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ABSTRACT:

This paper presents a Structure from Motion approach for complex unorganized image sets. To achieve high accuracy and robustness,
image triplets are employed and (an approximate) camera calibration is assumed to be known. The focus lies on a complete linking
of images even in case of large image distortions, e.g., caused by wide baselines, as well as weak baselines. A method for embedding
image descriptors into Hamming space is proposed for fast image similarity ranking. The later is employed to limit the number of pairs
to be matched by a wide baseline method. An iterative graph-based approach is proposed formulating image linking as the search for
a terminal Steiner minimum tree in a line graph. Finally, additional links are determined and employed to improve the accuracy of
the pose estimation. By this means, loops in long image sequences are implicitly closed. The potential of the proposed approach is
demonstrated by results for several complex image sets also in comparison with VisualSFM.

1 INTRODUCTION

Recent developments for Structure from Motion (SfM) tech-
niques from unorganized image sets focus on large photo collec-
tions downloaded from the internet (Heinly et al., 2015; Snavely
et al., 2008; Agarwal et al., 2009; Frahm et al., 2009; Havlena
et al., 2010; Crandall et al., 2011). Such collections can con-
tain thousands or even millions of images comprising a very high
redundancy and often moderate baselines. In contrast to these
large photo collections, we focus on smaller image sets up to
a few thousand images, but containing complex configurations
comprising wide as well as weak baselines between images.

Wide baselines often arise by combining terrestrial and aerial im-
agery. Failure to handle them can lead to an incomplete pose
estimation. On the other hand, weak baselines result if the trans-
lation between image acquisitions is insufficient in relation to the
distance to the observed scene. They lead to a poor intersection
geometry which becomes undefined in case of zero baseline (i.e.,
pure rotation). Incorrect handling of weak baselines results in an
inaccurate or failed estimation of camera poses.

In this paper, the goal is a complete linking of all images in sets
of moderate size to obtain accurate estimates of camera poses
even for complex configurations consisting of wide as well as
weak baselines. In our case, wide baselines arise primarily when
combining terrestrial images and images from small Unmanned
Aerial Systems (UAS).

Usually, the first step in SfM is the establishment of feature cor-
respondences, i.e., image matching (Hartmann et al., 2015). Yet,
because of the high combinatorial complexity, exhaustive image
matching is not practical even for small image sets. The most
commonly used method to reduce the combinatorial complexity
is pruning of the image set. In (Li et al., 2008; Frahm et al., 2009)
clustering of the image set based on the global GIST descriptor
(Oliva and Torralba, 2001) is carried out to find representative im-
ages which are then employed to incrementally compute the 3D
structure. On the other hand, the number of local feature matches
was used in (Simon et al., 2007; Quack et al., 2008; Philbin and

Zisserman, 2008) for clustering. In (Havlena et al., 2013), the
reduction of the image set is formulated as the search for a mini-
mally connected dominating set of the graph of pairwise connec-
tions between the images.

Recent approaches for large photo collections (Havlena and
Schindler, 2014; Agarwal et al., 2009; Klopschitz et al., 2010)
use quantized local features (Sivic and Zisserman, 2003) indexed
by a vocabulary tree (Nister and Stewenius, 2006) to reduce the
complexity. Vocabulary trees scale well for large image sets, but
require a training phase and the specification of parameters (num-
ber of clusters and tree depth) which have a strong influence on
the accuracy. Acceleration of matching itself using GPU was em-
ployed in (Wu, 2011; Frahm et al., 2009). Holistic features (Oliva
and Torralba, 2001) indexed by compact hashing codes (Raginsky
and Lazebnik, 2009; Torralba et al., 2008) were used in (Frahm
et al., 2009) to reduce the memory consumption and speed up the
matching. Also dimension reduction (Cai et al., 2011; Ke and
Sukthankar, 2004) or embedding (Cheng et al., 2014; Strecha et
al., 2012; Jegou et al., 2008; Torralba et al., 2008) of feature de-
scriptors were employed.

When computing geometric relations between images purely
based on image features, the ability to find correspondences even
between images with large geometric or radiometric distortions,
e.g., caused by wide baselines or different acquisition times, is
highly desirable. Unfortunately, the establishment of correspon-
dences in these cases requires complex algorithms (Mayer et al.,
2012) with a strongly negative influence on the scalability of
StM. Applying accelerations techniques similar to Schonberger
et al. (2015) and Raguram et al. (2012) is less suitable, because
they would make the geometric verification faster but less robust
against complex configuration which we intend to handle.

To this end, we employ fast filtering for overlapping images form-
ing pairs based on their similarities and perform complex geomet-
ric verification only for a small subset of pairs. For the estimation
of the image similarities a technique for fast and unsupervised
descriptor embedding is proposed. It produces binary descriptors
allowing for fast estimation of relative image similarities.
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Figure 1. Image graph with corresponding line and linking graph. The line graph of the image graph is the pair graph describing
relations between pairs. Adding nodes of the image graph to the pair graph results in the linking graph where rectangles represent the

image and ellipses the pair nodes.

Pairs comprising a consistent geometry are merged into a com-
mon reference frame followed by bundle adjustment (Triggs et
al., 1999) to obtain relative camera poses (Agarwal et al., 2009;
Wu, 2011; Frahm et al., 2009; Li et al., 2008; Snavely et al.,
2006). To improve robustness and accuracy, image triplets in-
stead of pairs are employed (Moulon et al., 2013; Klopschitz et
al., 2010).

Yet, using triplets increases the combinatorial complexity from
O(n?) to O(n®), where n is the number of images. Thus, we
estimate the geometry for pairs first and derive triplets afterwards
based on the information from the image pairs. We present a
theoretically well founded modeling for the later allowing for ef-
ficient image linking. It is based on the concept of line graphs
formulating optimal linking as the search for a terminal Steiner
minimum tree (Lin and Xue, 2002).

The paper is organized as follows: In Section 2 the descriptor
embedding is presented. The theoretical background used for the
image linking is presented in Section 3. Our SfM pipeline is de-
scribed in Section 4. Results which demonstrate the potential of
the proposed pipeline are presented in Section 5. Finally, in Sec-
tion 6 conclusions are given.

2 DESCRIPTOR EMBEDDING

This section describes an approach for embedding SIFT descrip-
tors (Lowe, 2004) from real space R'?® into Hamming space
H'?® = {0,1}'?®. The embedding allows for a compact rep-
resentation of the descriptors as bit vectors and, thus, a very fast
comparison.

Existing work concerning embedding of feature descriptors fo-
cuses on distance preservation, i.e., two descriptors which are
close in R should be also close in H. For example, in (Strecha
et al., 2012; Torralba et al., 2008) supervised machine learning
techniques were applied to achieve this goal. In our case, we
want to rank images based on their similarities. Therefore, we
are only interested in relative similarities. Thus, a simplified em-
bedding can be used as long as the approximation errors are small
or distributed evenly.

A d-dimensional real space R can be partitioned by d indepen-
dent (affine) hyperplanes of codimension one in R%. Each hy-
perplane goes through the intersection point p € R% and sepa-
rates R? into two halfspaces, termed the positive and the negative
halfspace. Intersections of d mutually orthogonal halfspaces de-
termine 27 orthants, i.e., the generalization of quadrants in R? to
R?. Every orthant is determined by a sequence of d plus or mi-
nus signs where the ith sign indicates whether the orthant is in
the positive or negative halfspace of the ith hyperplane. Thus, an
orthant in R¢ can be represented by a bit vector of length d.

A 128-dimensional SIFT descriptor points to one of the 2'2* or-
thants. Therefore, it can be represented by a bit vector of length
128 corresponding to the orthant it points to. For the embedding
one needs to define the 128 hyperplanes. The values of the nor-
malized descriptor lie in the range O to 1. Hence, the origin as
the intersection point p = 0 for the hyperplanes is not a good
choice and, thus, p must be determined to ensure an appropriate
embedding. For this, the median of all descriptor values is com-
puted for each dimension ¢ and used as the ith coordinate of the
intersection point p.

Matching of the embedded descriptors then means determination
of the number of corresponding halfspaces, instead of computing
the Euclidean distance in case of the original descriptors. The
former can be computed very fast on recent CPU architectures
using XOR followed by bit counting. This provides only a rough
approximation of the true correspondences, but it turns out to be
accurate enough for the image similarity ranking (cf. Section 5).
On the other hand, the comparison of the embedded descriptors
reduces the matching runtime drastically and therefore allows for
exhaustive matching of image descriptors.

3 IMAGE LINKING

We term the merging of images to larger image subsets image
linking. The most common way to model linking is based on for-
mulating it as a graph problem. The relationships between images
are modeled by an undirected graph, where nodes correspond to
the images and edges connect pairs of images that overlap. We
denote this representation image graph.

3.1 Linking Graph

The image graph provides a straightforward modeling if pairs
are used as the basic elements for linking, because it concisely
describes the pairwise relationships between images. However,
when linking is based on triplets, the image graph lacks de-
scriptiveness because it describes pairwise relationships, whereas
higher order relationships are required. In addition, we use pairs
to propagate the geometry throughout linking, meaning that link-
able triplets must have two images in common. This constraint
cannot be modeled by the image graph.

A more appropriate modeling could probably be achieved by us-
ing 3-uniform hypergraphs where an edge connects three nodes.
But despite of the inherent complexity this also does not provide
an intuitive way to model the geometry propagation via pairs.
Thus, we propose a modeling based on the concept of line graphs.
It can be used to handle linking over triplets and enforce geometry
propagation via pairs, still allowing the usage of ordinary graph
algorithms.
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Figure 2. Wide Baseline Structure from Motion Pipeline

The line graph L(G) = (Vi, Er) of an undirected graph G =
(Va, Eq) has as set of nodes the edges of G. Two nodes in L(G)
are adjacent iff they have exactly one node of G in common. V/
represents the node set and F, the edge set of a graph g. Given
the incidence matrix R¢ of graph G, the adjacency matrix Ay, (g
of the corresponding line graph L(G) is given by

Ay = R&Re — 21, (1

with I the identity matrix. The number of nodes in L(G) equals
the number of edges in G, i.e., |Vz| = |Eg|. The number of
edges in the line graph is

Vel

1 2
|EL|:§Zldi — |Eg|, )

where d; is the degree of the i-th node in G. It follows that each
node 7 in G with degree d; generates d; nodes in the line graph
L(G) that are all connected to each other, corresponding to (‘127)
connections. Thus, E, is highly related to the density of graph
G.

Hence, line graphs are suitable to describe higher ordered rela-
tionships (see Figure 1). The line graph L(IG) of the image
graph IG contains nodes corresponding to pairs of overlapping
images. Therefore, we denote this representation the pair graph
(PG). Two nodes in the PG are adjacent if the pairs have an image
with an overlapping region in common, yielding a triplet. By this
means, a traversal through the pair graph implicitly corresponds
to the linking of triplets using pairs to propagate the geometry.

By extending the pair graph to explicitly represent the images
using a second node type, the linking graph is constructed (see
Figure 1), which we use to model the linking of images. It com-
prises two node types corresponding to the nodes of the image
graph (image nodes) and the pair graph (pair nodes). An image
and a pair node are adjacent if the pair node contains the image
corresponding to the image node. Image nodes are only required
to model the image linking. Therefore, there exist no edges be-
tween image nodes.

3.2 Block

The linking graph completely describes the linking between the
images. However, it can contain links of varying stability con-
cerning pose estimation. It means that, some triplets used for
linking can be more or less stable, e.g., due to short baselines be-
tween one or more images. What is more, not all triplets (implic-
itly) described by the linking graph are required for pose estima-
tion. Thus, using all triplets would increase the runtime without
a significant benefit.

We, therefore, introduce the concept of a block as a linking sub-
graph used for the hierarchical merging of triplets to obtain the
camera poses. Its size describes the number of linked images.
A complete block is a block linking all images of the image set.
The block density is the number of triplets used for linking and
the stability represents its robustness against poor intersection ge-
ometry, affecting the quality of the pose estimation.

A pair/triplet is termed valid if sufficient feature correspondences
between its images could be established, otherwise invalid. For
valid pairs/triplets we further distinguish between stable with
good intersection geometry, instable with an insufficient base-
line and critical which could be instable. Only stable and critical
triplets are used in a block, where critical triplets are included
only if they are essential for the completeness of the block.

In (Beder and Steffen, 2006) a score for the stability of an image
pair is proposed based on the error ellipsoids of the reconstructed
3D points. The quality of a reconstructed 3D point « is estimated
by the roundness R(x) of the error ellipsoid which is defined as

A3

R(‘T’l) = )\717

3)
where C is the covariance matrix for x and AY > A5 > A%
are the eigenvalues of C. R(x) lies between 0 and 1 and only
depends on the relative geometry of the two cameras and the fea-
ture positions. If the two camera centers are identical and the
feature positions were correct, the roundness would be equal to
zero. The mean roundness for all reconstructed points determines
the stability of a pair.

We employ the proposed quality measure to weight the edges be-
tween the pair nodes in the linking graph. For an accurate pose es-
timation a compromise between a sufficiently wide baseline and
a large number of correspondences must be found. To achieve
that, we weight each correspondence using R and compute the
sum to obtain the quality score s(P) for a pair P:

s(P) =Y R(x) “)

zeP

By this means, we do not only take the number of correspon-
dences into account but also their quality. The stability of a triplet
is determined by the stability of its weakest image pair. There-
fore, we define the weight w(e) of an edge e between pair nodes
by

w(e) :min{S(P1)7S(P2)7S(P3)}a (5)

where P; and P, are pairs corresponding to the adjacent pair
nodes and P3s = (P, U P») \ (P, N P).

Having a weighted linking graph, we can determine a block
of minimum density to link the images into a single coordi-
nate frame. This can be formulated as search for a terminal
Steiner minimum tree (Lin and Xue, 2002): Given an undirected,
weighted Graph G = (V, E) and a subset R C V of nodes (ter-
minals), a Steiner tree is an acyclic subgraph of G that spans all
terminals. Other nodes V'\ R are referred to as Steiner nodes. The
weight of a Steiner tree is the sum of the weights of all its edges.
The Steiner tree problem is concerned with the determination of
a Steiner tree with minimum weight in G. A Steiner tree is a ter-
minal Steiner tree if all terminals are leaves of the Steiner tree.
In the context of the linking graph the image nodes correspond to
the terminals and the pair nodes to the Steiner nodes.

It should be noted that a formulation using spanning trees is not
appropriate in case of the linking graph. A spanning tree deter-
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mines a subset of edges of a given graph whereas the Steiner tree
can be used to determine also a subset of nodes. The later is es-
sential in our case to reduce the complexity.

4 WIDE BASELINE STRUCTURE FROM MOTION

In this section we present a calibrated SfM approach for unorga-
nized image sets. It employs triplets to improve robustness and
accuracy as well as pairs for geometry propagation during image
linking. The objectives of the proposed approach are a complete
image linking and a robust handling of complex configurations.

The SfM pipeline is summarized in Figure 2. The first stage is im-
age preprocessing generating image pyramids and features used
for matching (Section 4.1). Based on it, similarities between im-
ages are estimated and employed for the selection of pairs which
are matched using a wide baseline method (Section 4.2). A block
suitable for fast pose estimation is constructed in the next stage
(Section 4.3). Multiple blocks are linked into a single block (Sec-
tion 4.4) and refined by including additional links (Section 4.5).
Finally, hierarchical triplet merging (Mayer, 2014) generates rel-
ative camera poses for all images of the block.

4.1 Image Preprocessing

In the image preprocessing stage image pyramids are computed
and SIFT features (Lowe, 2004) are detected for all images using
a GPU-based implementation (Wu, 2007). The SIFT descriptors
are embedded into Hamming space (Section 2). To reduce the
memory consumption, image pyramids and features are stored in
a database.

4.2 Image Similarity Estimation

The most time consuming part of many SfM approaches is image
matching, i.e., determination of feature correspondences between
images followed by the estimation of their relative pose. Hence,
it is essential to limit the number of required image matchings
for an efficient SfM. This can be achieved by reduction of the
combinatorial and/or the algorithmic complexity.

In our case, reduction of the algorithmic complexity would mean
improvement of the runtime needed for wide baseline matching
(WBM). Unfortunately, a WBM method such as (Mayer et al.,
2012) requires more complex computations compared to small
baseline matching to be able to deal with the large deformations
caused by wide baselines. Thus, a reduction of algorithmic com-
plexity would lead to a decrease of the robustness concerning the
scenario it was designed for, namely wide baselines.

We, therefore, reduce the combinatorial complexity, avoiding to
match all images to each other. To this end, a two-stage-matching
scheme is employed: The first stage employs very fast matching
based on the embedded descriptors allowing pair-wise matching
to estimate the similarities between all images. It is important to
note that we are interested in the relative similarity only and do
not strive for global relevance. Thus, inaccuracies in matching
of the embedded descriptors do not have a significant negative
influence (cf. Section 5). The obtained similarities are used for
ranking and, thus, the selection of image pairs (complexity reduc-
tion) which are to be matched using WBM in the second stage.
By this means, only a very small fraction of pairs needs to be
matched using time-consuming WBM.

The embedded descriptors are compared using Hamming dis-
tance followed by the distance ratio test (Lowe, 2004). Dissimi-
larities between images are estimated using the Jaccard distance

. |FiﬁFj|

Js(i,5) =1—=J(i,5) =1 1B UR|

©)

as a normalized similarity metric (Levandowsky and Winter,
1971). J(%,7) is the Jaccard index (Jaccard, 1912) for the fea-
ture sets F; and Fj of the two images ¢ and j, where |F; N Fj|
refers to the number of correspondences. J (4, j) can be viewed as
the probability that both images have a randomly selected feature
in common (Liben-Nowell and Kleinberg, 2003).

The dissimilarities between images are the basis of the weighted
image graph with (6) the edge weight function. It is important
to note that no threshold is used for image similarity. Therefore,
even images with very high Jaccard distance, except those with
distance 1, are not considered as dissimilar at this stage. This is
essential for handling pairs with a wide baseline and leads to a
dense image graph.

4.3 Block Construction

The block construction stage aims to construct a complete and
stable block with minimum density. To this end, the linking
graph is constructed followed by the determination of the termi-
nal Steiner minimum tree.

The linking graph (LG) can be directly constructed from the im-
age graph. However, from equation (2) one can deduce the large
size of the resulting LG, unnecessarily increasing the complexity.
Thus, only a subset of the most promising pairs corresponding to
the edges of a minimum spanning tree (MST) is used. To ensure
the geometric consistency, pairs are verified using WBM (Mayer
et al., 2012) as well as low image resolutions for reasons of effi-
ciency.

Valid pairs are classified into stable, instable and critical based
on the stability score given by equation (4) and empirically deter-
mined thresholds. These were derived using thousands of manu-
ally classified stable and instable pairs from various image sets,
and, thus, do not have to be adjusted. Instable and invalid pairs
are discarded and edges corresponding to them are removed from
the MST. Finally, LGM" is constructed by deriving the line graph
from the MST and merged into the LG, which is empty initially.

A necessary conditions for a complete block is a connected LG
and a connected pair graph (PG) induced by the image nodes of
the LG. If these conditions are not fulfilled, a new MST is deter-
mined. This iterative procedure is repeated as long as the number
of connected components of the LG decreases.

If the LG or the PG is disconnected at the end, invalid pairs are
examined. They arise if their images do not overlap or comprise
a wide baseline configuration. In the latter case, correspondences
could not be established due to the use of low image resolutions
during WBM. The employed resolutions leading to a couple of
hundred points per image are usually sufficient for successful
matching of pairs with moderate baselines. By this means, the
runtime needed for matching of such pairs, which occur much
more often than those with really wide baselines, is kept low. But
in case of the latter, the resolution can be insufficient. Simply
increasing the resolution for all pairs would lead to an unneces-
sarily high overall runtime. Instead, we rematch and reclassify
only invalid pairs again using higher resolutions and add stable
pairs to the LG. To reduce the number of rematched pairs, only
those with more than five correspondences so far are used and
all other considered as unlikely to overlap. If the construction of
a complete block is still not feasible, one could also try to find
missing connections for other pairs. But without additional in-
formation, this corresponds more or less to a random search and,
thus, is deferred to the block linking phase (Section 4.4), where
more information is available.
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Figure 3. Image set House containing 59 terrestrial and aerial
images with wide baselines between them. The obtained camera
poses are shown as pyramids on the left hand side. Lines connect
images which have at least ten points in common. The images of
one of the triplets used to connect terrestrial and aerial images are
shown on the right hand side.

Pairs classified as critical could be instable leading to an inaccu-
rate of failed pose estimation. Hence, a search for more stable
pairs which can be used as the replacement for the critical is initi-
ated. The basis for the search forms an image subgraph (ISG) cor-
responding to the LG. For each edge e in an ISG corresponding to
a critical pair, cross-edges connecting nodes incident with e with
mutual neighbors are determined. Let the edge (3,5) between
nodes 3 and 5 in Figure 1(a) correspond to a critical pair. Then,
the cross-edges would be the edges (5, 2) and (3, 6). Cross-edges
corresponding to stable pairs are added to the ISG. Derivation of
the line graph from the ISG leads to a LG which allows for a
construction of a more stable block.

The terminal Steiner minimum tree (TSMT) of the LG deter-
mines the block. As terminal Steiner problem has been shown to
be NP-complete (Lin and Xue, 2002), an approximation (Chen,
2011) is used. However, the resulting block mostly exhibited a
minimum density in practice. The geometric consistency of its
triplets is verified using WBM (Mayer et al., 2012) removing in-
valid triplets.

In the case of invalid triplets, the block becomes invalid and a
new TSMT is constructed. This is repeated until a valid block is
obtained or the PG becomes empty. If images exist which are not
contained in any of the constructed blocks, the LG construction
is repeated. This procedure of constructing the LG followed by
the determination of the TSMT is iterated until a complete block
is constructed or no increase of the block size occurs.

4.4 Block Linking

Missing triplets may cause the construction of multiple incom-
plete blocks. This is because block construction (Section 4.3)
depends on the presence of triplets in blocks sharing two images
to be able to link the blocks. This requirement can be relaxed
now to two arbitrary images contained in the blocks, not forming
an instable pair. Thus, the goal of this stage is to link incomplete
blocks to larger ones leading to a complete block in the optimal
case.

A compound LG (C-LG), constructed by merging the LGs of the
blocks into a single C-LG, is used to guide the search for links
from one block to the other. A connected C-LG is a necessary
condition for linkable blocks which corresponds to at least one
shared image. Yet, a minimum of two shared images is required.
Alternatively, a sufficient condition is the connected compound
PG which corresponds to linking over a triplet, respectively a pair
shared by two triplets.

(a) (b)

Figure 4. Image similarity matrices for the image set House con-
structed using full pairwise matching of original (a) and embed-
ded (b) SIFT descriptors. Each row/column correspond to an im-
age, where darker cells represent higher similarities.

To find the links, pairs containing images from different blocks
are constructed. Unlikely pairs are rejected using the model-free
outlier rejection rule X84 (Hampel et al., 2011) over image dis-
similarities given by the equation (6). The remaining images are
sorted in ascending order according to their dissimilarities and
used to find connections by verifying and adding them to the C-
LG. If all conditions are fulfilled, the blocks are linked to a larger
block. Repeating this procedure leads to larger and larger blocks
and finally to a complete block.

4.5 Block Meshing

The block exhibits more or less a structure similar to a tree so far
containing only triplets essential for image linking. This allows
for fast, but potentially not very accurate pose estimation, espe-
cially for large scenes containing long image sequences. In ad-
dition, shorter baselines are preferred by trend during block con-
struction to ensure successful establishment of correspondences.
However, this increases the probability of less stable configura-
tions. Thus, additional links are added to the block increasing
its density to extend the baselines and to stabilize long image se-
quences. This also leads to an implicit loop closing in case of
images sequences forming loops.

The idea behind block meshing is to find so called cross-links
between distant triplets of a block, which are able to link an image
contained in one triplet to the other. By this means, the length of
a feature track is increased, thus, improving the stability of the
block and increasing its density.

Given a pair P corresponding to a pair node of the pair graph
(PG), the candidate image set K, for each image p € P is deter-
mined. An image k is contained in K, if it fulfills the following
constraints restricting the set of potential cross-links to the most
promising:

(C1) k and p are images of distant pairs respectively triplets, i.e.,
CZPG(I:’7 PZ) > Dpqg with p € Pandk € P;.

(C2) k and p overlap forming a stable pair, ie., Dy(p) <
de(p, k) < D% and Z(p, k) < 120°.

The constraint (C'1) ensures cross-links between distant triplets.
The graph distance dp (P, P;) between pairs P and P; can be
determined by breadth-first search in the PG. The minimum re-
quired distance is given by a threshold D pc which depends on
the intended purpose. Larger distances are suitable for loop clos-
ing avoiding dense blocks. On the other hand, shorter distances
allows for a better stabilization of the block. We use Dpg = 5,
preferring the later.
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Number of Images 500 1000 1500
OD 1xGPU /4xGPU | 1.3/04 | 49/1.7 | 10.7/3.7
ED 1xCPU/4xCPU | 1.3/02 | 49/0.8 | 11.4/1.8

Table 1. Comparison of the image similarity estimation runtime
in minutes using the original and the embedded descriptors. The
original real descriptors (OD) were matched using GPU (Wu,
2007) and the embedded binary descriptors (ED) using CPU with
one and four GPUs/CPU cores.

Images with overlapping regions are enforced by constraint (C?),
where di corresponds to the Euclidean distance and Z to the
angle between the view directions between the cameras corre-
sponding to the images. These are given by the estimated camera
poses resulting from the hierarchical triplet merging stage (with-
out bundle adjustment). To ensure that only potentially stable
configurations are added, a minimum Euclidean distance D% (p)
is included which is the shortest baseline of a pair containing im-
age p in the block.

The determination of the search radius D%, as well as the neigh-
bors inside them is accelerated by a kd-tree. The choice of D%,
is critical because due to the drift in long sequences of images
the distances between actually close images might become rather
large. Thus, we determine the 2N, + 5 nearest neighbors and use
the distance to the most distant neighbor for D%,. NN, gives the
number of triplets which contain the image p. If p is contained in
Ny, triplets, then it has at most 2/V,, direct neighbors which are in
the same triplet as p. We take 5 more neighbors to increase the
search radius to consider also not direct neighbors.

Each image k € K, forms together with the pair P; a potential
cross-link. We sort the cross-links according to the image similar-
ities to increase the probability of establishing a correspondence.
Finally, sorted cross-links are iteratively added to the block if they
fulfill the constraint (C1) in the meshed block.

5 RESULTS

We demonstrate the potential of our approach concerning wide
and weak baselines as well as a larger number of images for three
image sets. No additional information except (an approximate)
camera calibration is used. We give the accuracy in terms of the
mean reprojection error in pixels. As the final merging is done
according to (Mayer, 2014), for which it has been shown that
the obtained accuracy complies statistically with the differences
between individual runs of the complete system, the obtained ac-
curacy estimates can be regarded as repeatable. All reported re-
sults have been obtained on a system with an Intel Xeon E7-8870
deca-core CPU and an NVIDIA GTX 690 dual-GPU. For results
in Table 1 a second NVIDIA GTX 690 has been used.

For a qualitative visual evaluation of the descriptor embedding,
the image similarity matrices for the image set House of Figure
3 are compared in Figure 4. The similarity matrices are created
using full pairwise matching of the original and the embedded de-
scriptors, respectively. In general, using the embedded descrip-
tors the similarities are slightly overestimated in comparison to
the original descriptors, but the relative similarities between im-
ages are mostly preserved allowing for a reliable ranking. This
is probably due to the high dimensionality of the embedded SIFT
descriptors.

In addition, matching of the embedded descriptors requires only
a fraction of the time needed for the matching of the original de-
scriptors, even if GPU acceleration (Wu, 2007) is used for the lat-
ter. Table 1 gives an overview of the image similarity estimation

Figure 5. Image set Church consisting of 657 terrestrial and aerial
images. The pyramids visualize the obtained camera poses.

runtimes using the original and the embedded descriptors. While
the runtime is approximately the same if one CPU core or one
GPU is employed, using more CPU cores reduces the runtime
considerably. This scalability on the CPU together with todays
multi-core CPUs, low memory consumption and a simpler imple-
mentation make the binary descriptors such an attractive choice.
However, matching of embedded descriptors provides only a con-
stant speedup and, thus, cannot achieve the scalability of vocab-
ulary trees. On the other hand side, it is parameter-free, requires
no training phase and achieves a good performance.

The capability of the proposed approach to handle wide base-
lines is demonstrated for the image set House (Figure 3). The set
consists of terrestrial and aerial images with wide baselines be-
tween them. Figure 3(b) presents a triplet which connects terres-
trial with aerial images from a camera mounted on an unmanned
aerial vehicle (UAV) and contains two pairs with a significantly
wide baseline. Nevertheless, all images could be linked into a
single block.

In Figure 5, the registration of the image set Church is presented.
The image set contains a couple of pairs with weak baselines as
well as a combination of UAV and terrestrial images. The chal-
lenge lies in filtering the weak pairs in order to exclude them from
image linking. The block construction stage produces two blocks
which were linked to a complete block during the block linking
stage.

Estimated camera poses of the image set Village with 3531 im-
ages are given in Figure 7(a). Image acquisition occurred at very
different points in time, thus, severe radiometric distortions ex-
ist between images. Block construction yields twenty blocks
which are successfully linked in the subsequent stage into a single
block. In comparison, VisualSFM could not register the images
correctly as shown in Figure 7(b).

The runtimes of each stage of the SfM pipeline as well as Vi-
sualSFM are presented in Table 6. The dominating stage is the
hierarchical triplet merging, especially the last merging step as
well as the final bundle adjustment, which are not yet parallelized.
VisualSFM (Version 0.5.26) was executed without graphical in-
terface, with default parameters and option sfin. Compared to
VisualSFM, our SfM pipeline has a lower runtime and a better
accuracy for the larger image sets. This is particularly significant
as our approach does not use GPU acceleration, except for feature
extraction, and employs triplets for image linking instead of only
pairs. Triplets improve the overall accuracy, but also increase the
runtime.
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Image Set | #mages Image Similarity Block Block Block Hierarchical Total o0
Preprocessing | Estimation | Constr. | Linking | Meshing | Triplet Merging
House 59 0.01 0 0.05 0.03 0 0.01 0.11 0.22
Church 657 0.04 0.01 0.16 0.04 0.01 0.33 0.59 0.39
Village 3531 0.25 0.20 0.58 1.51 0.89 9.7 13.13 || 0.30
Image Set || Feature Extraction | Image Matching | Sparse Reconstruction Total 0o

House 0.01 0.02 0.01 0.04 0.51

Church 0.09 242 0.12 2.63 1.09

Village 0.52 84.88 1.24 86.64 1.35

Figure 6. Runtimes in hours for each stage of the proposed SfM approach (top) and VisualSFM (bottom) as well as the achieved

accuracy (o9) in pixels for the presented image sets.
6 CONCLUSION

In this paper, an automatic SfM approach for unordered image
sets with complex configurations is presented. We have demon-
strated its robustness concerning wide as well as weak baselines
and the capability to efficiently and completely handle complex
image sets of moderate size. Apart from (approximate) camera
calibration no other information is used.

Our first contribution consists of an unsupervised yet powerful
descriptor embedding used for fast image similarity ranking. The
latter is employed to significantly reduce the number of complex,
wide baseline image matching operations. As core contribution,
an iterative graph-based method is proposed which is based on
line graphs allowing to formulate efficient image linking as the
search for the terminal Steiner minimum tree. To our knowledge,
this is the first application of a Steiner tree in the context of SfM.
Robustness and accuracy are improved by applying subsequent
meshing allowing for implicit loop closing. By this means, an
accurate, efficient and complete pose estimation of complex im-
age sets is achieved.
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(a) Wide Baseline STM

(b) VisualSFM

Figure 7. Image set Village containing 3531 images acquired from the ground and from various Unmanned Aerial Systems. Recon-
structed camera poses are visualized by colored pyramids, where each color represents a different camera type. Registration obtained
using the proposed SfM approach is shown in (a), whereas (b) shows the erroneous reconstruction produced by VisualSFM.
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