planes are estimated and used to filter out noise around ridge lines.

On that basis, a raster representation of roof facets is generated. Then roof polygons are determined from region outlines, connected

to a roof boundary graph, and simplified. Whereas the method is not limited to churches, the method’s performance is primarily tested

for church roofs of the German city of Krefeld because of their complexity. To eliminate inaccuracies of spires, contours of towers

are detected additionally, and spires are rendered as solids of revolution. In our experiments, the new data-driven method lead to

significantly better building models than the previously applied model-driven approach.

1. INTRODUCTION

The German state of North Rhine-Westphalia has published a

country-wide city model in CityGML data format, see (Gröger

et al., 2012, Kolbe, 2009). In these data, roofs have been recon-

structed from sparse point clouds obtained from airborne laser

scanning data (LiDAR) by using a model-driven approach, see

(Oestereich, 2014). Figures 1, and 3 show the given LiDAR res-

olution, which is less then ten points per square meter. The goal

of this paper is to improve the quality of this city model with

a special focus on buildings with complex roof structures like

churches. Among others, applications are solar and shadow im-

pact analysis.

Figure 1: Left picture shows resolution of LiDAR point cloud:

Each pixel is of size 10 cm × 10 cm, the points are organized in

stripes. The right picture displays all points of Luther church.

The literature differentiates between model and data-driven meth-

ods (see (Tarsha-Kurdi et al., 2007), cf. (Dorninger and Pfeifer,

2008, Henn et al., 2013, Xiong et al., 2014)): Model-driven meth-

ods match the points with standard roof structures taken from a

catalogue. This has the advantage that artifacts in point clouds

are filtered out, but it has the disadvantage that small structures

are generally ignored and atypical roof structures (occurring for

example with churches) cannot be matched with roof types from

the catalogue. Data-driven methods overcome this problem by

fitting single planar facets or other geometric primitives to the

point cloud (see e. g. (Elbrink and Vosselman, 2009, Kada and

Wichmann, 2013, Lafarge and Mallet, 2012)). However, data-

driven methods are difficult to use for sparse point clouds where

details and noise are difficult to distinguish. For a comprehensive

overview of both model and data-driven methods see (He, 2015,

Henn et al., 2013, Perera and Maas, 2012).

Figure 2: Shortcomings of the existing city model: Most

churches are represented in LoD 1. Projection of terrestrial col-

ored LiDAR points to facades shows that wall polygons do not

fit with facades because of wrong roof angles and missing roof

structures.

Our aim is to improve reconstruction of complex roofs in the city

model for which the model-driven approach failed to find a Level

of Detail 2 (LoD 2) representation or delivers a quality that is

not sufficient for automated texture mapping. Especially in the

given city model, all churches with complex roofs (like churches

in gothic revival style) are only described in LoD 1 by an average

height and a ground plan. Also, dormers result in higher walls

and wrong roof angles so that real facades differ from the model

(see Figure 2). Therefore, we use a data-driven method for im-

provement.

There exist several well established methods to determine planar

roof facets directly from point clouds (cf. (Sampath and Shan,

2010) and the literature cited there). A standard tool for plane

detection is the Hough transform (cf. (Overby et al., 2004) and

(Huang and Brenner, 2011)). The number of roof points lying

on a plane equals to a voting value in Hough space. Thus, planes

correspond to local maxima in Hough space so that planes defined

by many points can be better detected. Unfortunately, the Hough
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transform is very sensitive to noise. Also, we detected planes

with high voting values that did not correspond to roof planes.

That happens, if a plane intersects with many structures – which,

unfortunately, is typical for church roofs.

Region growing based on vector normals, computed by k near-

est neighbors, is another established method to detect planes, cf.

(Rabbani et al., 2006). In our experiments, we got continuous

transitions at sharp edges and did not find all areas of roof facets.

Surfaces with modest differences in inclination could not be dis-

tinguished. There was an effect of leakage at the border of roof

facets so that different facets became connected. In addition to

that, the method also appeared to be very sensitive to noise. To

overcome these problems, the algorithm of (Lafarge and Mallet,

2012) tests the quality of the region growing’s outcome and re-

jects poor quality planes and other geometric structures. But then

a triangulation is needed to fill gaps.

A RANdom SAmple Consensus (RANSAC) algorithm selects

plane parameters from the point cloud and tests them against the

data set (cf. (Schnabel et al., 2007, Li et al., 2013)). We tested

an M-Estimator SAmple Consensus algorithm that successively

estimated planes and removed such points from the cloud that al-

ready were allocated to planes. The algorithm wrongly allocated

points belonging to other roof segments near intersection lines

between planes. Old roof facets are not completely plane. This

lead to two or more parallel planes instead of one.

Guided by the disadvantages observed for these established meth-

ods, we search for roof facets on a height map that is interpolated

from the point cloud instead of directly using sparse cloud data.

Interpolation leads to a much denser distribution of points such

that not only better and more stable results can be obtained by

using previously described methods but also image processing

methods can be applied directly to the image that is given by the

height map. This fits with a result of (Zebedin et al., 2008) that re-

gion growing leads to good results on dense height data obtained

from areal images.

Our goal is to keep the original boundary structure of roof facets.

Roof polygons often have vertices that are either vertices of the

ground plan, intersection points of intersection lines between roof

planes or intersection points of these intersection lines with edges

of the ground plan. Such roofs are determined by ridge lines so

that the basic roof structure can be obtained from intersection

lines between planes. However, this is not the complete truth.

There might be roof planes that do not intersect within the roof

because of step edges. Examples are co-planar planes that occur

with shed roofs or roof tops of dormers that may only have one

intersection line with the surrounding roof segment. Step edges

are discontinuities in a height map, whereas ridge lines are dis-

continuities of the height maps’s gradient picture.

Nearest neighbor interpolation, i.e. the use of a Voronoi diagram,

does not conserve such boundary structures well. Because of

this, Chen et al. introduced a better morphological interpolation

method for the case that only a few raster values are missing

(Chen et al., 2014). The method works well for the presented

test data set that mostly contains flat roofs of high rises. Our data

appears to be more complex, and at the same time the height map

is filled sparser. Therefore, we use a different interpolation algo-

rithm that maintains step edges and does not smudge height in-

formation along ridge lines so that noise along ridge lines can be

removed later. The algorithm is described in the next section that

also covers the detection of facets by clustering similar gradient

values of the interpolated height map, as well as the computa-

tion of Hesse normal forms of the facets’ planes. Section 3. then

describes how roof polygons can be derived, simplified and com-

bined to an accurate CityGML model. In contrast to the model

based algorithm that lead to the North Rhine-Westphalian model,

our data-driven approach works without segmentation of build-

ings into smaller building parts according to ground plan edges.

We tested our method with geographical data of North Rhine-

Westphalia1. It turned out that, for some high towers, there are

shadows at one side, where LiDAR data is missing. Also, roof

facets of towers tend to be quite small so that normal vectors be-

come error prone. Therefore, we handle spires differently.

2. PREPROCESSING OF POINT CLOUD DATA

In this section we describe processing steps for detecting roof

facets.

• In a first step we calculate the height map, which we inter-

polate from the point cloud.

• We detect roof facets by segmenting angles of gradients of

the height map. To this end, we first exclude flat areas. This

step is necessary, because the gradient direction for such ar-

eas is affected by noise and therefore the analysis of the gra-

dient direction does not provide useful information. Outside

flat areas, an image of gradient angles is calculated from the

height map. With threshold segmentation of angles, areas of

roof facets are detected and used for plane estimation.

• Considering missing LiDAR data and non-plane surfaces of

tower roofs like cupolas, we also need to estimate the shape

of tower roofs in terms of solids of revolution (cf. (Zebedin

et al., 2008)).

• With the results of preceding steps, a raster representation

of roof facets is generated.

In what follows, the various steps will be described in more detail.

2.1 Interpolation of the height map

Our approach works on a height map in raster domain, where

each pixel represents an area of 10× 10 cm2. This degree of pre-

cision appears to be sufficient, because we use LiDAR data with

an error of that magnitude. If the points are projected onto the

ground plane, the map is only sparsely and non-uniformly filled

from the given point cloud. For some regions, data is missing due

to shadowing effects (see Figure 3). This holds particularly true

for towers or any tower-like roof. Due to the irregular distribution

of the points in the cloud, a simple estimation of the height val-

ues based on distance weighted mean values from the k nearest

neighbors is not possible. In some cases, step edges do not run

straightly but obliquely across the roof so that an oblique course

as well as jumps also occur in height data (see Figure 4). For

correct height estimation, we therefore have to ensure that not

only neighbor pixels from one side are taken into account, but

rather that opposing neighbors are used for the height interpola-

tion. This leads to our algorithm. For each pixel (x0, y0) with

unknown height information z0, we are looking for the pixel’s

k = 20 nearest neighbors that belong to the projected point

cloud and are below a threshold distance. We need to discuss

all possible k(k − 1)/2 combinations of two neighbor points.

For each pair ((x1, y1), (x2, y2)) of neighbors, we calculate the

1Geobasisdaten der Kommunen und des Landes NRW c©Geobasis

NRW 2014
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cosine value of the angle between vectors (x1 − x0, y1 − y0)
and (x2 − x0, y2 − y0) that point from the pixel’s position to the

neighbors (scalar product of the normalized vectors). The cosine

reaches its minimum −1, if the vectors point exactly in opposite

directions. That is the desired situation for interpolation, because

all three points lie on a straight line, with the unknown pixel in the

middle. Thus, we sort all pairs of two neighbor points according

to their cosine value, starting with the smallest. If there is more

than one pair with the same cosine value, we additionally sort by

the sum of distances

d :=
√

(x0−x1)2+(y0−y1)2+
√

(x0−x2)2+(y0−y2)2,

starting with the shortest. Following this order, we test, if the

pair’s height deviation |z1 − z2| is below one meter. If the devi-

ation exceeds this limit, we choose the next pair. Otherwise, we

determine the missing pixel value by linear interpolation between

the heights of the two chosen points (x1, y1, z1) and (x2, y2, z2)
(see Figure 5):

z0 := z1 +
(z2 − z1)

√

(x0 − x1)2 + (y0 − y1)2

d
.

The idea of using symmetrically placed neighbors is not new, see

(Otepka et al., 2013) for an overview. For example (Chaudhuri,

1996) defines the barycentric neighborhood, where the distance

between neighbors and their centroid becomes as small as possi-

ble. However, in our case the centroid is not variable but given

by missing pixel data.

Because we only consider points with height deviation below one

meter, sharp step edges and correct edge courses are maintained.

Figure 4 shows the outcome of our interpolation of the market

church in Krefeld-Hüls. The computation of the height map in

raster format now gives us the opportunity to use image process-

ing methods in following steps. This is a clear advantage com-

pared to other possible approaches.

Figure 3: Points of the top of the tower are missing in the original

point cloud of market church.

Figure 4: Left: A height map based on the distance weighted

mean values from the k nearest neighbors shows stripe-like ar-

tifacts that result from irregular distribution of LiDAR points.

Right: In a height map generated by our interpolation method,

artifacts are eliminated but step edges are maintained.

Figure 5: Selection of pixels used for interpolation in our method,

red: the height value of this position has to be computed by in-

terpolation, green and blue: 20 nearest neighbors of the red pixel

in the point cloud, blue: selected cloud points for interpolation,

black: unused cloud points

2.2 Estimation of plane equations for roof facets

Now, we compute the gradient map of the completely filled height

map with the Scharr operator which, compared to the Sobel op-

erator, better takes rotational symmetry into account. Since the

gradient direction in horizontal regions is influenced by noise,

we need to handle these regions with small gradient magnitude

separately. For all pixel regions with a gradient magnitude lower

than a threshold (we used 2 in our implementation), we compute

Hesse normal forms (i.e. normal vectors and distances between

plane and origin) for the plane with the RANSAC algorithm. For

all other regions with higher gradient magnitude, we compute an

angle image based on the gradient direction. In the smoothed an-

gle histogram, local maxima are determined. The local minima

between these maxima are used as threshold values for segmen-

tation (see Figure 6). According to these thresholds we divide the

angle image into segments that represent roof facets.

In the next step, for each of these segments a Hesse normal form

of a plane is estimated with RANSAC algorithm. Planes are ac-

cepted, if more than 80 points support the plane model. (Zhou

and Neumann, 2012) proposes to use regularities, like opposing

projections of normals on the x-y-plane, to adjust roof patch pairs.

We also tried to improve the quality of normal vectors by adjust-

ing them according to ground plan edges. But the quality of the

estimated Hesse normal forms is so good that we could not find

significantly better results with the adjustment.

The result of the segmentation process is shown in Figure 7.

There, for each roof facet all points that fit with the corresponding

plane are drawn with a color that is specific for the facet.

Figure 6: Left picture shows gradient directions computed from

the height map. Partial derivatives are displayed as red and green

values. The right picture shows a histogram of the gradient an-

gles. The histogram is smoothed with a Gaussian filter. Detected

maxima and threshold values for segmentation (which are the

minima) are marked with lines.

2.3 Tower shape estimation

In this preprocessing step we estimate tower shapes. To this end,

we segment regions of height map points that are higher than h0

which is the average height in the map plus half of the difference
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Figure 7: From left to right: Segmentation result after thresh-

olding and points of detected roof facets that fit with the facets

estimated plane. Each facet is marked with a different color.

between maximum height value and average height. These re-

gions are candidates for towers and will be analyzed further. We

identified threshold h0 experimentally, but it works well for all

kinds of buildings, not only for churches. In general we made

sure that threshold values are not specific for single buildings so

that no manual interaction is required. In our experiments, we

accept each region with heights above the threshold as a tower

candidate, if it consists of at least 80 pixels. Smaller regions

might also stand for other high objects such as trees, antennas

or chimneys. But we also have to take the shape of the region

into account. Because we work in raster domain, we do not ap-

ply established shape indices for polygons involving perimeter

(cf. (de Smith et al., 2015, Section 4.2.8)). Instead, we compute

the center of gravity (x0, y0) for each candidate region. Then

we determine the radius r0 of the largest enclosed circle with

centre (x0, y0) and the radius R0 of the minimal enclosing circle

with the same centre. The ratio r0/R0 is a measure of the tower’s

shape. If the tower is perfectly round, this shape index is one. For

a rectangular region, where one side has length a and the other

side is of length b, the ratio is min{a, b}/
√
a2 + b2. Especially

if the tower’s ground plan is a square, the ratio is 1/
√
2 ≈ 0.71.

The more the shape differs from a circle or square, the more un-

likely is the candidate region to be a tower. Therefore, we discard

all regions with a ratio that is less than 0.5. For example, this

excludes rectangular shapes with side lengths a = 2b from being

tower candidates.

For each identified tower region, we reconstruct the roof struc-

ture within the largest enclosed circle plus an offset of 10 pixels

to the radius, giving a radius R. Within that new circle, we trans-

form the height map h(x, y) from Cartesian to polar coordinates

h̃(r, ϕ) := h(x0 + r cos(ϕ), y0 + r sin(ϕ)), i.e. h̃(r, ϕ) maps

the interval [0, R]× [0, 2π) to height values, see Figure 8.

The contour of the spire is defined by the function

f(r) := min{h̃(r, ϕ) : ϕ ∈ [0, 2π)}, (1)

which then is median smoothed and simplified to a piecewise lin-

ear curve on [0, R] by applying the Ramer-Douglas-Peucker al-

gorithm (Ramer, 1972). Figure 9 shows some results.

We also tried a different approach by computing voting numbers

for pairs of radius and height values. To this end, we counted,

how often such a combination occurred for all angles ϕk :=
k·2π

n
, 0 ≤ k < n, n being sufficiently large. By interpreting

voting values as weights, we applied Dijkstra’s shortest path al-

gorithm to find another candidate for the tower’s contour. How-

ever, this approach lead to similar results as the simpler definition

of f(r) in (1) so that we did not pursue it further.

To include the circular tower structures into the model, we add a

facet on a horizontal plane with height above h0 as a base. Pix-

els within a circle of radius 2.5 · R around (x0, y0) are replaced

Figure 8: From left to right: Detected tower region in the height

map in Cartesian and polar coordinates

Figure 9: Estimated tower shapes in comparison with the original

shapes in the point cloud

by pixels of this new facet, if their height exceeds the height of

the horizontal plane and if they do not belong to roof facets that

reach into the circle from the outside. This is necessary to avoid

incomplete structures near the side walls of the tower.

2.4 Filling of gaps and elimination of noise

So far, plane facets have been identified from the interpolated

height map in raster domain. Hesse normal forms of the facets’

planes have been computed and points belonging to each facet

are marked with a specific color as a unique facet-id in another

raster map that now is the base for subsequent computations. In

that map, not all raster pixels are covered, and there still is noise

around facets’ edges.

Figure 10: A Hough-transform determines step lines going

through step edges in the interior of the ground plan.

We eliminate very small facets and fill remaining gaps in the

raster map by considering step edges and ridge lines. Step edges

are clearly visible in the interpolated height map. In order to

get straight step edges, we consider all points of the interpolated

height map with heights that differ more than 3 m from a neigh-

bor. Then we apply a 2D-Hough-transform to these points to

find step lines from local extrema in Hough space (cf. Figure 10).
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Ridge lines are pieces of intersection lines between the planes

that are defined via Hesse normal forms. Only those pieces of

step lines and intersection lines are relevant, where there are pix-

els in the neighborhood that have significant height differences or

belong to facets of both intersecting planes.

To avoid influence of noise near step lines and ridge lines, we

remove colored pixels that are closer than half a meter to a rele-

vant piece of a line, if they are not connected to other pixels of

that color which are farer away from the line and placed on the

same side of the line. Then we iteratively let the pixels inside

the ground plan grow until they collide or until a step line or an

intersection line belonging to the pixel’s plane is reached, or un-

til the interpolated height of the next pixel differs more than a

threshold value from the current one. If there are still blank areas

after this step, then we repeat it without considering intersection

lines or step edges. Along this procedure, facets might become

unconnected. Such facets have to be split up into separate con-

nected components to allow computations that are described in

the next section. Intermediate and final results of the filling pro-

cess are shown in Figures 11 (cf. Figure 7) and 12 for market

(Hülser Kirche) and main church (Dionysiuskirche).

Figure 11: Processing for the market church in Figure 7 contin-

ued: The upper left picture shows the ground plan, bold cyan

intersection lines between planes and thin violet step lines (spire

has been removed). The upper right picture displays the result of

filling with respect to intersection lines and step edges. The lower

left figure shows the outcome of polygon detection and simplifi-

cation. Also, the final 3D model of the market church is shown.

3. COMPUTATION OF ROOF POLYGONS

3.1 Construction of roof polygons

To cope with openings, we partially sort the list of roof facets

such that each facet is completely surrounded at most by facets

that are later in the list. Following this order, one can compute

outer polygons on the basis that inner polygons have been deter-

mined already.

Following the topological order iteratively, for each facet we per-

form these steps:

• We execute Pavlidis’ algorithm (see (Pavlidis, 1982, Chap-

ter 10)) to find an ordered list of vertices of the outer bound-

ary polygon of the facet. The applied version of the algo-

rithm moves along the facet’s raster map border in a clock-

wise fashion.

Figure 12: Starting with a raster map of pixels allocated to planes,

we repeat the processing steps shown in Figure 11 for the main

church of the town.

• For each vertex, we determine a list of adjacent facets from

colors of pixels in the neighborhood to the left side of the

vertex according to the direction of Pavlidis’ algorithm, see

Figure 13. Pixels to the right have to be ignored, especially

if the local width of the current facet only is one pixel. Oth-

erwise, one would find neighbor facets in a wrong order. For

implementation, we divide each pixel into four sub-pixels,

move from sub-pixel to sub-pixel and use a 4-neighborhood

of sub-pixels to find the left-sided adjacent facets.

Because of the topological order of facets, each detected

boundary vertex belongs at most to outer (and not to inner)

boundaries of those of the facets that have been dealt with

previously.

• There might be sections of the polygon that define a com-

mon outer border with facets of previous iterations or with

the ground plan of the building. These sections of vertices

can be easily identified by vertices’ list of adjacent facets.

The sections have to be joined with corresponding vertex se-

quences of the previously computed outer border polygons

or with vertex sequences of the ground plan. The outcome is

a boundary graph that defines the roof topology. This is nec-

essary to generate a ”waterproof” model without gaps be-

tween different roof facets. It is helpful that the construction

ensures common vertex sequences to be previously stored

in an order opposite to the order in which they are visited

by Pavlidis’ algorithm for the current facet (cf. directions in

Figure 13).

The boundary graph has to be simplified by removing vertices

with the Ramer-Douglas-Peucker algorithm from (Ramer, 1972).

In addition to the original algorithm, we maintain the position

of those vertices, where segments of different facets are joined.

Such vertices represent the topological structure of the roof. Also,

the positions of vertices of the ground plan are kept.

So far, precision is limited to the 10 × 10 cm2 pixel size of the
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Figure 13: Each pixel is divided into 4 sub-pixels. The arrows

show steps of Pavlidis’ algorithm. Only the blue pixel is neighbor

of the sub-pixel that is marked with a cross. The cross touches all

neigbors of a 4-neighborhood of sub-pixels.

raster representation. In order to remove remaining noise and

to get a building that precisely fits with the ground plan from

cadastral data, we snap vertices according to distance threshold

values (see Table 1) to each other, to vertices of the ground plan

and to intersection points of intersection lines between planes, if a

plausibility check regarding heights succeeds. Also, we only snap

vertices to intersection points if they have at least two adjacent

facets in common. Additionally, we project vertices onto near

edges of the ground plan. A vertex might also be projected onto

a near intersection line between planes, if the intersecting planes

belong to the facets that are adjacent to the vertex. Throughout all

these operations, we do not modify ground plan vertices and do

not move intersection points. Figures 11 and 12 show resulting

roof layouts.

max. deviation for Ramer-Douglas-Peucker alg. 1 m

min. vertex distance 30 cm

max. distance for snapping to ground plan edges 30 cm

snapping to intersection points within 60 cm

projection to ground plan edges if nearer than 30 cm

projection to related intersection lines if nearer 40 cm

Table 1: Threshold values for polygon simplification and merging

3.2 CityGML generation

Finally, we generate a CityGML representation of the building.

Heights of roof vertices are computed using Hesse normal forms

of corresponding roof planes. In general, by projecting vertices

to intersection lines, we avoid the model to have step edges where

ridge lines should be. However, roof facets of old buildings might

not be absolutely plane, and we miss small facets. Therefore,

there might be height deviations at vertices where more than two

facets intersect. To eliminate these deviations, we compute sep-

arate height values for each vertex with respect to Hesse normal

forms of all adjacent roof facets. We group the height values

into classes with widths of at most a configurable threshold value.

When drawing a roof facet, for each vertex we select the class that

contains the height value of this facet. Then we draw the vertex

with an weighted average of heights of this class. Weights are

taken from facets’ pixel counts. In our test data set a threshold of

0.5 m works well with a few exceptions, 1.3 m eliminates erro-

neous step edges completely. Unfortunately, polygons based on

averaged heights do only define an approximately planar geom-

etry. If seen strictly, this violates a CityGML requirement. We

do not cure this problem by post processing, because roof poly-

gons in the given North Rhine-Westphalian city model are also

not exactly planar due to rounding errors of similar magnitude.

In general, a triangulation of roof facets is needed to draw them.

If one uses the same normal vector for lighting of all triangles,

small deviations are not visible.

Also, polygons of spires are generated from contour data (cf. Sec-

tion 2.3) by dividing representative disks into segments. Using a

principle component analysis, the polygonal base of each spire is

rotated such that the orientation of the edges fits with the build-

ing’s orientation.

The CityGML terrain intersection polygon is the ground plan

from cadastral data enriched with heights from airborne laser

scanning. Attributes like address, number of floors or building’s

usage are taken from cadastral data.

A roof facet that completely surrounds another facet, can be mod-

eled as a LoD 3 roof surface. In CityGML, LoD 2 surfaces do not

allow for openings. However, if the inner roof facet completely

lies above the outer roof segment, then we do not model the LoD

3 opening in the outer facet but use a simpler LoD 2 structure

to increase drawing performance. Typically, this is the case for

dormers.

Figure 21 shows a collection of church models that are generated

by our algorithm.

4. EVALUATION

Since no ground truth of surface planes was available for the city

of Krefeld, we measured the accuracy of 63 church models by

considering all LiDAR points (x, y, z) for which (x, y) lay within

the ground plan. For each point we calculated the absolute dif-

ference |z − h(x, y)|, where h(x, y) denotes the model’s height

above position (x, y) as determined by the correspondig plane’s

estimated Hesse normal form. Spires are drawn with plane tri-

angles. To get error numbers that are independent of the number

of vertical segments used for triangulation, we instead computed

heights of the original, non-triangulated solid of revolution de-

fined by the piecewise linear contour that is described in Section

2.3. Figure 14 summarizes arithmetic means, standard deviation

and median of absolute differences. If one takes into account that

we work on a 10 cm raster with threshold values of Table 1, the

overall accuracy appears to be surprisingly good, especially the

median values are nearly optimal. Arithmetic means show much

larger errors because of the influence of high towers. Significant

deviations mostly occurred in the neighborhood of step edges and

towers, see Figure 15.

There are a couple of reasons for systematic errors. Whereas the

given LiDAR data covers chimneys and antennas, these structures

are not included in the model. We handle spires as described

in Section 2.3 which is the reason for larger deviations than we

get for other roof structures. Especially, we have to incorporate

plateaus as bases for solids of revolution,

Another problem is that LiDAR points belonging to trees were

not filtered out. If such points did not influence roof plane de-

tection, the correct result was measured as an error, because we

wrongly compared with LiDAR points of trees. On the other hand

side, some trees were mistaken for roof planes, see Figure 16.

The error measure does not cover this type of problem. It also

does not show that our building models are limited to the area in-

side the ground plan taken from cadastral data. Therefore, roofs

are cut off at ground plan edges, some canopies are missing.

Nearly all churches with complex roof are not included in the ex-

isting model-driven city model als LoD 2 objects. This shortcom-

ing now is eliminated (Figures 2 and 20 show the same church).

However, there are also churches with simple standard roofs. But

even for such buildings, our data-driven approach did perform

better. Examples are shown in Figure 17, 18, and 19.
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Figure 14: Accuracy for each church (numbered 1–61) in metres:

The upper diagram shows median value of absolute differences

between model and point cloud, the lower diagram shows arith-

metic mean and standard deviation.

Figure 15: Pictures show error map and model of the church with

the largest error.

5. FUTURE WORK

In future, we will differentiate between different tower shapes

such as round or square towers. This can be done by interpreting

the height map at a constant distance from the center of gravity

(x0, y0). Significant height values were found for the half radius

R/2, cf. Section 2.3. Towers with square shapes show typical

curved signatures depending on the number of corners, whereas

round towers show a smooth line signature. The analysis of the

type of signature is possible by means of Fourier transform or by

considering the number and positions of local extrema.

Cupolas outside tower areas should be identified using pattern

recognition methods. We are investigating techniques to model

dormers and small tower-like structures. A further improvement

would be to extend roof facets to areas outside the ground plan

according to LiDAR data. On the other hand side, as shown in

(Zebedin et al., 2008), instead of just applying a Ramer-Douglas-

Peucker-type algorithm to simplify polygons locally, it is pos-

Figure 16: Trees around the left church lead to three small towers

at corners of the building. Because of the same reason, the right

church has an error at the left front side.

Figure 17: Central station: model-driven (left) and data-driven

approach (right). In the model-driven approach, the tower was

mistaken as a roof.

sible to generate various level of geometric detail using global

optimization.

6. CONCLUSIONS

Resolution of public laser scanning data of North Rhine-West-

phalia is sufficiently precise to create LoD 2 models of churches

and buildings with non-standard roof structures. Our data-driven

method yields better results than the previously used model-dri-

ven method. The quality of the models is adequate for automated

mapping of photographs to facades.
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