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ABSTRACT:

Epipolar geometry of a stereopair can be expressed either in 3D, as the relative orientation (i.e. translation and rotation) of two
bundles of optical rays in case of calibrated cameras or, in case of unclalibrated cameras, in 2D as the position of the epipoles on the
image planes and a projective transformation that maps points in one image to corresponding epipolar lines on the other. The typical
coplanarity equation describes the first case; the Fundamental matrix describes the second. It has also been proven in the Computer
Vision literature that 2D epipolar geometry imposes two independent constraints on the parameters of camera interior orientation. In
this contribution these constraints are expressed directly in 3D Euclidean space by imposing the equality of the dihedral angle of
epipolar planes defined by the optical axes of the two cameras or by suitably chosen corresponding epipolar lines. By means of these
constraints, new closed form algorithms are proposed for the estimation of a variable or common camera constant value given the
fundamental matrix and the principal point position of a stereopair.

1. INTRODUCTION a variable or common camera constant value from the funda-
mental matrix assuming known principal point.
3D epipolar geometry of an image stereopair is typically descri-
bed by the coplanarity equation which requires 11 parametefsartley (1992) was the first who developed a rather complex al-
for the normal pinhole camera model (i.e. when skewness angbrithm for the computation of a varying camera constant value.
aspect ratio are not taken into consideration). These are 6 paRan et al. (1995) derived & 8legree equation in the values of
meters for interior orientation dx yos, C1, Xo2, Yoz, C2) of two ca- ¢ Next, they presented a linear solution #far the cases of
meras and 5 for their relative orientation (by, dz¢p, ). Inthe  identical and different camera constants (Newsam et al., 1996).
case of uncalibrated cameras, on the other hand, 2D epipolar gthey also found two critical geometries which do not allow the
ometry is expressed by the Fundamental Matrix, which is decomputation of varying ¢ values from the fundamental matrix:
scribed by 7 independent parameters and allows the estimatiothen the optical axes are coplanar with the base or when one
of the epipoles and the epipolar lines directly on the two imageptical axis is perpendicular to the plane defined by the other
planes. The 2D representation of epipolar geometry corresponégis and the base. An equivalent equation has been presented by
to infinite 3D configurations which are known to be related by aBougnoux (1998) based on the solution of the Kruppa equa-
3D projective transformation. However, these infinite 3D confi-tions, by Kanatani & Matsunaga (2000) based on constraints on
gurations are constrained. Compared to the 5 independent patae Essential Matrix and by Huang et al. (2004) through the ab-
meters of relative orientation, when the 6 parameters of the cgelute dual quadric. Sturm (2001) and Sturm et al. (2005) dealt
mera interior orientations are considered to be known, the 2 agsth the case of common camera constant and formulated three
ditional degrees of freedom«% = 2) of the fundamental matrix different equations (one linear and two quadratic) for its deter-
can be considered as constraints on the camera interior orientaination. They also demonstrated that a common ¢ may be cal-
tions. In the Computer Vision literature these constraints are exulated even when the camera axes are coplanar, as long as they
pressed in the projective space, as constraints on the imageavé not parallel or their point of intersection is not equidistant
the absolute conic, through the Kruppa equations (Maybank &om the two projection centres.
Faugeras, 1992; Hartley, 1997).
Hartley & Kaucic (2002) gave a new geometric interpretation

In the general case3 images are required in order to fully cali- on the determination of different ¢ values for the stereopair and
brate a camera only from image point correspondences. Hovave studied the effect of a wrong assumption about the princi-
ever, if the principal point position is known then it is possiblepal point position. To address the sensitivity of all algorithms
to estimate the camera constant from 2 images even when itas the principal point position, Hartley & Silpa-Anan (2002)
not common for their two cameras. This has been the subject pfopose a new non-linear algorithm for the estimation of the
several contributions in the field of Computer Vision, wherefundamental matrix that leads to more stable estimations of the
closed form solutions have been proposed for the estimation chmera constant. With the same goal Whitehead & Roth (2002
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and 2004) use the DHGiyhamic hill climbing) method, while  where the notation:
Kanatani et al. (2006) compute a new fundamental matrix from
fewer point correspondences. a 0 —-a a

Stewénius et al. (2005) dealt first with the simultaneous estima- TR T & 0 -3

tion of relative orientation and a single camera constant value Q| |- 9 0

from 6 point correspondences through the theory of Grébner ba-

ses, and found the existence of 15, real and imaginary, SOl ysed to express the vector cross product as the product of a
tions. A more straightforward solution was given by Li (2006)skew-symmetric matrix and a vector.

who proposed a 15degree polynomial using the hidden vari-

able method. Finally, Ronda & Valdeés (2007) have examineghen|. . andl,y can be found from the fundamental mafinf

the Kruppa equations in the case of a stereopair and, based of,a gtereo pair as:

projective geometry theorem of the French mathematician Pon-
celet, propose a parameterization of all possible solutions for
camera calibration.

a

l,=Fp,andl;, =F'p, 2)

In this contribution the constraints that the fundamental matrixOn planes: a new poiniB1 can be constructed at the intersec-
imposes on the interior orientation parameters are derived in 3fbn of linel,? and a new liné, perpendicular tdp: from prin-
Euclidean space. The epipoles, the projection centers and tBpal pointp:. It can be shown that:

epipolar lines of the principal points allow the estimation, inde-

pendently on each image plane, of the dihedral angle formed by 10

the epipolar planes of the optical axes. The equality of the esti- - - -

mation of this angle from the two images imposes one geome-I = [pJX Il pL— [plL I[el]x p,wherel =|0 1 3
tric and algebraic constraint on the interior orientation parame- 00

ters. A second independent constraint is derived in a similar

way from the equality of the dihedral angle of the epipolar pla-

nes that correspond to two suitably chosen epipolar lines. Bgnd therBa is equal to:

means of these constraints four new closed form algorithms are

developed for the computation of a common and variable came- B, =l,xl= [FszL AR (CANA (4)
ra constant from the fundamental matrix assuming known prin-

cipal point. . . .
paip Respectively, org2 point B2 can be constructed at the interse-

ction oflp1’ with the perpendicular iz from p2.
2. INTERIOR ORIENTATION CONSTRAINTS

Bz = [FplL sz i ezL P, Q)

2.1 Dihedral angle of the epipolar planesdefined by the
optical axes of a stereopair

In this way the right triangleBip:e1, B2p2e2 and the projection
The baseline and the optical axes of a stereopair, as long as tt&ntersO1, Oz form two orthogonal tetrahed@iBip:er and
O2B2p2e2. The dihedral angles among their ed@ee: andO2e2
defined by their non-perpendicular faces (i.e. the angles defined
by the plane®:eip1, O1e1B1 andO2exp2, O2e2B2, respectively)

are equal to the dihedral an@ef planedls, IT>.

are not coplanar, define two epipolar planksandII: (Fig. 1).

—701  ‘ 61“ I/e2 ' 62

Figure 1. Epipolar planeHs, Iz of the optical axes of the two
cameras define a dihedral anflle

Figure 2. Computation of the dihedral andleof the two
epipolar planes defined by the optical axes of the two cameras

(planesOse1p1, O1e1B1 on the left image an@2ezpz2, Oze2B2 on
Planell: intersects the two image planase2 at epipolar lines  the right).
Ip1 andlpy’, andIl2 intersects them at linég' andlp2, respecti-
vely. These lines correspond to the epipolar lines of the two priryig gllows the formulation of two independent equations for
ncipal pointsps, p2 and can be estimated by joining principal i, estimation of anglg from the fundamental matrix, the prin-
pointsps, p2 with the epipole, cipal pointsps, p2 and the camera constants & of the two
images. The equality of these equations gives one geometric

ln=exp,=[e] p,andl,, =e,xp,=[e,| p, (1)
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constraint among the interior orientation parameters of the tw
cameras and their fundamental matrix.

The position of the two image principal poipts p2, the epipo-
les e;, e and constructed poinB1 and Bz define on the two
image planes the following distances: ‘ lpy
a = |pie1], b= |piB1|, i = | Bier| ones (Figure 2, left) and
a=|pzez|, o= |pzB2|, o= | B2e2| onez (Figure 2, right). |
The 3D homogenous coordinates of the vertices of tetrahedrc ¥
O1Bip:er are simplified if a local coordinate system is selected S = em I/]ez
centered ap1 with axes defined by lingser, p1B1 andp101. In

this systenp1=[0001]",B1=[0b101]T,e1=[a 0 0 1]" and . ) i

0 1=[00 c 1]". Subsequently, via these points, through anFlgure 3. Eplpolar pIaneE[M,. Iy Qefmed by two randomly
analytical computation of a plane passing through 3 points, thef!ected epipolar linds, |> define a dihedral angie
homogeneous representations of epipolar plahe$I> can be

estimated a1 = [0 1 0 0]7 andIIz = [cib1 ac1 abs —auciba]” Two new tetrahedr®:NiMier and OzNz2Mze; are formed in

and the cosine of their dihedral anflés found by equation: this way, and their dihedral angles along their eddgs and
O2e2 are both equal to the dihedral anglef planed Iy andIln
and, therefore, equal to each other.
cog3)= - 4G = aq ®)
\/31 b + Cf( &+ tf) \/al B+ cd Again through the construction of poir:, N1 and M2, Nz,

the two principal points and the epipoles, the following distan-

In a similar way, planeBL, TIz can be independently expressed C€S are defined on the two image planes:
through the corresponding points of the second image ptane

(Figure 2, right) and the following second equation for aggle ™ = lpMal, = [piNi, & = IMier], = [Nsex| onex
can be derived: (Figure 4, left) and m= |paMz|, re = [paNe|, @ = IMee2|, 2

= |Nze2| onez (Figure 4, right).
A A
cos(B) = = 7
JEvrc(d+ ) Jaried O o o

However, the values of Eq. 6 and Eq. 7 must be equal, and sc
must hold that:

a6 _ a6 ®)
Jag+¢d 48+ éd
I
Eq. 8 expresses the equality of two dihedral angles in 3D Eucl \

dean space and associates the interior orientation parameters ui

a stereopair with those of its fundamental matrix. This geome=igure 4. Computation of the dihedral angleefined by two
tric as well as algebraic constraint decreases by one the 6 cgpipolar planes@:eiN1, O:e1M1 on the left image an@2e:Na,
grees of freedom of the interior orientation of the two cameras. O2€2M2 on the right).

2.2 Dihedral angle of two random epipolar planes The homogeneous 3D coordinates of the vertices of tetrahedron
O:1NiMze: (in the coordinate system described in the previous

A second independent constraint can be expressed through tgction) are:1=[00 ¢1 1]7, No=[0 n 0 1], M1=[0 mu 0 1]7

computation of the dihedral angle of any two additional epipoande; = [ 0 0 1]7. It must be noted here that valuasand m

lar planes that correspond to two randomly selected epipolar liefer to distances signed according to the relative position of

nesli andl2 (Figure 3). Epipolar planddwm, In are constructed  pointsN: and M1 with respect to principal poirgi. The same

on the first image planer through pointsM, Ny, at the inter-  holds also for distances,m in the following equations. Plane

section of linedy, l2, respectively, with a line perpendicular to [y, is defined through poin®®1, e1, M1 and its homogenous re-

Ipa at principal poinpa. presentation igIv = [cim ac1 am —acimi]™. Respectively,
planeIln is defined byOs, e1, N1 and is represented by vector

b, (9) TIn=[cin: &c1 & —acin]™.

M, =[1,] [p]. T[e] p, and N, =[1,] [p,] I[e,
eThrough these representationsIdfi andI1x it is possible to

The same planes are constructed on the second imagecplane ' A
estimate their dihedral angfe

through pointdM2, N2 at the intersection of lindg, |2/, with the
perpendicular tdp2 atp2. Yl
¢(a@+mn)+ 4 mn

M, =[11] [p,] Tle,] p, andN, =[I5] [p,] I[e,] p,  (10) eo%1)= Josgt+ gag(nfer B9+ 4nfd

(11)
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A second equation for angjecan be formulated if pland3m the two orthogonal tetrahed@upiMier and Ozp2M2e2 (Figure

andIlx are constructed through the respective points on the s&) the angles along the edg®se1 and Oze2 should be equal.

cond image plane (Figure 4, right): This equality allows in a way similar to section 2.2 to formulate
only one constraint, of the simpler form:

S(Z+ mn)+4dmn

1)=— (12) ag &G
Jegt+ G nier g+ 44 Eniics Jani+ i (16)

cos(

Thus the equality of Eq. 11 and Eq. 12 gives a second con-
straint, additional to that of Eq. 8, among the parameters of ca-
mera interior orientations and their fundamental matrix: 3. CAMERA CALIBRATION ALGORITHMS

Slmudnn_____ dlEmndng g ar opiical axes the andamental matix Imposes o
‘/clsftﬁqzaf( e g+ dnid \/ ¢8k th ¥ BF b independent constraints on the interior orientation parameters.
o ) This is in accordance with the Computer Vision literature, in
Eqg. 13 can be simplified if pointels, N1 are suitably selected \yhich these constraints are expressed in the projective space
on the image plane at positions with 2D homogenous coordi- through the Kruppa equations (Maybank & Faugeras, 1992).
nates Mi = [XotYo-y1 —XotXatyo 1]7 and N1 = [Xo-Yoty1  Here the two independent constraints are expressed in 3D Eucli-
xo—X1+yo 1]T instead of selecting randomly two epipolar lifkes  dean space through Eq. 8 and Eq. 13 or Eq. 15.
I2 and then construct poinMi, N1 as described above. These
points belong by definition to a line perpendiculardgoat p1 At least 3 images are required to fully calibrate a camera. The
and their signed distances to the principal point are equal to nparameters of their common interior orientation can be estima-
=a and n = —a. Due to this property Eq. 11 takes the form of: ted through the simultaneous solution of all the constraints im-
posed by the fundamental matrices of all stereo pairs, once the
—_ distances in Eqg. 8 and Eq. 15 are expressed as functions of the
cogy) A (14)  principal point coordinates
28+ & p palp -

) ] However, in the case of stereo pairs it is only possible to partial-
and thus the equality of angjeallows the formulation of the |y calibrate the cameras. Eq. 8 and Eq. 15 can be solved for any

following constraint: 2 out of the 6 interior orientation parameters of the two images
(Xo1, Yo, C1, Xo2, Yoz, C2) if the remaining 4 are known. Out of all
—a? cg(ag +m, r12)+ gmn possible combinations, the computation of the camera constant
= (15) from a stereo pair with known principal point is of greater inte-
2
26 +4 \/c§§t2+ c§a§( g £+ r§§)+ g rest, since in most cases the latter can be assumed at the center

of the image frame.

All distances referring to the second image plane are here again o ) N
signed and are estimated once epipolar life&’ correspond- In that case, knowledge of the principal point position on the

ing to pointsM1, N1 are computed via the fundamental matrix two image planes allows the estimation of all distances in Eq. 8
and pointsVz, Na. and Eq. 15, which can then lead to the formulation of two equa-

tions, one linear and one of3legree on to the square of the

It may seem at first that any additional epipolar line may offe€@Mera constant values{cc?). In the following four new al-
further constraints in the form of Eq. 13. Such constraints, howdorithms for partial camera calibration are proposed, based on
ever, are not independent. Epipolar planes are defined throudfi€ solution of these equations.
two bundles of epipolar lines which are in projective correspon- o
dence. As a consequence, the two families of collinear epipola1 mageswith different camera constants

lanes are also related by a projective transformation and hen . . S .
{)hey retain cross ratio. Th){JS,Fi)f eJquaIity of the dihedral angles o&e[he location of the two principal points is known, then all di-

. - : - §tances in sections 2.1 and 2.2 can be estimated. As a conse-
three corresponding epipolar planes is guaranteed, this equali Y, o . -
will then hold for every additional epipolar plane Consequentlyq ence, the only remaining unknown variables in Eq. 8.and Eq.
: 5 are the values of the two camera constaras@ ¢. Solving

only one constraint (Eq. 13 or Eq. 15) is independent of Eq. : L
As an alternative, two constraints in the form of Eq. 13 may behe square of Eq. 8 fortyields equation:

considered independent but in this case the constraint of Eq. 8 o
is no longer independent. 012 _ a 8 tf (i

| (- ad)c+ 446 G
2.3 Thecase of coplanar optical axes

In case the optical axes of the two cameras of a stereo pair ar8e™: SUbSt!tUt'OQ of Eq. 17 to Eq. 15 leads to the formulation
coplanar, then lineks, Iz are epipolar lines in correspondence, ©F the following 3¢ degree equation on(= ws):

and thus the constraint of Eq. 8 is no longer valid since the epi-

polar planes of the optical axes coincide and their dihedral h,w; +h,w; + h,w,+ h,= 0 (18)
angle cannot be defined. Additionally, Eq. 13 or Eq. 15 do nowhere:

only represent the equality of anglebetween planeFIm and

TIx but also the equality of the dihedral angles formedTby p — &
andTIn with the common plane of the two optical axes. So for

(#6+ 48] (4 my' ~( 2% @B( 2 ¥ a ¥ 9

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-111-3-75-2016 78



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XX ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

h—ald|4d 68 4+ ahbr & m F|-(idb B34 .m ) hy=a[-d(m—n)+ 4 ha+ samf & m)
£46 24 B e o' - [Ba¥ m - oy = —ad[d(m— nf— 4§

h,—-ad B[ 48 m- 0~ 4bhj

h,

Besides the obvious invalid solution w0, Eq. 21 has up to
The analytical solution of this polynomial gives the following three different solutions which can be estimated directly from

three solutions: the polynomial coefficientsihhe, hs and h. The common ca-
mera constant value can then be found from the square root of
w,=—a’ the real positive solutions of w. Eq. 21 is valid even in the case

of images with coplanar optical axes.

agblab(n— m— 2bmy
)

_ [
W, = (afbgf % ltf)( m— n)+ 2a lpl;( L‘# m g, (20) 3.22 Non-coplanar optical axes

|

)

W a&hblgb( n- m)+ 2bm rj If the principal point location is known, it is possible to deter-

2T 72 mine whether the optical axes of the two images are coplanar or
<a1 b; - & )(m-n)- 2ab E( e m 9 not. In the first case lindg: andlp2 that connect the principal
point and the epipoles on the two image planes should be corre-

These are values that satisfy simultaneously the squares of EgsiSonding epipolar lines. Consequently, the two principal points

and Eq. 15 and correspond t8,@nd therefore should be posi- py, p, should satisfy the epipolar constraint:

tive. Thus the first solution can be directly discarded since it is

negative. From the remaining two solutions only the one that is pTFp -0 (23)

positive and at the same time satisfies Eq. 8 and Eq. 15 (besides z

their squares) is kept. The camera constant of the second camera

c2 can be found from the square root of the valid estimation o o'ifitis confirmed from Eq. 23 that the optical axes of the two
w2, and then ccan be estimated from Eq. 17 Images are not coplanar, then the square of Eq. 8 can be solved

for the common value € c¢1 = ¢z of the camera constant. This
deads to the following linear solution:

As it was previously mentioned, Eq. 8 is not valid when the tw
optical axes are coplanar. In such a case it is possible to formu-

late only one constraint among the interior orientation parame- b12 — bg

ters and the fundamental matrix. The coplanarity of optical axes =838 W 24)
is, as a consequence, a critical geometry for the determination of &

two camera constants from a stereopair, a property that was first

found by Newsam et al. (1996). 3.2.3 Coplanar optical axes

3.2 Imageswith common camera constant Conversely, when the optical axes are confirmed to be coplanar
Eq. 16 can be used instead, for the computation of a common

If it is known that the two images of a stereo pair have a coneamera constant:

mon camera constant, then its computation is possible even in

the case of coplanar optical axes from Eq. 15 or from either Eq. 2 2

8 or Eg. 16. In fact, Eq. 15 addresses the problem in general. c=a3a M =m, (25)

Conversely, the solution of Eq. 16 for a common camera con- afé — 6§§

stant is valid only if it is confirmed that the optical axes are co-

planar, while Eq. 8 can only be used in the case of non-coplangrmyst be noted though that, as Sturm (2001) and Sturm et al.
optical axes. In this way three different equations can be formy005) have pointed out, the computation of a common camera
lated, one of 8 degree and two linear on the square of the comggnstant is not possible in case the two camera projection cen-

mon camera constant value. It should be noted that the degregss are equidistant from the intersection point of the two optical
of the proposed equations are in accordance to the ones suggges or when the optical axes are parallel.

sted by Sturm (2001) and Sturm et al. (2005) which are based
on the solution of the Kruppa equations through Singular Value

Decomposition (SVD). 4. TESTSAND EVALUATION

321 General Case To evaluate the effectiveness of the proposed algorithms tests
were performed with simulated data and the results were com-
In more detail, if ¢= ¢z = ¢, then the square of Eq. 15 gives thepared to similar clqsed fqrm algorithms from Computer Vision
following 39 degree polynomial orf¢s w): literature. For the simulations, two stereo pairs were constructed
from different perspective projections of a 3D grid of dimen-
W(th3 i hlwz Y haw 4+ h4) -0 21) sions Z2x2 n¥, consisting of 27 points (Figure 5).
Image size was set at 10248 pixels, the principal point was
where: considered at the center of the image frame and camera constant
) was set at= 800 pixels andz= 1000 pixels in the case of va-
h, = 4(8% + m, rg) riable camera constant algorithms and at @00 pixels for the
(22)  ones that estimate a common camera constant. The relative ori-
h, = 4(3; +m nZ)[ Zé m B+ ZT( L?H' m g} entations of the two stereo pairs correspond to differditrd/
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tios, and the second stereo pair is close to a critical geometry ftor the second stereo pair whose image configuration is close to
both algorithms, i.e. the optical axes are almost coplanar (the critical geometry.

dihedral angle of their epipolar planes is°]l.&nd the distance

of the two projection centers from the “ideal” point of intersec-

tion of the optical axes differ only by2 1050

~

10000 --0--g---__ _-®""0--0__g~

950

—e—c1(CF)
- © —-c2(CF)
—s—c1 (Bundle)
— o —c2 (Bundle)

900 T

Cmean (pixels)

850

/*‘0——“\./“
800 o—2— =

—o— &

750 T T T T T
01 02 03 04 05 06 07 08 09 1

Oxy (pixels)
180
—e—Cc1(CF)
160 71— e ~c2(cF)
140 +—]—=—c1 (Bundle)
— e —c2 (Bundle)
120
Figure 5. Example of simulated data. gm"
= 80
o
4.1 Imageswith different camera constants 60 1
40
For the estimation of a varying camera constant among the two 2
frames three closed form algorithms were implemented and test- "
ed in the experiments: 0 T T T T
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
. . . N Oy (pixels)
=  The algorithm proposed in Section 3.1 which is based
on the equality of dihedral angles of epipolar planes
defined independently on both images 1050 > @\
=  The algorithm of Newsam et al. (1996), which is ba- Y S o e- o N
sed on the algebraic properties of the essential matrix Te-=e-
=  The algorithm of Bougnoux (1998), which is based on 2 950 [ —e—cichH |
the solution of the Kruppa equations o — 6 -c2(CF)
§ 900 - —+—cl (Bundle)
An additional non-linear, self-calibrating bundle adjustment so- 5 050 | =2 —c2 (Bunde)|
lution was also carried out without the use of control points. For
initialization the results from the closed form algorithms were 200 !W/\"
used.
750 T T T T T T

In order to check the sensitivity of the proposed algorithms with 0t 02 03 04 05 06 07 08 08 1

respect to errors in the measurement of corresponding image O/ (pieels)

points, normally distributed random errors of various standard 180

deviationsoxy (from 0.1 up to 1 pixel) were added to the correct | |—*aeh o ==

. . . - 160 - o —c2(cF) E

image point coordinates. To further check the repeatability of 140 1| —o—c1 Bundie) e e

the algorithms, 20 different solutions were performed for each — = —c2 (Bundle) /@/ )

oxy level. From them a meanna) and a standard deviation
(cstd) were calculated for the estimated camera constant values.
The results of all solutions are presented in Figure 6.

Cstd (pixels)

In all experiments, the estimations of the camera constant values
from all mentioned closed form algorithn@H in the diagrams)
were identical, and at the same time very close to the bundle ad-
justment results. This is a confirmation that the algorithm pro- 0 ; ; ; ; ; ; ; ;
posed here is equivalent to the ones from the recent Computer 01 02 03 04 05 06 07 08 09 1

Vision literature. The mean values of the camera constant esti- T (pbets)

mations @eanare close to ground truth values with differencesrigure 6. Comparison of different algorithms for the
less than %. However, it is clear from the standard deviation computation of two camera constant values from two simulated
diagrams &q that the spread of solutions around their mean inconfigurations (configuration 1 above, configuration 2 below)
creases with the leveky of image noise, and so does the uncer-at different noise levels. Mean values and standard deviations
tainty of estimated camera constant values. This is even worsee given from 20 solutions per noise level.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-111-3-75-2016 80



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XX ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

4.2 Imageswith common camera constant
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Figure 7. Comparison of different algorithms for
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For the estimation of a common camera constant the same expe-
riment was repeated, but this time image coordinates for all si-
mulations were estimated with a single camera constant.c-

900 pixels. The 6 different methods implemented and tested are:

= The algorithm of Newsam et al. (1996) for common camera
constant, which is based on the algebraic properties of the
essential matrixNewsam et al)

= The algorithm of Sturm (2001), which is based on the solu-
tion of the Kruppa equations through SVD decomposition
(Sturm)

= The algorithm of Bougnoux (1998), where the common ca-
mera constant is estimated by the mean of the two values ¢
and @ computed by the algorithnBéugnoux)

= The algorithm proposed in section 3.2.1, which is based on
the equality of the dihedral angle of two suitably chosen epi-
polar planes defined independently on the two image planes
(Alg. 3.2.1)

= The linear algorithm proposed in section 3.2.2, which is ba-
sed on the equality of the dihedral angle of the epipolar pla-
nes of the optical axeslg. 3.2.2)

= A non-linear bundle adjustment solution without control po-
ints Bundle)

The results of all solutions are presented in Figure 7.

It is clear that the estimation of a common value for the camera
constant of the two cameras is less stable, and in some cases
their mean value does not converge to the ground truth solution,
especially when image noise gets higher than 0.5 pixels. The
estimations from bundle adjustment are, in general, more con-
centrated around their mean and closer to ground truth than the
closed form solutions. A comparison of the five closed form al-
gorithms shows that those of Newsam et al. (1996) and Sturm
(2001) give equivalent results, which are very close to the mean
of the two camera constant estimations of Bougnoux (1998). At
the same time the algorithms proposed in this contribution give
results which are closer to those from the bundle adjustment and
the ground truth, even in the near-critical configuration of the
second stereopair.

5. CONCLUDING REMARKS

2D epipolar geometry, as expressed by the Fundamental Matrix,
imposes 2 independent constraints on the interior orientation
parameters of the two cameras of a stereo pair. In the Computer
Vision literature these are typically formulated in projective
space, as constraints on the image of the absolute conic, or as
algebraic constraints on the Essential Matrix. In this contribu-
tion a new formulation of these constraints is proposed in 3D
Euclidean space. The main concept is that the position of the
principal point and the camera constant together with the epi-
poles allow defining independently on the two image planes fa-
milies of epipolar planes which must have common dihedral
angles. Through these constraints new closed form algorithms
are proposed for the estimation of a variable or common camera
constant from the Fundamental Matrix and the principal point
position of a stereo pair. Experimental results have shown the
effectiveness of the proposed algorithms.

computation of a common camera constant value from two

simulated configurations (the same as in Figure 6) at different
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