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ABSTRACT:

Despite a lot of recent research, photogrammetric reconstruction from crowd-sourced imagery is plagued by a number of recurrent
problems. (i) The resulting models are chronically incomplete, because even touristic landmarks are photographed mostly from a
few “canonical” viewpoints. (ii) Man-made constructions tend to exhibit repetitive structure and rotational symmetries, which lead
to gross errors in the 3D reconstruction and aggravate the problem of incomplete reconstruction. (iii) The models are normally not
geo-referenced. In this paper, we investigate the possibility of using sparse GNSS geo-tags from digital cameras to address these issues
and push the boundaries of crowd-sourced photogrammetry. A small proportion of the images in Internet collections (≈ 10%) do
possess geo-tags. While the individual geo-tags are very inaccurate, they nevertheless can help to address the problems above. By
providing approximate geo-reference for partial reconstructions they make it possible to fuse those pieces into more complete models;
the capability to fuse partial reconstruction opens up the possibility to be more restrictive in the matching phase and avoid errors due to
repetitive structure; and collectively, the redundant set of low-quality geo-tags can provide reasonably accurate absolute geo-reference.
We show that even few, noisy geo-tags can help to improve architectural models, compared to puristic structure-from-motion only
based on image correspondence.

1. INTRODUCTION

Image-based 3D reconstruction of buildings and architectural mon-
uments is a well studied problem in photogrammetry and com-
puter vision. Traditionally, one would travel to the site and ac-
quire the necessary images. Such a carefully planned recording
will ensure complete coverage and sufficient pairwise overlap,
such that camera orientation and subsequent (point-wise) recon-
struction become easy – nowadays fully automatic reconstruction
is available in many commercial systems.

The rapid development of image sharing sites and social networks
(a staggering 1.9 billion images are uploaded to the Internet ev-
ery day) has raised the possibility to find images for 3D recon-
struction on the Internet, rather than go into the field. Millions
of images of the human habitat are available on Internet photo
sharing sites and social networks. The promise of crowd-sourced
photogrammetry is to make use of this treasure trove, especially
for city modelling, architecture, and heritage.

The crowd-sourcing approach to photogrammetry poses additional
challenges, because the data are not recorded with photogram-
metric requirements in mind. A key property of Internet im-
age collections is their extremely uneven distribution. For some
viewpoints of popular landmarks, which are most photogenic and
easily accessible, there are thousands of nearly identical images.
Other parts are only covered sparsely or not at all (e.g. less at-
tractive viewpoints at the back of a building, and parts that re-
quire non-standard equipment like tripods or extreme wide-angle
lenses). Moreover, the imaging conditions vary wildly, as indi-
vidual photographs are taken with different cameras and/or in dif-
ferent weather conditions. Some images might be totally incom-
patible, e.g. pictures taken at night, or showing temporary objects
on the facade like scaffolding or posters. All these cases must be
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Figure 1. Reconstructions from uncontrolled images are some-
times compromised by duplicate structure and/or missing parts
(left). Using the GNSS tags available for a small proportion of
the images can mitigate the problem (right).

filtered automatically when using large photo-collections, placing
high demands on the orientation and reconstruction pipeline.

While modern software can deal with difficulties like unknown
and varying focal length, lighting changes, and incompatible im-
ages, a number of common problems remain. Perhaps the most
severe limitation is that more often than not the reconstructed 3D
model will be incomplete. In some cases a part of the object of
interest is really not covered by any images – that case cannot be
solved without targetted recording. However, often the problem
is more subtle: there would be suitable views in the data, but these
are not found, because there are not enough tiepoint correspon-
dences to connect them to the model. A frequent special case is
that different sides of a building are reconstructed separately, but
can, in the absence of tie points, not be recognised as belonging
to the same object and therefore also not be transformed into a
common coordinate system.
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A second problem, which is less frequent, but, if undetected,
leads to unusable models, is repetitive structure. In architectural
reconstruction this seemingly exceptional situation is surprisingly
frequent: identical copies of architectural elements such as win-
dows, columns, etc. are routinely re-used multiple times on the
same building, not only within a single facade, but also on dif-
ferent sides, giving rise to (partial) rotational symmetries. Such
repetitive (or “duplicate”) structures induce sets of multiple, mu-
tually consistent but false correspondences between spatially dis-
tinct copies, and as a consequence grossly wrong camera poses.
Their detrimental effect is two-fold. On the one hand, cameras
that are attached to the model in a wrong pose are missing else-
where, sabotaging the attempt to obtain a complete model. On
the other hand, an orientation error in one camera propagates to
further cameras that are (correctly) matched to it, leading to hal-
lucinated 3D structure at a wrong location (see Fig. 1).

Finally, puristic reconstruction only from image data can by de-
sign only solve for relative camera poses, so the resulting model
is scaled arbitrarily and not geo-referenced. Going to the field
to measure ground control points would defeat the purpose of
crowd-sourcing, so it would be desirable to also recover absolute
orientation from the crowd-sourced data.

Which additional information beyond the pixel intensities is avail-
able in crowd-sourced imagery, that could be used to solve this
problem? Many digital cameras (including those on cell phones)
have a cheap, consumer-grade single-frequency GNSS receiver,
and sometimes the GNSS coordinate at the time of taking the
picture is stored as meta-data in the image’s EXIF header. These
coordinates, sometimes referred to as geo-tags are currently not
available for the majority of images1, and they are not accurate
enough to be used directly – errors in some cases exceed 10 m.
But, just like the approximate focal length that is also often part
of the meta-data, they are good enough as initial values, and can
constrain the problem sufficiently to overcome some of the prob-
lems described above.

The contributions of this paper are (i) we show that even sparse
and noisy geo-tags are in some cases sufficient to approximately
align partial reconstructions of the same building, such that image-
based methods can again take over and connect the images with
corresponding points. (ii) we analyse the pairwise image corre-
spondences in a set of crowd-sourced images in order to find and
sever weak connections that could possibly be due to repetitive
structure. This leads to separate partial reconstruction, which can
again be joined using GNSS geo-tags. (iii) we empirically inves-
tigate the possibility to geo-reference the reconstruction with the
help of the available GNSS tags. While individual tags are too
inaccurate for absolute orientation at the scale of single build-
ings, the greatly redundant set of tags gives visibly better geo-
reference. Here it seems to help, rather than hurt, that each image
was recorded at a different time, reducing the correlation in the
GNSS errors.

2. RELATED WORK

Research into photogrammetric 3D reconstruction from personal
photographs on the Internet (a.k.a. “neo-photogrammetry” Leberl
(2010)) was triggered by Snavely et al. (2006). That work was
the starting point for a flurry of activity, mainly aiming to render
the initial approach more efficient Snavely et al. (2008); Li et al.

1Note, map coordinates not measured by GNSS but obtained inter-
actively from the user, e.g. by clicking on a map, are also often called
“geo-tags”. In our experience, these are too inaccurate to be used in a
meaningful way.

(2008); Agarwal et al. (2009); Frahm et al. (2010). Moreover,
dense matching and surface reconstruction at large scale were
also integrated into the original, sparse reconstruction pipeline
Goesele et al. (2007); Frahm et al. (2010).

Camera pose estimation and 3D reconstruction from arbitrary,
uncontrolled (perspective) images has reached a certain matu-
rity, as evidenced by several open-source and commercial soft-
ware packages (e.g. Bundler, VisualSFM, Pix4D, Acute3D). Nev-
ertheless, a number of important open problems remain, which is
also why crowd-sourced photogrammetry has not yet been widely
adopted for surveying purposes. The main issues in our view are
(i) that more often than not the models are incomplete and show
only some of the sides of a building or scene; (ii) that repetitive
structures and symmetries lead to incorrect correspondences and
gross errors (hallucinated and/or missing parts) of the 3D models;
and (iii) that, even if several useful parts of a larger scene have
been reconstructed correctly, the models are not geo-referenced
with appropriate accuracy.

To start out, we note that crowd-sourcing in the strict sense, with-
out any mechanism to ensure complete coverage, will always
only be applicable for a limited number of objects that are fre-
quently photographed and easily accessible from all sides – as
long as no images exist for any important part of a scene the
reconstruction will remain incomplete, and dedicated field-work
or complementary data sources are required. We point out that
our definition of crowd-sourcing does not include image acqui-
sition as a side-product of other commercial activities, such as
mounting cameras on taxis, delivery vans, public transport vehi-
cles, etc. While that strategy certainly can provide better cover-
age, we see it as a form of (semi-)systematic mobile mapping,
given that the camera system is designed and dedicated for the
purpose of photogrammetric reconstruction, and there will have
to be a economic incentive for its installation and use. To encour-
age complete recording without a monetary reward Tuite et al.
(2011) proposed to embed mapping in an online game, in such a
way that views which cover previously unmapped parts receive
higher scores. While the gaming approach could be very interest-
ing for specific situations, it appears that in general maintaining
and supervising it may be as time consuming as photogrammet-
ric recording. The situation is similar for users who take pictures
with the explicit aim of photogrammetric modelling, but with-
out training (“map lovers” or “casual mappers” Heipke (2010)).
While they do have an intrinsic motivation to obtain complete
models, they would have to be supported with carefully inter-
faces, as can be seen from the large number of unsuitable image
sets uploaded to web-based structure-from-motion services such
as Arc3D (www.arc3d.be, Tingdahl and Van Gool (2011)) or
CMP SfM (http://ptak.felk.cvut.cz/sfmservice, Heller
et al. (2015)).

Other work has proposed to use high-level information such as
orthogonality, symmetry or known architectural patterns to guess
the best reconstruction for unseen object parts Dick et al. (2002);
Mathias et al. (2011); Cohen et al. (2015). While the resulting
models are visually pleasing and useful for graphics and visu-
alisation, they remain an “informed guess” and cannot replace
actual measurements.

There is however also a more subtle cause for incompleteness: in
quite a few cases the necessary images to cover a certain part are
actually present in the data, but are missed at the stage where the
reconstruction pipeline discovers the correspondences and builds
up the camera network. Also frequent is the case that groups
of overlapping views for different parts (e.g. opposite sides of
a building) are found, but reconstructed independently, because
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Figure 2. Overview of the proposed method.

there are not enough correspondences to reliably connect them.
Lowering the threshold so that partial networks are joined more
aggressively unfortunately is not per se a viable solution, because
then the matches on repetitive visual structures induce wrong
connections. These two causes of incompleteness can be miti-
gated with the methods described in this paper: weakly connected
fragments can be merged into bigger models with the help of (ap-
proximate) geo-reference. The possibility to repair broken con-
nections in turn makes it possible to detect and remove matches
caused by duplicate structures more aggressively.

Duplicate structures due to repeated architectural elements are
rather frequent in urban scenes. Their effect on structure-from-
motion systems is that some relative orientations, which are based
on points on those duplicate structures, are geometrically consis-
tent but nevertheless wrong. As a consequence different (inter-
nally correct) parts of the camera network are attached to each-
other in an incorrect manner, leading to “ghost structures” that
appear at the wrong location in the object coordinate system, and
to unwarranted holes in the reconstruction at the position where
those “ghosts” should have been placed. The problem has already
received some attention Wilson and Snavely (2013); Heinly et al.
(2014). The principle to deal with duplicate structure is always
the same: inspect the distribution of corresponding points, includ-
ing the unambigious ones, to identify potentially wrong matches.
Then, break the camera network and either discard the smaller
part, or explore where else it could be connected, in the hope that
this will fix the reconstruction. This works quite well, as long as
the overlap between individual parts in the correct orientation is
sufficient to find that arrangement, and merge the parts accord-
ingly. We go one step further and use the available geo-tags to
find a plausible orientation of the parts, so that one can actively
search for correct correspondences.

Finally, we also use the geo-tags as evidence for absolute geo-
referencing. Positioning cameras with GNSS is an obvious prac-
tice, but the locations recorded by consumer cameras and mobile
phones are too inaccurate: empirically, one must expect errors on
the order of 5 m, which is about 10-25% of a the size of a typical
building. However, for geo-referencing purposes crowd-sourced
image collections have an advantage over dedicated recordings:
the pictures have been taken across different times, days and sea-
sons. Therefore, the geo-tags, while individually noisy, are only
weakly correlated (although some degree of correlation of course
remains due to the fixed geographic latitude, neighbouring ob-
jects, etc.) Including them as soft constraints in the final bundle
adjustment, with high uncertainty, therefore cancels out a lot of
the individual error and empirically seems to achieve usable geo-
reference. Our approach is related to others that also aim for
absolute geo-reference of crowd-sourced models Strecha et al.
(2010); Üntzelmann et al. (2013). However, they rely mostly on
2D building outlines from a GIS to geo-register partial 3D mod-
els, and only use GNSS as an optional additional cue. Possibly
their GNSS coordinates had strong systematic errors because they
operated in narrow streets. Other researchers prefer to only use
GNSS coordinates (and other geo-tags) as initial values for either

geo-registration to aerial images Kaminsky et al. (2009); Wang
et al. (2013) or image orientation Crandall et al. (2011), but do
not include them in the actual adjustment. In our view consumer-
grade GNSS tags are a weaker requirement than accurate ortho-
images or map layers of sufficient resolution. More and more
photos are geo-tagged – often without the user even noticing it –
while high-quality geo-data are not available in many parts of the
world. If available, they do potentially allow for more accurate
geo-referencing than consumer-grade GNSS alone.

3. METHOD

3.1 Crowd-sourcing image data

Many different image repositories are available on the Internet,
which vary greatly in terms of the number of images for a given
location, the image quality, and also how easy it is to identify
and download the relevant images. In this work (see method
overview in Fig. 2) we collect images from Flickr, which has
been the major data source for crowd-sourced photogrammetry
Snavely et al. (2006); Frahm et al. (2010). Flickr offers a rea-
sonable compromise: a sufficient number of images are available
for many locations, at the same time the quality and resolution of
the photographs is a lot better than the average Internet picture.
Also, the number of unusable images unrelated to the geographic
location (portraits and pictures showing concerts, parties and sim-
ilar events, which happen to be taken at the location of interest)
is comparatively small. Moreover, querying Flickr is straight-
forward, as there is an API to download images, either by location
or with textual keywords. The (hand-clicked) majority of image
locations as well as the keywords are added by the users who up-
load the images, and both options have been shown to work for
3D reconstruction. We prefer to query by location, using a modi-
fied version of the script of Hays and Efros (2008). This strategy
in our experience returns a larger number of relevant images, and
avoids problems with keywords in different languages, as well as
ambiguous names (e.g., the keyword “Nevsky Cathedral” will re-
turn images from over ten different cities that possess a church
with that name). We also note that the time interval for the query
must be specified, which can be useful in case of architectural
changes, construction works, etc.

Besides the pixel values, crowd-sourced images do often come
with a small amount of meta-data, stored in their EXIF header.
E.g., most SfM methods parse the header to obtain an approx-
imate value for the focal length. Many cameras, from mobile
phones to professional DSLRs, have an integrated (single fre-
quency) GNSS antenna and can also store the location where the
picture was taken in the header. Processing must not rely on al-
ways having meta-data. In fact only about half of all images on
Flickr have an EXIF header, e.g. some image editing packages
remove the header, and < 10% of all images have a GNSS co-
ordinate. Nevertheless, one can expect to find at least one GNSS
location in most image networks of 50 or more images, and in the
future that number will increase, as more and more cameras are
produced with built-in GNSS antennas.
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3.2 Finding uncontaminated (partial) reconstructions

In the crowd-sourced setting the primary input consists of all im-
ages found for a certain geographic area or keyword, but it is not
guaranteed, and in fact very unlikely, that all those images form a
single, connected camera network. Dividing the data into smaller,
connected networks (and a trash bin for irrelevant images) is part
of the reconstruction process. To that end one uses heuristic cri-
teria that determine when an image can be added to the network.
Roughly speaking the two main criteria are whether enough in-
terest point matches could be found to a (small) number of other
images, and whether these matches allow for relative orientation
with low residuals. These heuristics can sometimes be too strict,
so that although the required images are among those fed into the
algorithm, the reconstruction remains incomplete, meaning that a
significant part of the “good” images could not be connected to
the network.

But the decision can also go wrong in the other direction and
accept relative orientations that are geometrically consistent, but
nevertheless wrong. The main reason why configuration of mul-
tiple tie-points can be matched although they are not images of
the same object points are duplicate structures that appear mul-
tiple times, e.g. on different walls of a building. Note that the
duplicate structure itself is in fact reconstructed correctly: if, say,
multiple copies of a window exist that really are identical within
the measurement accuracy, then using all of them to reconstruct
the window in 3D is actually a good thing, because the redun-
dancy will suppress noise. Unfortunately, many images depict
not only the duplicate part2, but also other structures that are not
symmetric, and on which tie-points will be found that (correctly)
connect to further images, resulting in “ghosting” effects where
object appear in the wrong place, such as walls that penetrate ea-
chother.

At the origin of the problem are unwarranted network connec-
tions due to wrong tie-point matches. A natural way to overcome
the problem is thus to detect weak connections supported by an
unusually small number of tie-points, and sever those connec-
tions to instead obtain smaller, but correct networks. In fact, a
related step is built into most large-scale SfM systems anyway:
to bring down the computational cost, the input images are clus-
tered into subsets such that each image in a subset has sufficient
overlap with a few other cluster members. In the recent work
of Havlena and Schindler (2014) the overlap between two im-
ages’ fields of view is approximated by counting (putative) in-
terest point matches. This suggests a simple trick to find weak
connections: apply the same idea with a stricter threshold, so that
connections with too few supporting feature matches never make
it to the relative orientation procedure.

In more detail the VocMatch method Havlena and Schindler (2014)
quantizes feature descriptors into a vocabulary that is so large (16
Mio. words) that visual words appear at most once in a large ma-
jority of images. In that way the quantization directly induces
multi-ray correspondences and no explicit descriptor comparison
is required. By counting the number of correspondences between
all pairs of images one can easily obtain a (symmetric, integer-
valued) matching matrix Q. That matrix is then inspected to
find image pairs for which qij/min(qi, qj) > qmin. Record-
ing those image pairs produces a binary matrix B, with entries
bij = bji = 1 for image pairs that have enough tie-points to be
part of the same camera network. The original VocMatch method
recommended qmin = 1.5%.

2If exclusively duplicate structure is visible, a “wrong” relative orien-
tation will have no negative effect and will go undetected.

For our task we simply raise qmin, to the point where the bij indi-
cate that images i and j can not only be oriented w.r.t. eachother,
but are also unlikely to contain duplicate structure. The underly-
ing assumption is that duplicate structures will not fill the entire
image. As a consequence the fraction qij/min(qi, qj) of po-
tential tie-points will be smaller.3 Using a stricter threshold will
lead to more and smaller clusters – empirically, we find that con-
nections due to duplicate structure are among the first ones to
break, such that the smaller clusters are indeed more correct, as
expected, see Section 4. Too small clusters with < 50 images are
simply discarded. 4

The small, clean clusters are individually reconstructed with stan-
dard methods. For our experiments we use Bundler Snavely et
al. (2008), which is slow, but rather reliable due to its conserva-
tive strategy where the growing camera network is frequently re-
bundled. (For computational efficiency we replace the bundle ad-
justment module with multicore bundle adjustment Wu (2013).)
The price to pay for clusters that are with high probability clean
is a fragmented reconstruction consisting of multiple partial 3D
models (or, equivalently, camera networks). We go on to ex-
plain how these are merged into a complete model using auxiliary
GNSS information.

3.3 GNSS-assisted model merging

Each 3D model found in the previous step consists of camera
orientations and 3D structure points and represents a part of the
same landmark, in its own, local object coordinate system. Gen-
erating such error-free sub-models can be a goal in itself Wilson
and Snavely (2013), but we want to go one step further and re-
connect them into a complete reconstruction that covers the entire
object. What makes this task challenging is that by construction
different models have little overlap (respectively, few common
points) – otherwise they would have not been separated in the
first place. More aggressive matching between images from dif-
ferent clusters could potentially discover the necessary matches,
but will also bring back the duplicate structure problem, since
ambiguous elements will be present in different clusters, if the
previous step was successful.

Here, we come back to the GNSS location information that comes
for free with some of the images. About 5-20% of the images
(depending on the region) will have GNSS coordinates in their
EXIF headers. Those coordinates are recorded with extremely
cheap consumer-grade antennas and have absolute (x, y)-errors
on the order of 5-10 meters, depending on the hardware, but also
on the satellite constellation at the time of recording, and envi-
ronmental effects such as atmospheric conditions and multi-path
effects.

Still, even if the relative position of two models can only be de-
termined up to a few meters, that is sufficient to rule out most
ambiguities due to duplicate structures. The first step is to do a
coarse absolute orientation, by transforming the photogrammet-
ric models onto the GNSS coordinates (we use Cartesian UTM
coordinates). For tourist photographs, which dominate on Flickr,
we found it advantageous to operate in 2D at this point. Most of
the images are taken from the same height above ground (within
the measurement accuracy of the GNSS tags, which as usual is

3To see this, raise qmin until almost all image pairs are lost. The re-
maining “networks” will be stereo pairs in which almost all available
interest points match, hence they cannot contain a mixture of duplicate
structure and correct matches.

4We note that stricter clustering also has side-effects, which can be
wanted or unwanted. E.g., it tends to separate daytime and night images
from the same viewpoint.
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by a factor of 2 or so worse in vertical direction). It is therefore
sufficient to project the camera centers onto a best-fitting horizon-
tal plane, found with 2-point RANSAC followed by least-squares
fitting to the inliers. For each model k we get a similarity transfor-
mation Tk from local object coordinates to UTM coordinates, so
that all models are (roughly) co-registered in a planimetric UTM
frame.

Recall that the absolute orientation is not accurate enough to stop
at this point: the errors reach 5 m or more, compared to a typi-
cal building size of 25-100 m. Hence, we need to go back to the
models and find corresponding 3D structure points for a better
alignment. At first glance it might not seem difficult to estab-
lish correspondences, given that we have access to the images
and the interest points from which the 3D point was triangu-
lated. Unfortunately, by the nature of the problem, different mod-
els tend to correspond to distinct viewpoints with large (angular)
baselines between them, and thus push descriptor-based match-
ing to the limits. The vocabulary-based approach used above is
not sufficient, and we need to go back to the original images.
Luckily this is computationally much less costly now, because
fewer images and fewer points are involved. We use standard
SIFT comparison as implemented in VLFeat Vedaldi and Fulk-
erson (2008), restricted to pairs of images from the two different
models, and to interest points that successfully could be triangu-
lated to 3D structure points in their respective model. Given the
a-priori constraints imposed by the coarse registration, one can
now avoid most false matches, including those from duplicate
structure. First, matches are only allowed between points whose
3D reconstructions lie within a plausible distance from eachother
in the common UTM object space. This distance should reflect
the accuracy of the coarse registration. Second, the 2D alignment
is again estimated with RANSAC, but constrained to rotations
below 15◦, so as to stay close enough to the rough initialization.
The magnitude of the translation need not be restricted, because
this is already implicit in the maximal distance between corre-
sponding object points. The transformation is declared valid if it
supported by enough inliers. Too high thresholds must be avoided
at this stage because of the difficult wide-baseline situation. We
chose a support set of 15 inliers, which still provides a healthy re-
dundancy. In a nutshell, our strategy can be described as follows:
(1) break models apart at unreliable connection with too few tie-
point matches; (2) find more reliable matches with the help of the
rough GNSS alignment, and stitch the model parts back together.

3.4 Re-adjustment and geo-referencing

Now that both point-to-point correspondences across different
partial reconstructions and redundant, albeit inaccurate, GNSS
positions are available, it is natural to fuse all available informa-
tion in a final bundle adjustment. All camera parameters (interior
as well as exterior) and 3D tie-point coordinates are estimated
in one big least-squares problem, so as to jointly minimize the
reprojection errors in image space and the deviations from the
observed GNSS positions. The camera intrinsics are three pa-
rameters, one for focal length and two for radial distortion. The
camera extrinsics are six parameters, three for rotation which is
parametrized as Rodriques axis-angle vector and three for transla-
tion. The GNSS positions have two horizontal parameters. In the
absence of better estimates, the weights 1/σ2

GNSS of the camera
positions are set empirically to σGNSS = ±10 m. Together with
σxy = ±2 pixels for the image coordinates, this means that the
relative alignment between the models is dominated by the more
accurate point correspondences, whereas the absolute datum is
determined jointly by a redundant set of GNSS coordinates.

We implement the adjustment with the CERES solver Agarwal
and Mierle (2012). The software, available as open-source C++

(a) BRATOR (b) BERDOM (c) TRIOMPHE

Figure 3. Sample images for each of the three datasets. (a) BRA-
TOR – Bradenburger Tor, (b) BERDOM – Berliner Dom, and (c)
TRIOMPHE – Arc de Triomphe.

no. images no. EXIF no. EXIF GNSS
BRATOR 25,298 16,337 5,174
BERDOM 15,890 7,213 394
TRIOMPHE 30,668 20,624 6,412

Table 1. Number of images in each dataset.

code, is numerically stable and efficient for large networks with
thousands of cameras, and it is convenient to use, requiring the
user only to specify the cost functions for all groups of observa-
tions.

4. EXPERIMENTS AND RESULTS

To evaluate the proposed ideas we present experiments in three
different datasets of crowd-sourced pictures. As a baseline we
use the standard approach without auxiliary GNSS tags. In order
to maximise the coverage of a given object, the standard method
tries to split only geographically distinct sites or objects into sep-
arate clusters (for efficiency), but to keep all photos of the same
building in a single cluster, so as to avoid unwanted fragmen-
tation. For our baseline results we implement that approach by
running VocMatch with the default parameters. For our example
buildings, which do contain duplicate elements, the correspond-
ing reconstructions suffer from reduced coverage and ghost struc-
tures. We then go on to show how the proposed modifications
improve correctness and completeness of the models. Finally, we
also show the potential of geo-referencing with consumer-grade
GNSS locations.

4.1 Datasets

The selected datasets depict three well-known landmarks that are
known to cause problems because of symmetric structures, e.g.
Heinly et al. (2014). The datasets were downloaded from the
photo sharing platform Flickr Yahoo! (2005), by querying for all
images from the time interval between January 2007 and January
2015 (Fig. 3). We tried both natural query modes: BRATOR
and TRIOMPHE were specified via a planimetric bounding box,
whereas for BERDOM we submitted a text query. The TRIOM-
PHE dataset contains a total of 30,668 images, BERDOM con-
tains 15,890 images, and BRATOR contains 25,298 images. Ta-
ble 1 also shows the number of images in each dataset that have
an EXIF header, and the number of images whose header includes
a GNSS location. The latter varies from 21% to as little as 2.5%.

4.2 Reconstruction without GNSS support

For the purpose of this paper we selected landmarks that are
known to be problematic, so it was expected that the standard re-
construction pipeline would lead to (partially) incorrect models.
Of course many buildings can nevertheless be reconstructed cor-
rectly from crowd-sourced images without further precautions.
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TRIOMPHE BRATOR BERDOM

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4. The different steps of our method. (a)-(c) top view of the landmark (courtesy of Google Earth). (d)-(f) cameras (red/blue
triangles) with GNSS information. (g)-(i) reconstruction with Bundler when using no GNSS and standard VocMatch parameters. The
cameras have the same color as in (d)-(f). (j)-(l) results using the proposed method (different colors for each cluster). (m)-(o) example
views of the 3D point clouds.
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(a) TRIOMPHE (b) TRIOMPHE (c) BERDOM (d) BERDOM

Figure 5. Representive images which are not part of the largest
cluster. (a) rotated landmark, (b) Tour de France (c) and (d)
rooftop view.

The problem is that it is not known in advance which ones will
cause problems.

The experimental setup for each dataset is the same. The com-
plete image set is clustered using the original VocMatch approach
with default parameters, which are designed to filter out unre-
lated images, but not to break the pictures covering the landmark
into smaller clusters. Too small clusters (< 50 images) are dis-
carded. For BERDOM there is only a single large enough clus-
ter, whereas BRATOR has one dominant and one smaller cluster.
TRIOMPHE has one dominant and five smaller clusters. Three of
the four small clusters in Fig. 5 show views in which the building
of interest is hardly visible, e.g. the Tour de France passing the
Arc de Triomphe or scenic views from the roof of the Berliner
Dom. The fourth small cluster seems to isolate images of the
Arc the Triomphe which have not been rotated from landscape
to portrait view (Fig. 5a), because the variant of SIFT without
rotation normalisation was used. By and large the results confirm
that VocMatch works as planned: clustering only discards images
that are irrelevant for the subsequent reconstruction.

Following the standard pipeline, the dominant cluster of each
dataset was fed into structure-from-motion computation. For our
experiments we use Bundler. As usual, geometric verification of
the putative matches discards further images that cannot be reli-
ably attached to the model. Of the 16’767 images in the main
TRIOMPHE cluster, 10’898 are used for the final 3D model. For
BERDOM the number is 3’353 out of 4’376, for BRATOR 8’976
out of 11’275.

All three reconstructions exhibit problems due to duplicate struc-
ture. For TRIOMPHE and BRATOR only one side of the building
is reconstructed, whereas the other one is missing. The cameras
in blue in Fig. 4g and 4h should be on the other side of the build-
ing, i.e. these cameras and structure points were reconstructed
incorrectly. As a consequence for the BRATOR dataset also the
nearby “Hotel Adlon” building is placed on the wrong side of the
monument, where in fact there is a park. For BERDOM (Fig. 4i)
one of the side walls is mistakenly matched to the other one and
thus missing in the reconstruction. Because of the wrong corre-
spondence a neighbouring building is also grossly misplaced.

4.3 Reconstruction with GNSS support

The reconstruction was repeated as proposed in this paper, i.e.
first a stricter clustering that severs weak connections, then an ap-
proximate alignment based on GNSS tags, followed by a refine-
ment based on guided 3D correspondence search. In detail, we
increase the threshold qmin for the (relative) number of matched
points, assuming that duplicate structure will not occur across the
entire image set and thus get a lower number of matches. Com-
pared to the original VocMatch method we also use a stricter word
rarity constraint to remove potentially spurious connections: the
word must appear in ≤ 40 database images. The statistics for the
clustering for each dataset are shown in (Tab. 2). As expected the
stricter clustering creates some fragmentation, but all duplicate
structure problems are resolved. BRATOR only separates into

Dataset qmin no. images in each cluster (> 100 images)
BRATOR 1.5% 5537 277
BERDOM 1.8% 1427 293 287 254 231 224 155 133
TRIOMPHE 2.5% 5040 678 196 112

Table 2. The dataset dependent threshold qmin is listed for each
dataset. Based on this threshold a different number of clusters
having more than 100 images are created. For each dataset the
size of the different clusters is specified.

two clusters (front and back view), which are successfully recon-
structed and reconnected. For BERDOM more clusters are found,
but only the two largest ones are usable – the remaining clus-
ters contain night images, pictures of the interior, pictures from
a nearby festival, etc., which cannot be connected to the largest
cluster. For TRIOMPHE despite applying a stricter threshold (up
to qmin = 2.5%) the large cluster did not split into smaller clusters
which contain the different sides of the building. The other large
cluster listed in the table contains images of a different landmark,
the Eiffel Tower. We note that the partial models are smaller than
the monolithic image networks found before (Sec. 4.2), so the
reconstruction is also faster.

Next, these partial reconstructions are roughly registered based
on the available GNSS tags, as explained in Sec. 3.3. The coarse
registration is followed by a constrained 3D point matching (see
Sec. 3.3). With the newly found point correspondences and all
available GNSS camera locations, the complete model is then
computed in a final bundle adjustment.

The BRATOR and TRIOMPHE models are more or less com-
plete, i.e. both sides are reconstructed.5 BERDOM is now also
covered from the front and back and is visibly more complete
(and correct, since the two sides that were wrongly matched are
not completely identical). Nevertheless, a part of the northern
wall is still missing. Here, we face the fundamental limitation of
online photo collections. The dataset contains too few pictures
from that side.

4.4 Georeferencing

For all three models, we also included the absolute GNSS coordi-
nates as (uncertain) observations in the final bundle adjustment,
in order to obtain geo-referenced models. Unfortunately, we do
not have ground truth coordinates for any of the cameras or struc-
ture points, so we can only qualitatively check the accuracy of the
absolute geo-reference. To that end we overlay the model with
freely available orthophotos (for Berlin from the Berlin Senate
Department for Urban Development and the Environment and for
Paris from Google Earth). Here the adjusted UTM coordinates
are used and the alignment is verified visually (Fig. 7). For com-
parison, we also show the alignment based on minimal sets of 2
randomly selected GNSS tags (Fig. 6). The comparison confirms
that individual geo-tags are too noisy to be trusted at the scale of
buildings. Nevertheless, the large set of GNSS locations together
allows for reasonable geo-referencing. We estimate the locali-
sation accuracy (uncertainty plus systematic errors) of the final
models to be approximately ±1 − 2 m. In case of small models
and therefore few GNSS tags this can go down to ±10 m.

5. CONCLUSIONS

We have investigated the possibility to overcome problems of
crowd-sourced photogrammetric reconstruction that are caused

5Note, the completeness of the final model also depends greatly on
which dense matching method is used and how it is tuned. This is beyond
the scope of the present work.
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(a) BRATOR (b) BRATOR

Figure 6. Result for BRATOR using the minimum number of 2
GNSS tags for georeferencing the model (a). Using all available
GNSS tags (b) the model is georeferenced correctly.

(a) BERDOM (b) TRIOMPHE

Figure 7. Result for BERDOM and TRIOMPHE dataset after
geo-referencing (TRIOMPHE image courtesy of Google Maps).

by duplicate scene structures. By using only the automatically
added GNSS tags that are available in the meta-data of some In-
ternet photographs, we were able to reconstruct, in an automatic
fashion, architectural 3D models which are more correct, more
complete, and geo-referenced with an accuracy that we consider
sufficient for many applications.

Although the results are very encouraging, the proposed method
is to a certain extent empirical and heuristic, and there are cer-
tainly instances where it will not work. Possible failure cases
include: duplicate structures which are so dominant that they re-
main in the same cluster until the image set is too fragmented –
here it would potentially help to also use the GNSS coordinates
during clustering; small clusters without GNSS tags – this is dif-
ficult to solve, but hopefully will become increasingly rare; and a
failure of the 3D correspondence search needed to re-combine the
partial models – it may be possible to revert to purely geometric
matching methods as they are used for tasks such as LiDAR scan
registration.

It will be interesting to see whether the “global lightfield” cap-
tured by everyday pictures, cameras on vehicles, drones, etc. will
one day be so dense that completely crowd-sourced reconstruc-
tion becomes possible beyond selected touristic landmarks.
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