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ABSTRACT:

Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context
of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally
speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain
distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an
oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted
to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions
of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central
objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a
diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that
the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds
for a 4656× 3496 aerial image. It is promising for large-scale transportation management and planning.

1. INTRODUCTION

With the advance in sensing and satellite technology, aerial im-
ages of high resolution become widely available around the world.
High-resolution aerial image covers a large range of land area
with ever-growing spatial resolution. It has been found applica-
tions in such fields as agriculture, environment, surveying, city
construction and maintenance, transportation management and
planning,etc. Traffic congestion becomes badly worse in many
metropolitan areas with the growing number of vehicles. Traffic
flow monitoring plays an important role in the optimal alloca-
tion of transportation infrastructure during the peak time. Vehicle
detection is necessary for the statistics and monitoring of traffic
flow. Traditionally, the number of vehicle is counted manually at
each crossing. It is dangerous, tedious, and prone to ignorance in
case of occlusion. Although tens of thousands of video recorder-
s are installed to monitor the real-time traffic around the cities
in China, they haven’t been connected to formulate a monitor-
ing network as a whole and can’t readily provide the large-scale
traffic data to help the decision-making of transportation agen-
cies. Aerial image can record vehicles over a large range and at
the same time. Moreover, the imaging interval between two con-
secutive aerial imagery is greatly shortened because many small
satellites are launched and dedicated for a certain industry and
region of a city. Therefore, there is a need to take full advantage
of aerial image to detect vehicles on a large scale.

Although vehicles of aerial image have different color and num-
ber of axles, they are distinguished from other objects due to the
fact that 1) they belong to a road; 2) they are salient among the
road; 3) they are artifact and have rectangular shape. This paper
is motivated to detect vehicles of aerial image in the context of a
road and from the shape saliency perspective.
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The challenges of exploiting the vehicle context and shape salien-
cy of aerial image are as follows:

• The road context of a vehicle is itself difficult to extract.
The actual road network is complex in terms of its structure,
width, type, etc. The road is also complicated with the traffic
flow, parking, etc.

• The road is surrounded by different setting. Beside the road,
there are different kinds of vegetation, building, tree, and
curb. They probably look like the same as road from the
aerial imaging point of view.

• Pavement texture varies a lot in a region. Pavement could
be composed of concrete or asphalt of different macro- and
micro- texture. Part of it could be repaired with quite differ-
ent materials.

• Vehicles have different color and size of shape. The color
of a vehicle could be red, white, black, etc. Vehicle could
be mixed up with the pavement surface, e.g., it is hard to
tell a black vehicle from the asphalt pavement due to their
similar intensity level. The shape of a vehicle varies with its
different type. A truck is usually bigger than a car.

Vehicle detection of aerial image can be divided into color-based,
shape-based, or both. (Stefan et al., 2008)presented an explicit
semantic model of traffic to detect cars from different transporta-
tion situation. Different strategies for vehicle detection and ve-
hicle queue extraction are derived depending on characteristics
of the input data. (Leitloff et al., 2010)adopted adaptive boost-
ing to generate single vehicles and applied the width and con-
trast of each line point to extract the single cars from queue by
fitting Gaussian kernels. With a supervised Hamming Neural
Network (HNN) method proposed by (Elangovan Vinayak and
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Amir, 2013)color and orientation attributes were considered to
extract the key structural features that are distinctive of a class of
vehicle. This method is promising and robust for vehicle detec-
tion due to the incorporation of multiple color and shape features.
Various computer vision algorithms such as Mean Shift, Contour
Analysis, etc are widely applied to detect cars from the color and
shape perspectives of aerial image(Sun et al., 2002, Sivaraman
and Trivedi, 2011, Hsieh et al., 2014). (Cheng et al., 2012)uti-
lized a color transform to separate cars from non-cars while pre-
serving shape moment for adjusting the thresholds of the canny
edge detector automatically. (Zheng et al., 2013) identified the
hypothetical vehicles by the gray-scale opening and top-hat trans-
formation in white background, as well as the gray-scale clos-
ing and bot-hat transformation in dark background respectively.
What would be time-consuming is that a vehicle would be detect-
ed twice by the two transforms. It would achieve low accuracy
if the color difference between the vehicle and backgrounds is
small or disturbed by the tree. Shape-based vehicle detection ac-
tivates a weighted combination of texture-based classifiers, each
corresponded to a given pose(Gavrila, 2006). In (Mithun et al.,
2012), shape-invariant texture features of a car is used in a two-
step k nearest neighborhood classification scheme of identifying
a special vehicle. Besides the different feature representation and
transform of the vehicle, many literature also focus on the pat-
tern learning of a vehicle, e.g., boosting(Chang and Cho, 2010),
neural network(Zheng H, 2006), etc. However,due to the limit
of spatial resolution, a vehicle occupies only a small number of
pixels in a one-meter-aerial image. It’s hard to model a vehicle
exactly based on the prior knowledge of its shape and/or color.
Textural feature of the pavement surface is not well integrated
with the context of a vehicle. This paper is motivated to detect
the shape saliency of a vehicle in the textural context of the road
background.

Within a certain distance away from the given vector of the road
network, the aerial image is decomposed into a smoothly-varying
cartoon part and an oscillatory details of textural part. The varia-
tional model of Total Variation regularization term and L1 fidelity
term (TV-L1) is adopted to obtain the salient texture of vehicles
and the cartoon surface of pavement. To eliminate the noise of
texture decomposition, regions of pavement surface are refined by
seed growing and morphological operation. Based on the shape
saliency analysis of the central objects in those regions, vehicles
are detected as the objects of rectangular shape saliency. The per-
ceptually salient vehicles on the road are then well detected from
the textural and shape perspective.

2. TV-L1 TEXTURE DECOMPOSITION

Within a certain distance away from the given vector of the road
network, the aerial image is decomposed into a smoothly-varying
cartoon part and an oscillatory details of textural part in this sec-
tion.

Pavement texture varies a little and is piecewise-smooth, whereas
vehicles in the middle of the road have sharp edges. It is neces-
sary to subtract the smooth pavement texture from the aerial road
imagery and to enhance the textural contrast around the edges
of vehicles. Vehicles of white or black color become more sig-
nificant after the suppression of the majority of pavement back-
ground in the aerial image.

The variational model of Total Variation regularization term and
L1 fidelity term (TV-L1) is adopted to obtain the salient edge of

vehicles and the cartoon surface of pavement. The TV-L1 mod-
el consists in a L1 data fidelity term and a Total Variation (TV)
regularization term (Le Guen, 2014). TV regularization enables
to recover sharp variations.It tends to involve constant regions of
pavement background and permits sharp edge around vehicles.
The L1 norm is particularly well suited for the cartoon + texture
decomposition since it better preserves geometric features. The
TV-L1 variational model is

inf
(µ,v)∈BV (Ω)×L2(Ω)

{
∫

Ω

| Du | +λ‖ ν ‖L2(Ω), f = µ+ν} (1)

where∫
Ω

| Du |= sup{
∫

Ω

υdiv~φdx, ~φ ∈ C1
0 (Ω, R2), ‖ ~φ ‖∞≤ 1},

(2)
denotes the total variation of µ in Ω, also denoted by T V(µ) or
by | µ |BVΩ . The component µ belongs to the space of functions
of bounded variation.

BV (Ω) = {µ ∈ L1(Ω) :

∫
Ω

| Du |<∞} (3)

In the discrete setting, the TV-L1 model reads as

minλ ‖ µ− g ‖1 + ‖ 5µ ‖1, (4)

where g is the original image, and the solution of this problem u∗

will be the cartoon part. The discrete L1 is defined by ‖ µ ‖1=∑
i,j
| µij | and for a vector field

‖ 5µ ‖1=
∑

i, j
√

((5µ)1
ij)

2 + ((5µ)2
ij)

2 (5)

(∇µ)1
i,j =

{
µi+1,j − µi,j if(i < M)
0 if(i = M)

(6)

(∇µ)2
i,j =

{
µi,j+1 − µi,j if(j < N)
0 if(j = N)

(7)

Within the road buffer of Figure 1, the result of TV-L1 texture de-
composition is shown in Figure 2 and Figure 3, where the piece-
wise smoothly-varying pavement background of Figure 2 is sub-
tracted from the aerial road imagery to enhance the sharp edges
around vehicles in Figure 3. It should be noted that noise is en-
hanced too during the subtraction. Gaussian noise is purposely
added to the aerial image to provide insight into how noise influ-
ences the TV-L1 texture decomposition. Gaussian white noise of
mean 0 and standard deviation 0.01 is added to the top image and
Gaussian white noise of mean 0 and standard deviation 0.03 is
added to the bottom one, as shown in Figure 4. It can be seen that
the homogeneity of the pavement texture becomes a little affect-
ed by random noise, which affects the discriminative capability
of texture.

3. VEHICLE SHAPE SALIENCY

Vehicle shape saliency is proposed in this section to detect the
salient vehicles at the center of the pavement surface that have
homogenous and enhanced texture contrast with the vehicles.
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Figure 1: Road buffer

Figure 2: Pavement background of the cartoon part of the TV-L1
texture decomposition

Figure 3: Enhanced texture around vehicles

3.1 Pavement Surface Detection

Based on the given vector of the road network of the high-resolution
aerial image, road extraction is narrowed within the buffer of a
certain distance away from the road centerline. However, the road
buffer can not exactly cover the whole pavement if the road cen-
terline is not accurate and the buffer width is too small. In our
algorithm, the buffer width is slightly larger than the number of
pixels that total width of all lanes in the aerial image contains. On
the one hand, the vehicles will not be missed. On the other hand,
using the loose width of road buffer, the extra interferences aris-
ing from the roadside buildings, vegetation, etc. will be excluded
in the further procedure. It is a trade off between the accuracy and
computational efficiency. The buffer width can be set according
to the prior knowledge of the road grade and the spatial resolution
of the aerial image.

Instead of extracting vehicles directly, the proposed algorithm s-
tarts with the detection of the significant pavement surface. It is
based on the fact that pixels being pavement are the majority a-
mong those pixels of the road buffer. Also, the central vehicles
on the pavement surface are differentiated from the surrounding
pavement, because they have quite different intensity and texture
from their neighborhood. Meanwhile, road buffer involves not

(a)

(b)

Figure 4: Effects of Gaussian noise.(a)Add Gaussian white noise
of mean 0 and standard deviation 0.01. (b)Add Gaussian white
noise of mean 0 and standard deviation 0.03.

only pavement but the central and road-side interference afore-
mentioned. Pavement surface detection robustly excludes the dis-
turbing interference while preserving the outstanding vehicles in
the center. This work can be applied in various conditions due to
the homogeneity of the pavement texture. It consists of:

1. finding seeds of pavement surface;

2. growing pixels of pavement surface by texture similarity;

3. and morphological closing.

3.1.1 finding seeds of pavement surface Road seeds are lo-
cated near the road center and surrounded by pixels that have
similar texture. It can be found along the direction perpendicular
to the road vector. The number of pixels that satisfy the charac-
teristic of seed is comparatively large in the large aerial image.
Therefore, every road vector of the road network is sub-sampled
every a certain interval during the seed-finding. Seeds are those
pixels that have homogenous texture in the neighborhood and a-
long the normal direction of the sampled point of the road vector,
as shown in Figure 5. Every small buffer area of each road seg-
ment has its own seeds, which adapts to the variation of pavement
texture.

3.1.2 growing pixels of pavement surface The next and most
important step of pavement surface detection is to grow pixels of
pavement surface by texture similarity. To grow seeds, we sim-
ply expand pavement from one pixel to its connected neighbor
by comparing the difference of texture between the pixel and its
neighboring seed. The smart growing process is guided by the
texture of seeds and works as follows: Starting at a seed, we look
at the texture value of its eight neighbors in a clockwise order and
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Figure 5: Seeds in road buffer. The center of every small circle
represents the seed.

begin the search in a breadth-first way. If the difference between
the seed and its neighborhood is under the tolerance, the point
will be classified as pavement pixel and added to the set of pave-
ment surface. At each step, only eight immediate neighbors are
considered, and the points having similar texture are picked as
new seeds. This process is iterated until it reaches the boundary
of the road buffer or the texture difference of neighboring pixel is
beyond the threshold. A detailed illustration of the smart routing
procedure is given in Figure 6, where numbers inside the grids
are texture value. Seed are marked with red color and we assume
that the pixel at (3, 4) is the starting seed. Considering the dis-
crepancy with its neighborhood, we gather points from (2, 4) to
(2, 3) in a clockwise order. It can be seen the pixels collected
during the above process are labeled with white color. At each
iteration of the loop, one pixel of the pavement surface will be
regarded as new starting point, pixels that meet the tolerance of
texture difference are added to the queue. Yellow rectangle and
green rectangle show the result of the first and second iteration
respectively. The process ends up with an empty queue of seeds.
Starting with the seeds of Figure 5, the grown pixels of pavement
surface are shown in Figure 7.

Figure 6: An overview of the smart routing procedure

3.1.3 morphological closing It can be seen from Figure 7
that most interference from the road-side trees and central iso-
lation guardrail is reduced after seed-growing. But there are still
many holes and discontinuity in the pavement surface. They are
composed of vehicles, lane markings, edges, noise, overlapping
bridges, etc. Morphological closing is adopted to eliminate the
noise of texture output. The final pavement surface is shown in
Figure 8. It should be noted that manual addition of seeds are

Figure 7: Result after growing seeds

readily supported to detect areas of pavement surface that are not
well covered by the automatically-chosen seeds. This interactive
refinement of the set of seeds enhances the result of pavement
surface detection and the accuracy of subsequent vehicle detec-
tion.

Figure 8: Result of morphological closing

3.2 Vehicle Shape Saliency

As seen in Figure 9, vehicles are salient holes among the detected
pavement surface. Contours of the holes are first analyzed in this
section, based on the result of edge drawing in the middle of the
road. The vehicle shape saliency is then defined to characterize
the rectangular shape saliency of vehicles.

Figure 9: Vehicle shape saliency.Vehicle is marked with yellow
border and long and short axis of the ellipse are marked with red.

Vehicles are detected as the object of rectangular shape saliency
among the pavement surface. Without loss of generality, every
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contour of object is approximated by its principal axis and orien-
tation. The approximation is fulfilled by fitting the contour with
minimal coverage of ellipse. For every elliptical shape W , its
area, the same as the total pixel numbers N inside the contour, is
seen as the size a of the vehicle. The rectangular shape saliency
r is given by the ratio of the length of principal axis L and minor
axis S of the contour,

L = 2×
√

2((µxx + µyy) +4) (8)

S = 2×
√

2((µxx + µyy)−4) (9)

r =
L

S
(10)

where µxx,µyy ,µxy ,4 are intermediate variables

µxx =

∑N

i=1
x2
i

N
;µyy =

∑N

i=1
y2
i

N
;µxy =

∑N

i=1
xiyi

N
(11)

4 =
√

(µxx − µyy)2 − 4µ2
xy (12)

xi and yi are vertical and horizontal coordinates for ith coordi-
nate of contour W respectively. Based on the physical size and
rectangular shape of different vehicle, prior knowledge about the
size and rectangular shape saliency can be calculated from the
spatial resolution of the aerial image. Contours of bigger or s-
maller shape saliency than the prior knowledge will be neglected.
Vehicle shape saliency measure S(x) of xth contour inW is then
defined as follows

S(x) =

{
1 if a ∈ [10, 50], r ∈ [2, 5]
0 else

, (13)

where 10, 50 denotes the minimal and maximal area; 2 and 5
represents the probable smallest and largest ratio respectively. All
these parameters are dependent on the type of vehicle and the
spatial resolution of the aerial image. The measure S(x) indicates
0 and 1 distribution. If the value is 1, it means that the contour
is a vehicle. Its centroid represents the occurrence of the vehicle.
The contour is discarded when the value is 0. The final result is
shown in Figure 13.

3.3 Lane Boundary Localization

As can be seen in Figure 10, the contrast between the vehicle and
the road is enhanced by the application of TV-L1 model. Howev-
er, the lane boundary is heightened simultaneously. The discrep-
ancy of shape saliency between the vehicle located on the top left
of Figure 10 and the lane boundary is very small. This will re-
sult in the vast erroneous. To differentiate the short lane marking
from the vehicle, the lane boundary is located. Vehicles can not
be removed because they are always located at the lane center,
instead of the lane boundary.

The road centerline contains abundant information about the pave-
ment, such as orientation, location, length, etc, and lane bound-
aries are parallel with the centerline. The centerline is extracted
by the obvious gradient feature and a smart edge detection al-
gorithm called Edge Drawing (ED) (Topal and Akinlar, 2012).
Based on edges of ED, the next step is fitting the edge pixels in-
to the road centerline. According to the design specification of
road structure, polynomial fitting function is chosen to match the
centerline. The width of vehicle lane is a prior knowledge, de-
pending on the spatial resolution of aerial imagery. Therefore,
lane boundaries can be located easily by translating the center-
line curve and under the guidance of the short lane markings on
pavement surface. The edge result of ED is shown in Figure 11
and the final result of the lane boundary in Figure 12. The salient

object will be eliminated if its center is located on lane bound-
aries. The experimental result demonstrates it can suppress the
erroneous effectively.

Figure 10: Interferences of lane boundary.

Figure 11: Result of Edge Drawing. Road centerline and short
lane marking are extracted.

Figure 12: Result of lane boundary localization.

4. EXPERIMENTAL RESULTS

In this section, the proposed algorithm is tested for the accuracy
and computation time of vehicle detection of aerial image. The
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image is the GF-2 image of Wuhan, China with a nominal res-
olution of 1 m , and provided by China Highway Engineering
Consulting Corporation (CHECSC). It can be seen that roads on
the right of the image are composed of concrete and surrounded
by trees, buildings, etc., while the left is asphalt including many
lane boundaries and shadows. Moreover, the colors and the sizes
of vehicles vary a lot. This imagery involves different traffic sit-
uations and density in a city.

Since we want to get a desired result in such broad and various
areas, a loose buffer width of 25 pixels is chosen. This is also why
pavement surface detection is applied to refine the buffer. When
the λ (a parameter of TV-L1) is set to 1, the detected texture of
road is smooth. But a large λ can also blur the contours of black
vehicles. To maintain the black vehicles, the process of TV-L1
is adopted with a λ of 0.1. Based on the statistics of vehicles of
different types, the shape saliency parameter of area and aspect
ratio is set to 10-50 and 2-5 respectively.

To assess the effect of the proposed vehicle detection algorithm,
accuracy is the most important. The measure TP is defined as the
geometric ratio based on the number of vehicles and the result of
detection as Equation 14 shown. In addition, FP is calculated as
the false alarms as Equation 15 illustrated.

TP =
Nt
Np

; (14)

FP =
Nf
N

; (15)

where Nt represents the number of correctly detected vehicles,
and Np is the number of vehicles in high-resolution aerial image.
Nf is the number of the contours that are mistakenly detected as
vehicles, and N is the total number of output of vehicle detection
with our algorithm. Computation time is also recorded to evaluate
our proposed algorithm.

Procedure time(ms)
Pavement surface detection 4074.01
Texture decmposition 13751.50
Vehicle detection 21307.48
Total 39132.99

Table 1: Computation time of each procedure.

The computation time is obtained with a PC of an Intel 2.4GHz
i7-5500U CPU and 8GB RAM. The total computation time is
39.13 seconds for a 4656× 3496 aerial image. The computation
time of each procedure is listed in Table 1. The first procedure
takes 4.07s, and includes three steps: constructing the road buffer,
growing pavement and morphological closing. The second proce-
dure takes 13.75s. This procedure is texture decomposition using
TV-L1 model. The last procedure takes 39.13s and includes two
steps: lane boundary localization and vehicle shape saliency de-
tection. The 54% of the total computation time is spent on the
last procedure. The lane boundary localization can be sped up by
an efficient parallel algorithm.

Based on the Equation 14 described ahead, TP can be gathered
by the difference between our automatic algorithm and visual in-
spection. The experimental imagery includes 158 manually col-
lected vehicles of which 113 vehicles are correctly detected. Fur-
thermore, 31 contours are mistakenly detected as vehicles among
the 144 output of the proposed algorithm. Therefore, these results
lead to an accuracy of 71.5% and a false alarm of 21.5%.

The result of vehicle detection is shown in Figure 14, with the
local vehicle detection results shown in Figure 16-19. Figure 16,

17, and 18 correspond to the region 1, 2, and 3 of Figure 14 re-
spectively. Some objects at the lane center could be mistakenly
extracted because their shape contours is similar to the vehicle,
as shown in Figure 16. In Figure 17(b), a little black vehicles
are missed, because they show a very low contrast with their sur-
roundings. The missed vehicle is mainly caused by the low con-
trast between the vehicle and the road. The vehicles nearby the
lane boundary can not be detected in Figure 18. As shown in
Figure 18(a), the lane boundary is salient after texture decom-
position. Therefore, the vehicle contour is included in the lane
boundary contour. These vehicles are missed, because the shape
saliency of the lane boundary contour is not satisfied. The Figure
19 shows the good result on concrete pavement. Our algorithm
is able to detect vehicles regardless of the colors and the sizes of
the vehicle.

Figure 13: Result of vehicle detection. Vehicle detection result is
marked by red point.

Figure 14: Result of the proposed algorithm. Three regions are
marked with yellow rectangles. Local results of three regions is
illustration in Figure 16-18 respectively.

-

5. CONCLUSION AND RECOMMENDATIONS

Vehicle detection is important for all transportation agencies to
collect the necessary data for optimal allocation of transportation
infrastructure. With ever-improving resolution of aerial image, it
can contain more precise spatial and spectral information of the
vehicles. However, due to the various pavement textural noise,
shadow, surface debris, etc, it remains a challenge to detect ve-
hicles from the aerial imagery. This paper is motivated to detect
vehicles of aerial image in the context of a road and from the
shape saliency perspective.

Unlike the traditional method, the proposed algorithm detects ve-
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Figure 15: Texture image of whole imagery.

(a) (b)

Figure 16: Illustration of local result.(a)Texture image.
(b)Vehicle detection result is marked by red point, object located
on lane center is mistakenly detected.

(a) (b)

Figure 17: Illustration of local result.(a)Texture image.
(b)Vehicle detection result is marked by red point, several black
vehicles are not detected.

hicles using TV-L1 texture decomposition. The interference of
different roadside objects is reduced using pavement surface de-

(a) (b)

Figure 18: Illustration of local result.(a)Texture image.
(b)Vehicle detection result is marked by red point, vehicles n-
earby the road centerline are missed.

(a)

(b)

Figure 19: Illustration of local result.(a)Texture image.
(b)Vehicle detection result is marked by red point, vehicles are
well detected on concrete pavement.

tection. Based on the TV-L1 texture analysis, the contrast be-
tween the vehicles and the road is enhanced. The vehicle shape
saliency is chosen to characterize the shape feature of the vehi-
cles, which opens the door to detect vehicle of different size and
color. To suppress the erroneous effectively, the lane boundary is
localized by centerline drawing and displacement. The proposed
algorithm is tested on an aerial image with the size of 4656×3496
pixels that contains complicated road structure, different setting
surrounding the roadside, different sizes and colors of vehicles,
etc. Experimental results show the proposed algorithm can detect
vehicles with various sizes and colors in different pavement tex-
ture. It is promising for the automatic classification of vehicles of
different types from the aerial imagery.

Although the proposed algorithm demonstrates its capability for
vehicle detection, we recommend that:

1. more comprehensive tests be conducted for various aerial
data, including a diverse set of Very High Resolution (VHR)
images of different traffic density.

2. the algorithm be sped up by an efficient parallel computation
of the texture and edge.
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3. other vehicle salient features, such as color, orientation, shape,
etc. be combined with the proposed vehicle shape saliency
measure.
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