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ABSTRACT:

In this paper, we propose an effective approach for consistent tonal correction of multi-view images during mosaicking. Our method
is specifically designed for mosaicking multi-view remote sensing images acquired under different conditions and/or presenting
inconsistent tone. To avoid the correlation of three channels in original RGB images, we convert them to an orthogonal color space lαβ
in advance. First of all, the tones of sequential images are transferred from an example image reasonably via our improved color transfer
algorithm. Secondly, the more refined adjustments take place in the luminance channel l and color channels α and β, independently. In
the luminance channel, the global gain compensation is applied to minimize the luminance difference between pairs of images by the
least square estimator. In the color channels, the specifically designed stepwise histogram adjustments make all the images consistent
tone as a whole, including the initial correction transferring the color characteristics of the automatically selected reference subset to
other images in an optimal order and the consistent correction readjusting each image by referring all their neighbors based on the
overlaps. Thirdly, we creatively transfer the original structures to the previously corrected images by a local linear model, which can
preserve the local structures of the original images. Finally, several groups of convincing experiments on both challenged synthetic and
real data demonstrate the validity of our proposed approach.

1. INTRODUCTION

In the last decades, the high spatial resolution (HR) remote
sensing images have been widely used for the applications
in many aspects, such as environmental surveillance, resource
management, and geographic mapping. For many applications,
image mosaicking is a routine procedure which merges two or
more images with overlapping areas into a single composite
image as seamless as possible in both geometry and color tone.
The basic steps of image mosaicking are comprised of geometric
alignment, tone correction, seamline searching, and feathering
or blending. All these steps are necessary for generating a
consistently mosaicked image with least geometric and radiation
deviations. However, compared to the other major steps, tone
correction has received less attention. Although with a similar
effect to tone correction, image blending alone can’t obviously
eliminate all the color difference between images under grave
situations, as the example shown in Figure 1. Hence researches
about the tonal correction algorithms are becoming more and
more necessary recently.

In the remote sensing field, most of the works on solving
the tonal difference for multi-view mosaicking are radiometric
normalization (or gain compensation) (Canty et al., 2004, Canty
and Nielsen, 2008), and others often take relatively simple
treatments (Li et al., 2015). Although these algorithms work
for some cases, it may fail to completely compensate for color
difference between different views when the lighting conditions
vary dramatically. In image processing and computer graphics
communities, lots of color manipulation methods have been
developed in recent years. These approaches can be divided
into two categories : parametric and non-parametric at a high
level (Xu and Mulligan, 2010).

Approaches based on the transformation model are parametric,
∗Corresponding author

Figure 1. An example illustrating that blending can’t obviously
eliminate the tonal difference alone. The left mosaicked image
was obtained directly by a multi-band blending technique. The
right mosaicked image was generated by our proposed tonal
correction followed by a multi-band blending technique.

which assume the color relation between images can be described
by a transform: Î = f(I), where f stands for any transformation
equation for a color vector I. (Reinhard et al., n.d.) were pioneers
in establishing the concept of color transfer, with an approach to
modify the color distribution of the original image based on the
global color statistics of an example image in the decorrelated
color space lαβ. Their work has been widely used as the baseline
approach by other approaches. To operate color in the RGB
space directly, (Xiao and Ma, 2006) proposed an ellipsoid map-
ping scheme. (Ilie and Welch, 2005) proposed to use a general
polynomial transform to correct the color vector in the RGB
space. In order to get a more accurate mapping relation, (Hwang
et al., 2014) corrected each pixel by an independent affine model,
which is the solution of probabilistic moving least square based
on point matching. (Tai et al., 2005) proposed a local color
transfer scheme based on probabilistic image segmentation and
region mapping using Gaussian mixture models (GMM) and the
expectation-maximization (EM) algorithm. (Xiang et al., 2009)
improved this work in the case that multiple source images are
available for selection. By non-rigid dense correspondence, the
algorithm proposed by (HaCohen et al., 2011) can handle shared
content under non-rigid deformations and color variations, and
compute a parametric color transfer model between pairs of
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Figure 2. The flowchart of our tonal correction algorithm.

images.

Non-parametric approaches assume no particular model for the
color mapping, and most of them use a look-up table to directly
record the mapping of the full range of color levels. To simplify
the look-up table, (Yoo et al., 2013) proposed to search the major
colors in both original image and example image by clustering
and build mapping relation between major colors through a
defined similarity metric. Actually, the look-up table is often
replaced by some kind of curve, like Gamma curve, S-curve and
B-splines, etc. (Moulon et al., 2013) utilized the intensity values
in the quantiles of histograms to depict the mapping relation,
which are optimized globally as a convex problem. The algorithm
developed by (HaCohen et al., 2013) can achieve the consis-
tent appearance of connected photos by globally optimizing a
quadratic cost function, which is based on the mapping curve as
quadratic spline with 7 nodes. Furthermore, (Pitié et al., 2005,
Pitié et al., 2007) proposed an N -dimensional probability density
function (PDF) transfer approach to reduce the high-dimensional
PDF matching problem to the one-dimensional PDF matching by
Radon Transform.

Although the above mentioned approaches have solved some
key problems arising in color transfer effectively and made
practical effects, they are only feasible for two or several images,
because of the processing complexity or the specificity for some
situations. In this paper, we aim to propose an approach which
is designed for the tonal correction of a remote sensing image
sequence containing dozens or even hundreds of images. Firstly,
all the input images are preprocessed by a local transformation
according to the statistical parameters of an example image
in each channel in the lαβ space, independently. Then, the
global gain compensation is applied to minimize the luminance
difference among all images. Besides, the specifically designed
stepwise histogram adjustments are combined to eliminate the
color differences between pairs of images. The initial adjustment
searches a consistent reference subset and transfers the tone of
the reference subset to other images in an optimal order, which
promotes the tonal consistency of all the images effectively. The
joint adjustment based on overlaps with neighboring images will
uniformize the color difference further. Finally, we creatively
transfer the local structures of the input images to the previously-
corrected ones by a local linear model.

The remainder of this paper is organized as follows. The pro-
posed consistent tonal correction for multi-view remote sensing
image mosaicking is detailedly described in Section 2. Exper-
imental results on both challenged synthetic and real data are
presented in Section 3 followed by the conclusions drawn in
Section 4.

2. OUR APPROACH

Color spaces with correlations between different channels, such
as the RGB space, always complicate the color manipulation.
For these spaces, color channels must be processed in tandem

if we want to change the appearance of a pixel in a coherent
way. Hence, we convert the input images into an orthogonal color
space lαβ without correlations before tonal correction (Reinhard
and Pouli, 2011).

As the flowchart illustrated in Figure 2, the original images
will be processed in two stages: tonal adjustment and structure
preserving in our tonal correction algorithm. First of all, since
the image sequence may take on very different tones, we have to
conduct a preprocessing to attenuate the obvious tonal deviations.
Then, the luminance compensation and the color correction are
performed independently, and the appearances of images will
change obviously in this stage, which determines the final tone
as a whole. Finally, each original image will be guided by the
correspondingly corrected image with the local linear model, like
the guided filter (He et al., 2013), to transfer its local structures.

2.1 Tonal Preprocessing

The tone of an image is some kind of global intensity charac-
teristic, and the mean value and standard deviation of the image
intensities are the most basic indicators of the image tone. In
the computer vision field, (Reinhard et al., n.d.) proposed a
simple but effective algorithm which borrows one image’s color
characteristics from another. For simplicity, they manipulate an
image in each channel of the lαβ color space individually. Taking
the single channel image for example, given an image I and its
reference image Ir , the intensity value of a point p in I is denoted
as I(p) and its corrected value can be calculated as:

Î(p) =
σ(Ir)

σ(Nn×n(p))
(I(p)− µ(Nn×n(p))) + µ(Ir), (1)

where µ(•) and σ(•) denote the mean value and standard
deviation of the intensity values in a pixel set, respectively, and
Nn×n(p) denotes the n× n neighborhood of p in I.

After this transformation, the resultant image has the standard
deviation and mean value that conform to the reference image ap-
propriately. Although this algorithm does well in most situations,
the quality of the resultant image depends on the similarity in con-
tent components of these two images. For example, if the original
image contains lots of buildings and the reference image includes
more green vegetation, then the buildings of the corrected image
will be covered with a mist of green. Unfortunately, containing
multiple kinds of objects with diverse tones is the often case of
remote sensing images, and hence it is hard to select a suitable
reference image having similar components with all input images.
To effectively apply this algorithm on remote sensing images, we
make some improvements described as follows.

In fact, the image tone is determined by two basic factors,
luminance and color. Compared to the color, the luminance is
much less sensitive to the components in images, which can be
transferred via Eq. (1) successfully in most of situations. How-
ever, the color has to be processed more carefully. We propose to
modify the equation (1) into a weighted form, whose processing
effects can be presented in different strengths according to the
weight setting. The weight value should be set proportionally
to the similarity between the original image and the reference
image. The improved transferring equation is defined as:

Î(p) =
σ(Ir)

λσ(Nn×n(p))+(1−λ)σ(Ir)
(I(p)−µ(Nn×n(p)))

+λµ(Ir) + (1− λ)µ(Nn×n(p)), (2)

where λ ∈ [0, 1] determines the degree of transformation effects
with respect to the reference image. While λ = 1, the above
equation will degenerate to the form of Eq. (1).
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Figure 3. A comparative illustration of our improved color
transferring equation: (a) the original image with a little over
exposure; (b) the reference image; (c) the resulting image via
Eq. (1); (d) the resulting image via Eq. (2) with the default weight
combination.

In general, we tend to refer the luminance information of the
reference image greatly, while adjust color characteristics slightly
during tonal preprocessing. In our experiments, we set the
default weight combination as (0.8, 0.1, 0.1) whose components
are for l, α, and β channel respectively. Figure 3 illustrates an
comparative experimental result for our improved color transfer
strategy. From Figure 3, we observe that the reference image
contains main objects as green vegetation while the test image
contains bare land. Applying the traditional color transfer via
Eq. (1) directly covers the image with green tone, as shown in
Figure 3(c). However, applying our improved color transfer via
Eq. (2) with the default weight settings enhanced the contrast
of the test image, and meanwhile maintained its original color
characteristics.

To alleviate noises, we compute the mean value and standard
deviation on the Gaussian filtered images. Besides, to increase
efficiency, we only count the mean values and standard deviations
at some grid points on the image based on their local neighbor-
hood and the statistic parameters of other pixels on the image are
bilinearly interpolated from those of grid points.

2.2 Global Luminance Compensation

After tonal preprocessing with respective to some reference
image, all the input images usually present the luminance at
the similar level. However, the slight difference between some
pairs of images still exists because of lacking joint adjustment
which takes the difference between pairs of images into account
globally. Since the tonal preprocessing has eliminated most of
the luminance deviation, we choose a simple gain model as the
luminance refinement model.

As for a pair of adjacent images Ii and Ij , we define Iij as the
subset of Ii corresponding to the common pixels in the overlap
with Ij , and so does Iji. Obviously, Iij and Iji completely
share the same points in the mosaicked image framework. The
difference between Ii and Ij in the overlap after the adjustment
can be written as:

eij=
∑

p∈Iij
q∈Iji

(
(aiIi(p)−ajIj(q)

)2
+α

(
(ai−1)2+(aj−1)2), (3)

where p and q denote a pair of corresponding points from
overlapping regions Iij and Iji, respectively, ai and aj stand
for the gain coefficients of Ii and Ij , respectively, and α is a
fixed weight for preserving the average variance of the images
after adjustment. In practice, we tend to evaluate the difference
between two overlapping images after adjustment based on the
mean values Īij and Īji in the overlapping region, and thus the
above equation (3) is modified as:

eij =
(
aiĪij − aj Īji

)2
+ α

(
(ai − 1)2 + (aj − 1)2

)
. (4)

The above modification greatly simplifies the computation and
improves some robustness to other interference factors, such
as small geometric alignment bias between overlapping images.
Considering the joint adjustment for all the N images, the total
difference can be written as:

E =
∑

i=1...N,j=1...N
Ii∩Ij ̸=∅

eij , (5)

where Ii ∩ Ij ̸= ∅ means that there exists at least an overlapping
region between the two images Ii and Ij .

We aim to find such a set of coefficients A = {ai}Ni=1, which
minimizes the total difference between each pair of images in
overlaps. It can be achieved by solving Eq. (5) through the linear
least square algorithm.

The combination of tonal preprocessing and global luminance
compensation is a kind of processing scheme from coarse to fine,
which improves the luminance consistency of all the input images
gradually.

2.3 Color Correction Based on Histogram Mapping

As mentioned in Section 2.1, the preprocessing corrects the color
characteristics just in a slight way. We observe that the color
characteristics are sensitive to the positions and categories of
objects in an image, which can not be operated in a global or
uniform form. Therefore, each image should be corrected in
an individual way according to its characteristics to eliminate
the existing color deviations. Histogram mapping between
overlapping regions is a good choice to solve this problem. To
correct the color of each image to a consistent tone, we propose
a stepwise processing strategy composed of initial correction and
consistent correction.

2.3.1 Initial Correction by Referring Optimal Subset Ac-
tually, each image may have several overlapping neighbors with
distinctive tones, and it’s hard to determine which image should
be adjusted first and which image should be selected as the
reference one. Hence, we have to find the major tone of all
the preprocessed images as the guidance, namely to search
a subset of images with consistent color as reference ones,
whose characteristics of histograms would be propagated to other
images by several steps of histogram mapping in an optimal
order.

Distance of Histograms: To judge the color difference between
two adjacent images, we compute the distance of histograms as a
quantitative metric. Firstly, we count the cumulative distribution
histograms (CDFs) of the overlapping regions from an image
pair (Ii, Ij), and extract the intensity values Vi = {vik}Kk=1 and
Vj = {vjk}

K
k=1 at K selected discrete points with equal interval

probabilities {pk}Kk=1, as illustrated in Figure 4(a), which does
not consider the bottom and up 0.5% regions at the probability
range [0, 1]. Then, the corresponding sample set at selected
discrete points in the CDF curves are fitted by the quadratic B-
spline in the coordinate system ovivj , as shown in Figure 4(b).
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Figure 4. An illustration of measuring the distance of histograms:
(a) the two CDF curves of the overlapping regions from an image
pair (Ii, Ij) with discrete nodes at equal interval probabilities;
(b) the fitted curve by the quadratic B-spline fitting for histogram
mapping, forming a shadow region with the clino-diagonal line
(base line).

The distance of two histograms from the overlapping regions
from the image pair Ii and Ij is measured as dH(Ii, Ij) =
As/(pK − p1), where As denotes the area of the shadow region
formed by the fitted curve and the clino-diagonal line as shown
in Figure 4(b).

Correction Order: So far, we can construct a graph of images
in which each image is regarded as a node and the neighboring
relationship with some overlap is represented as an arc. The cost
of an arc linking images Ii and Ij is defined as:

c(Ii, Ij) =
1

3

(
dαH(Ii, Ij) + dβH(Ii, Ij) + cbase

)
, (6)

where dαH(Ii, Ij) and dβH(Ii, Ij) denotes the distances of his-
tograms from overlapping regions Iij and Iji of Ii and Ij in the
α and β channels, respectively. The base amount cbase, which
was set as 1 in this paper, aims to avoid to find a least-cost path
across too many nodes in some special cases. According to their
costs under the predefined threshold combination or not, the arcs
are classified into consistent arcs and inconsistent ones. In our
experiments, the threshold combination is set as (0.03, 0.005)
for α and β channel respectively, which can always give the
ideal results according to lots of testing results. The nodes of the
maximum connected sub graph with consistent arcs are selected
as the reference set of images. Other images will find the optimal
referring paths by the shortest path algorithm from the root node,
i.e., the reference set of images. At last, the order of histogram
mapping can be achieved through visiting each node from the
root nodes by a BFS (breadth-first search) and each image will
be corrected based on the histogram mapping with its parent
node. Figure 5 illuminates the procedure of finding the optimal
correction order.

2.3.2 Consistent Correction by Cross Reference The cor-
rection by referring the maximum-consistent subset transforms
all images into a basically consistent color in a strong way.
However, the color differences between pairs of images may
distribute at diverse levels, because of no considering the neigh-
boring relationship during initial correction. The appearances of
adjacent images would be more consistent, once the deviations
between all pairs of images were put in a similar level. So, we
propose to further adjust images jointly with taking all neighbors
into account. For the sake of efficiency, we readjust each
image according to the weighted mapping curve which combines
the histogram mapping curves related to its neighbors. The
weight of each neighbor is set proportionally to the area of
its corresponding overlap region. What’s more, the weighted
mapping curve won’t change largely compared to the initial one
due to the fact that the component curves shall be close to the

01 06 11 16

02 07 12 17

03 08 13 18

04 09 14 19

05 10 15 20

17 18 19 20

141312 16 15

0807 11 10

02 06 0503

01

09

04

(a) (b)

Figure 5. An illustration of finding the optimal correction order:
(a) the graph of 20 images in 4 strips with 5 images each, whose
arcs are labeled in red (consistent arcs) or in blue (inconsistent
arcs). The nodes of the reference subset are labeled in red as
the root ones. (b) the spanning tree generated by the shortest
path algorithm, which is applied with the costs between reference
images set as 0. The optimal correction order is the result of the
breadth-first search from root nodes.

base line more or less after adjustment in the initial correction
period. Notice that, if the initial correction fails to put images
in a similarly consistent color, the joint adjustment in this way
would be a disaster for the mapping curve of an image. That is
to say, this step had better to be omitted in some extreme cases,
such as that the observation area consists of very different objects
like water area and bare land.

2.4 Structure Transferring

To achieve a consistent tone, all the input images have undergone
a series of processes including color transferring in a weighted
form, global luminance compensation and histogram mapping.
Although the tone of each input image is corrected to our ideal
status, the local structures in the image may have been weaken or
even damaged sometimes, which often happens when operating
the pixels of an image in a global form. In order to preserve
the structure information of the original images in the finally
corrected ones, we propose an efficient approach which transfers
local structures in original input images to the corrected ones by a
local linear model, which combines the merits of both parametric
and non-parametric approaches.

Inspired by the idea of the guided filter (He et al., 2013),
we process each original image by a local linear model under
the guidance of its corresponding corrected image via tonal
adjustment. A series of local linear transformations are applied
on each original image to take on the appearance of the corre-
sponding corrected one. Meanwhile, this operation can transfer
the structure features of the original images to the corrected ones.
Given an input image I and its corresponding corrected one Î, we
take a pixel point p as an example, whose error function of our
guidance model can be written as:

e(p) =
∑

pl∈Nm×m(p)

(
aI(pl) + b− Î(pl)

)2
, (7)

where Nm×m(p) denotes the m×m neighborhood of p, and a
and b are the two parameters of the guidance model for the pixel
point p. This above equation can be solved easily by the linear
least square method. To avoid the effect of the smooth filter, we
use the parameters estimated for local transformation directly,
instead of averaging the parameters within some neighborhood
as used in (He et al., 2013). Note that a and b are computed using
all the pixels in the m × m neighborhood of p. In this case,
a smoothness-like constraint across pixels is naturally enforced
in flat regions, while in regions with strong structures, such as
edges, the contrast is reasonably maintained (Shan et al., 2010).
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Figure 6. An illustration of our proposed structure transferring
algorithm: (Left) the original image suffering from underexpo-
sure; (Middle) the adjusted result by exposure compensation via
Photoshop; (Right) the structure-transferring image, which not
only presents the similar appearance with the adjusted image but
also preserves the local structures of the original image.

To demonstrate the effects of our algorithm, we take a poorly-
exposed image as the original input image and its adjusted result
through editing manually in Photoshop as the corrected image,
and the structure-transferring image is showed in Figure 6.

3. EXPERIMENTAL RESULTS

To sufficiently evaluate the performance of our proposed method,
we tested it on a set of synthetic images and two groups of real
multi-temporal image data captured by Chinese satellite ZY-3.

3.1 Synthetic Data

In this experiment, a set of synthetic image data comprised of
5 × 5 images was clipped from a wide-view high resolution
remote sensing image with the size of 3652 × 3601 pixels, in
which there exists a 20% overlap between two adjacent images,
as shown in Figure 7(a). All these clipped images were adjusted
individually in diverse ways in both aspects of luminance and
color via Photoshop, as illustrated in Figure 7(b). During
our experiment, we selected the 23-th clipped image as the
reference image for tonal preprocessing, which was followed by
the luminance, color correction and local structure transferring.
From simply mosaicked images by a simple superposition as
shown in Figure 7(b), we observe that the tonal preprocessing
greatly alleviates the luminance differences of images on the
whole as depicted in Figure 7(c) while our proposed color
correction method further minimizes the color deviations of
images as shown in Figure 7(d), which are more easily identified
at enlarged representative regions as shown in Figures 7(e)-(f).

Table 1 shows the numerical comparative analysis at different
stages of our proposed method, in which the number denotes
the average of distances of histograms between all pairs of
images. From Table 1, it’s easy to observe that the tonal
preprocessing greatly minimizes the luminance differences of
images but slightly decreases the color deviations. The proposed
stepwise color corrections eliminated the color deviations in α
and β channels gradually. The initial correction by referring
to the consistent reference subset eliminates the major color
deviations between image pairs while the joint adjustment is
responsible for reallocating the deviations to be well-distributed
among all the pairs of images.

3.2 Real Multi-Temporal Data

Firstly we tested our method on a set of multi-temporal images
with three strips consisting of 21 images with the down-sampling

Stages l α β

No-Operation 0.3550 0.0464 0.0072
Tonal Preprocessing 0.0459 0.0414 0.0066

Initial Correction 0.0422 0.0099 0.0017
Joint Correction 0.0422 0.0069 0.0015

Table 1. Average tonal differences in l, α and β channels after
different processing stages for synthetic image data.

size of 2294 × 1904 captured by Chinese satellite ZY-3. These
three strips, comprised of 01 ∼ 07, 08 ∼ 14, and 15 ∼ 21
images, respectively, as shown in Figure 8(a), were captured at
different times, 2012.06.26−15 : 34, 2013.06.15−15 : 42, and
2012.06.16 − 15 : 37, respectively. From Figure 8(a), it is easy
to observe the inconsistent tone between images of both intra-
strip and inter-strip. By applying our proposed tonal correction
based on the automatically selected maximum reference subset
{12, 13, 14, 19, 20}, a consistent tone was achieved among all
corrected images, as shown in Figure 8(b) where the final tone on
the whole is close to the primitive tone of the reference image
subset more or less. Via our proposed tonal correction, it is
difficult to identify the borders for almost of all the pairs of
images in Figure 8(b) while their corresponding borders before
correction in Figure 8(a) are easily observed. For a more
detailed visual comparison, four enlarged representative regions
are illustrated in Figures 8(d)-(g). Besides, several image pairs
with a little residual tonal deviations, such as {01,08}, {13,20}
and {14,21}, are also not a trouble, which can be smoothed
by any feathering or blending algorithm easily. All in all, our
method just aims at tonal correction, which should be followed
by the subsequent operations like seamline searching and image
fusion in the full procedure of image mosaicking. To demonstrate
the compatibility of our approach applied in the whole image
mosaicking procedure, we fused all the corrected images by a
multi-band blending algorithm with the open source software
Enblend1, which generated the finally mosaicked image as shown
in Figure 8(c).

However, in the corrected result as shown in Figure 8(b), there are
still some flaws on some image regions, for example, the images
05 and 19, whose brightnesses distribute unevenly. It is a problem
introduced by tonal preprocessing in which the transformation
parameters of pixels are bilinearly interpolated from some fixed
grid points. In such a strategy, pixels, located in the margin
regions between a bright region and a dark one, are prone to
be brightened overly, because its transformation parameters are
influenced by the dark region which shall be brightened through
the transformation. As it should be, such situation can be
alleviated by setting grid points more compactly, which can also
be combined with setting a smaller weight to weaken the effect
of transformation. A group of examples are reported in Figure 9,
from which we observe that the over-brightened margin region
around the dark region is smaller with the more compact grid
points setting.

The numerical comparative analysis at different stages is given
in Table 2. Different from those in Table 1, we observe from
Table 2 that the joint correction operation slightly enlarged the
color deviation in the α channel. As we can know from the
operation as described in Section 2.3.2, the joint adjustment is
not necessary to decrease the average difference between images,
especially when the neighbors of some image have obviously
different tonal characteristics, whose function is to uniformize
the deviations between pairs of images contributing a relatively
uniform tone as a whole.

1Enblend is available at http://enblend.sourceforge.net/
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Figure 7. The experimental results on the synthetic image data: (a) the original image with red border lines of clipped images with
a 20% overlap between two adjacent ones; (b) the manually adjusted images individually via Photoshop displayed as a single simply
mosaicked image; (c) the tone-preprocessed result, in which all clipped images present at a similar luminance but the color deviations
between adjacent images do not disappear; (d) the finally corrected result, which presents a consistent tone on the whole with the
reference subset {11,12,13,16,18,19,21,23,24,25}; (e)-(f) two enlarged representative regions shown with the manually adjusted results,
the tone-preprocessed ones, and the finally corrected ones from left to right.

Figure 9. The corrected results of an example region on the image
19 in Figure 8(a) when setting grid points in different densities
during tonal processing: 8×8, 16×16, and 24×24, respectively,
from left to right. The weight values for the l channel are
set as 1.0 and 0.5 for the images in the top and bottom rows,
respectively.

Stages l α β

No-Operation 0.1183 0.0442 0.0053
Tonal Preprocessing 0.0491 0.0403 0.0049

Initial Correction 0.0401 0.0138 0.0017
Joint Correction 0.0401 0.0145 0.0015

Table 2. Average tonal differences in l, α and β channels after
different processing stages for real multi-temporal images shown
in Figure 8(a).

To sufficiently evaluate our method, we tested it on another group
of four strips of multi-temporal images consisting of 16 images
as shown in Figure 10(a), which were also captured by Chinese
satellite ZY-3 at different times. The visual comparison and the
corresponding numerical analysis are provided in Figure 10 and
Table 3, respectively. The similar performance on this group of
image data can be observed, except for the region on the image
04 of the mosaicked image shown in Figure 10(c), which contains
a large area of water and presents a little strange tone after the
color correction. This newly emerged problem tells that our color

Stages l α β

No-Operation 0.1975 0.0715 0.0067
Tonal Preprocessing 0.0631 0.0641 0.0059

Initial Correction 0.0526 0.0100 0.0017
Joint Correction 0.0526 0.0089 0.0013

Table 3. Average tonal differences in l, α and β channels after
different processing stages for real multi-temporal images shown
in Figure 10(a).

correction algorithm is infeasible for those images whose tone
can’t be sufficiently represented by that of its overlap region with
its neighbors. That’s to say, our method can achieve very good
correction effects in the premise that each image basically has an
uniform tonal characteristic within itself.

4. CONCLUSION

In this paper, we proposed a full set of processes for consis-
tent tonal correction of multi-view remote sensing images for
mosaicking. The utilized tonal preprocessing can decrease the
deviations between images integrally by the color transferring
equation in a weighted form with an example image. Then, the
global luminance compensation in the l channel and the stepwise
color correction in the α and β channels further minimize the
luminance difference and the color deviations, respectively, with
a consistent tone on the whole. Finally, the evaluation on several
groups of representative synthetic and real images demonstrates
that the proposed method is effective and feasible. Of course,
there exist also some aspects to be possibly improved. One is
the strategy of selecting the reference image subset, which won’t
select two or multiple subsets disconnected with each other,
though they are in a very consistent tone. This improvement
may decrease the times of histogram mapping from images to the
reference subset, which may improve the quality of correction
greatly. Next, the consistent correction should be implemented
by a more robust algorithm to deal with some extreme cases. All
of these problems will be deeply investigated in our future work.
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Figure 8. The experimental results on three strips of multi-temporal images: (a) the mosaicked image by a simple superposition
from 21 input images; (b) the finally corrected results based on the maximum reference subset {12, 13, 14, 19, 20}; (c) the mosaicked
image by applying a multi-band blending on the finally corrected images in (b) with the open source software Enblend; (d)-(g) four
enlarged representative regions clipped from the mosaicked images before and after consistent tonal correction and those after applying
multi-band blending on the corrected result, as shown in (a) , (b) and (c), respectively.
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