
___________________________ 
* Corresponding author 

NONZONAL EXPRESSIONS OF GAUSS- KRÜGER PROJECTION IN POLAR REGIONS 
 

 

Zhongmei Li, Shaofeng Bian*, Qiang Liu, Houpu Li, Cheng Chen, Yanfeng Hu 

 

Dept. of Navigation, Naval University of Engineering, Wuhan, 430033 China - lizhongmei126@126.com 

 

Commission Ⅳ, WG Ⅳ/2 

 

 

KEY WORDS: Gauss-krüger projection, transverse Mercator projection, polar surveying, reference frame, conformal colatitude, 
computer algebra system 
 
 
ABSTRACT:  
 
With conformal colatitude introduced, based on the mathematical relationship between exponential and logarithmic functions by 
complex numbers, strict equation of complex conformal colatitude is derived, and then theoretically strict nonzonal expressions of 
Gauss projection in polar regions are carried out. By means of the computer algebra system, correctness of these expressions is 
verified, and sketches of Gauss-krüger projection without bandwidth restriction in polar regions are charted. In the Arctic or 
Antarctic region, graticule of nonzonal Gauss projection complies with people’s reading habit and reflects real ground-object 
distribution. Achievements in this paper could perfect mathematical basis of Gauss projection and provide reference frame for polar 
surveying and photogrammetry. 

1.  INTRODUCTION 
 

Polar regions have increasingly been the international focus in 

recent decades. It is of great significance for polar navigation 

and scientific investigation to select the suitable projection 

method. As one common conformal projection, the transverse 

Mercator (TM) or Gauss-Krüger projection is frequently used 

for charting topographic map (e.g., Lauf 1983; Snyder 1987; 

Yang 2000). Series expansions of meridian length in Krüger 

(1912) is the basis of the most common way for calculation of 

Gauss coordinates. In the last century, scholars have carried on 

extensive researches about the projection. Lee (1976) and 

Dozier (1980) carried out formulae of UTM coordinates by 

means of elliptic functions. Based on complex numbers, 

Bowring (1990) gave one improved solution for TM projection. 

With respect to Laplace-Beltrami and Korn-Lichtenstein 

equations, conformal coordinates of type UTM or Gauss- 

Krüger were carried out directly in Grafarend (2006). 

Additionally, Bermejo (2009) derived simple and highly 

accurate formulas of TM coordinates from longitude and 

isometric latitude, and compared truncation errors in different 

orders by using the program Maple and Matlab. Karney (2011) 

extended Krüger’s series to 8th order, constructed 

high-precision test set based on Lee (1976) and discussed 

properties of the exact mapping far from the central meridian. 

Obviously, researches on TM or Gauss-Krüger projection have 

already obtained brilliant achievement. 

In the development history of Gauss-krüger projection 

theories, formulae above have different features, for example, 

real power series expansions of longitude difference l  are 

often limited in a narrow strip (e.g. [ 3.5 , 3.5 ]l∈ − + in UTM 

projection; [ 3 , 3 ]l∈ − +  or [ 1.5 , 1.5 ]l∈ − +  in Gauss- 

Krüger projection). Expressions by complex numbers, 

eliminating zoning restrictions, are difficult to be used in polar 

regions with the singularity of isometric latitude. Karney (2011) 

improved Lee’s formulae, and provided an accuracy of 9 nm 

over the entire ellipsoid, bur not gave formulae that can entirely 

express the Arctic or Antarctic region. In attempts on the 

nonzonal formulae of Gauss projection in polar regions, Bian 

(2014) used a near-spherical assumption to derive complex 

colatitude, which would have an influence on the strictness of 

his formulae. Given these, in order to perfect the mathematical 

foundations of Gauss-krüger projection specialized in polar 

regions, by introducing the relationship between conformal 

colatitude and isometric latitude, an improvement measure will 
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be shown in this paper.  

 

2. EXPRESSIONS OF GAUSS COORDINATES IN 

NONPOLAR REGION 

 

According to Bian (2012), based on meridian arc length 

expansion about conformal latitude, non-iterative expressions of 

Gauss projection are written as in this form 
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where a  indicates semi-major axis of the earth ellipsoid. 

Coefficients 0 2 10,α α α  expanded to 10e are carried out by 

computer algebra system Mathematica. With its strong power in 

symbolic operation, coefficients expanded to 20e or even 
40e can be easily gotten in a similar way. And finally all the 

coefficients could be simplified as series summations of earth 

ellipsoid eccentricity. As our target in this paper is to improve 

original formulae of Gauss projection for polar using, we place 

great importance on the improvement measures, and do not 

discuss the expansion coefficients whether they are expanded 

enough to a high precision or not. Here we take the first 
eccentricity e  for example, coefficients 0 10α α expanded to 

10e  are listed in Eq. (2).  
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Additionally, in Eq. (1) φ  and w  indicates complex 

conformal latitude and complex isometric latitude respectively, 

and 

 
 q i l= +w  (3) 

 

where l  indicates geodetic longitude, q  means isometric 

latitude and is a function of geodetic latitude B  
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1 sin 1 sinln
1 sin 1 sin
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q B B e e B
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= −
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 (4) 

Figure 1. Sketch of isometric latitude q  with 

geodetic latitude [0 , 90 )B∈  

Taking ( )( ) ( )arctanh sin arctanh sine B e B− = −  and 

( )( ) ( )arctanh sin arctanh sinB B− = −  into account, ( ) ( )q B q B− = −  

is gotten from Eq. (4), meaning that isometric latitude q  is an 

odd function of geodetic latitude B . Trend of isometric latitude 

q  with geodetic latitude B  ranging from 0  to 90  is 

charted in Figure 1.  

As shown in Fig. 1, isometric latitude q  increases with 

geodetic latitude B  ranging from 0  to 90 . In 

consideration of isometric latitude q ’s odevity, q  becomes 

an infinitely large quantity as geodetic latitude B  

approaches to 90± , which brings about singularity in 

expressions of complex isometric latitude w  in Eq. (3) as 

well as complex conformal latitude φ  in Eq. (1), and then 

makes expressions of Gauss coordinates in Eq. (1) difficult to 

be used in polar zones.  

Figure 2. Sketch of Gauss projection in nonpolar region

Moreover, as ( )tanh = tanh q il+w  in Eq. (1) contains 

( )tanh = tanil i l , not suit for the situation where geodetic 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-4-11-2016

 
12



 

longitude l  approaches to 90 , expressions of Gauss 

coordinates in  nonpolar region Eq. (1) only can be used in 

the zone ( )= { , : 90 , 90 }D B l l B< < . By means of computer 

algebra system Mathematica, sketch of Gauss projection in 

nonpolar region is drawn in Figure 2. 
 

3. NONSINGULAR EXPRESSIONS OF GAUSS 

COORDINATES IN POLAR REGIONS 

 

In order to carry out the expressions of Gauss projection that 

can be used in polar regions, Eq. (1) must be transformed 

equivalently. As Eq. (1) is derived from meridian arc length 

expansion 
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where X  indicates meridian arc length, ϕ  indicates 

conformal latitude, and coefficients 0 10α α are the same as Eq. 

(1). According to Xiong (1988), conformal latitude ϕ  is a 

function of geodetic latitude B  
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 (6) 

When the geodetic latitude B is on the northern hemisphere, 
the conformal latitude ϕ  is a positive value. Otherwise, it is a 

negative value.  

 

3.1 Nonsingular Expressions of Gauss Projection in 

Complex Form 

 
To eliminate the singularity of conformal latitude ϕ  when 

geodetic latitude B  approaches to 90  in Eqs. (5)―(6), 

conformal colatitude θ  is introduced, and values 

 
 2θ π ϕ= −  (7) 

 

Afterwards, inserting Eq. (7) into Eq. (5), equivalent 

expression of meridian length X can be written with conformal 

colatitude θ .  
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Obviously, singularity of Eq. (8) depends on the singularity 

of the unique variable θ . To judge the singularity of θ , 

inserting Eq. (6) into Eq. (7), equation of conformal colatitude 

θ  is gotten. 
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Taking Eq. (4) into account, based on the relationship 

between exponential and logarithmic functions ( )exp ln x x≡ , 

Eq. (10) is gotten. 
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 Inserting Eq. (10) into Eq. (9), we can find when 

90B = , 0θ = . Neitherθ nor Eq. (8) is singular in north pole. 

As nonpolar solution of Gauss projection is obtained by 

developing the relationship between meridian length X  and 
isometric latitude q  from real to complex number field, 

expressions used in polar regions can be achieved similarly.  

Firstly, based on the definition of complex function, 

q il= +w  replaces q  in Eq. (9) to realize the extension of 

conformal colatitude θ , and then the complex conformal 

colatitude θ  is derived. 

 

 ( )( )2arctan exp q il⎡ ⎤= − +⎣ ⎦θ  (11) 

 

Secondly, replacing θ  in Eq. (8) by θ , and turning 

meridian length X  in Eq. (8) into complex coordinates 
x iy= +z , where the real part x  indicates Gauss ordinate and 

the imaginary part y  indicates abscissa, yields to expressions 

of Gauss projection. For convenient polar charting, moving zero 

point of the expressions from the equator to the north pole, 
ordinate is reduced by 1 4  meridian arc length ( 0 2aα π ) and 

abscissa remains unchanged. For clear presentation, abscissa 
and ordinate after translation are still expressed with y  and x . 

Omitting the derivation, nonsingular expression of Gauss 

coordinates by complex numbers in Arctic region is carried out. 
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When longitude =0l , abscissa 0y = ， ordinate x  

equals to meridian arc length integrating from the pole. 

Equality of the central meridian arc is guaranteed. Besides, 

transformations above are all elementary operations between 

complex functions, which are monodrome and analytic 

functions in the principle value, keep conformal in the whole 

transformation processes. It is verified that Eq. (12) satisfy 

Cauchy―Riemann equations, so conformality of Gauss 

projection is guaranteed. 

By now, nonzonal solution of Gauss projection that can be 

used in Arctic region have been finished.  

 

3.2 Nonsingular Expressions of Gauss Projection in Real 

Form 

 

As complex conformal colatitude θ  is a complex variable, to 

separate θ  into real and imaginary parts = u iv+θ , 

equations ( ) ( ) ( )exp = exp cos sinq il q l i l+ +  and 

( )= arctanh sinq ϕ  are introduced. Based on the relationship 

between complex function and arctangent function, Eq. (12) is 

transformed equivalently. 
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After transformed, complex conformal colatitude θ  is 

devided into real and imaginary part, they equals 

 

 
( )

( )
arctan tan cos

arctanh sin sin

u l

v l

θ

θ

⎧ =⎪
⎨

= −⎪⎩
 (14) 

 

Obviously, when ( ),P B l approaches to the north pole, 

0θ → , range of l  reaches to  [ 180 ,180 ]− , and θ  has a 

specific value and not singular at certain point ( ),P B l  on the 

northern hemisphere. 

Taking relationships ( )sin sin cos cos sinu iv u iv u iv+ = + , 

sin = sinhiv i v and cos = coshiv v  into account, Eq. (11) is 

separated into real and imaginary parts, and Eq. (15) is gotten. 
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By now, nonzonal expressions of Gauss projection in real 

form suit for the Arctic region have been carried out. 

Actually, taking full advantage of earth’s symmetry, it is no 

need to derive extra expressions of Gauss coordinates for the 

Antarctic region. As the southern hemisphere is symmetrical to 

the northern hemisphere, viewing the south pole as new north 

pole, replacing ( ),P B l  on southern hemisphere by 

( ),P B l− and inserting it into expressions used in Arctic region, 

sketch of the Antarctic region in the same perspective as the 

Arctic region is gotten. Sketches of Gauss projection in polar 

regions are drawn in Figures 3 and 4.  

As shown in Figures 3 and 4, the Arctic and Antarctic 

regions are completely displayed based on nonzonal expressions 

above. Through translating the origin of Gauss coordinates from 

the equator to the pole, Gauss ordinates are negative when 

longitude difference 90l < , while ordinates are positive 

when longitude difference 90l > . In polar circles, the 

meridians =0 , 90 , 180l ± ±  are shown as straight lines after 

projected, and are the symmetry axes of Gauss coordinates.  

Figure 3. Sketch of Gauss projection in Arctic region  

based on nonzonal expressions 
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Figure 4. Sketch of Gauss projection in Antarctic region 

based on nonzonal expressions 

 
4. CONCLUSIONS 

 

With equations of conformal colatitude and isometric latitude 

introduced, based on relationship between complex exponential 

and logarithmic functions, nonzonal expressions of Gauss 

projection in polar regions are carried out. Conclusions are 

drawn as below. 

(1) With isometric latitude singular in the pole, traditional 

expressions of Gauss projection can not be used in polar 

regions. Through translating the origin of traditional Gauss 
projection by 1 4 meridian length from the equator to the pole, 

theoretically strict expressions that can be used in polar 

regions are carried out. These are of great significance for 

perfecting mathematical system of Gauss projection. 

(2) Compared with traditional Gauss projection, nonzonal 

formulae derived in this paper are fit for the whole polar regions 

without bandwidth restriction, and could provide reference 

frame for polar surveying and photogrammetry. 
(3) Though parallel circles and the other meridians are not 

projected to straight lines like Mercator projection, graticule of 

Gauss projection in the Arctic or Antarctic region could still 

comply with our reading habit, even reflect real ground-object 

distribution better and make the polar regions absolutely clear at 

a glance.  
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