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ABSTRACT 

 
Within recent years, several new approaches and solutions for Big Data processing have been developed. The Geospatial world is 

still facing the lack of well-established distributed processing solutions tailored to the amount and heterogeneity of geodata, 

especially when fast data processing is a must. The goal of such systems is to improve processing time by distributing data 

transparently across processing (and/or storage) nodes. These types of methodology are based on the concept of divide and conquer. 

Nevertheless, in the context of geospatial processing, most of the distributed computing frameworks have important limitations 

regarding both data distribution and data partitioning methods. Moreover, flexibility and expendability for handling various data 

types (often in binary formats) are also strongly required. 

This paper presents a concept for tiling, stitching and processing of big geospatial data. The system is based on the IQLib concept 

(https://github.com/posseidon/IQLib/) developed in the frame of the IQmulus EU FP7 research and development project 

(http://www.iqmulus.eu). The data distribution framework has no limitations on programming language environment and can execute 

scripts (and workflows) written in different development frameworks (e.g. Python, R or C#). It is capable of processing raster, vector 

and point cloud data. The above-mentioned prototype is presented through a case study dealing with country-wide processing of 

raster imagery.  Further investigations on algorithmic and implementation details are in focus for the near future. 

 

1 INTRODUCTION 

 
Our goal is to find a solution for Geoprocessing of big 

geospatial data in a distributed ecosystem providing an 

environment to run algorithms, services, processing modules 

without any limitations on implementation programming 

language as well as data partitioning strategies and 

distribution among computational nodes. As a first step we 

would like to focus on (i) data decomposition and (ii) 

distributed processing. The challenges associated with each 

focus area, related methodology and first results are analyzed 

and discussed in the paper. 

 
2 PROBLEM DESCRIPTION 

 
2.1 Geospatial Big Data 

 
Reliable analysis of the geospatial data is extremely 

important base for being able to support better decision 

making with location-aware data even in our changing 

World. The challenges for handling geospatial big data 

include capture, storage, search, sharing, transfer, analysis, 

and visualization (Jewell et al., 2014). Furthermore, with 

newly adapted data management requirements and initiatives, 

even more open data will be available on the web which need 

to be handled, the latent information be shared and extracted 

knowledge applied in the level of decision making as well 

(Wu and Beng, 2014.). Big data, open data and open 

government has joint interest in location and in many 

challenges considered in geospatial aspect will soon benefit 

from it (Jewell et al., 2014). We consider GI analysis as a 

principal capability in a way to transform information to 

knowledge.  

The progress and innovation is no longer hindered by the 

ability to collect data. The most important issue is how we 

exploit these geospatial big data (Lee and Kang, 2015). We 

consider that, we are facing the paradigm shift from data-

driven research to knowledge-driven scientific method in Big 

Data which was considered as a challenge by R. Kitchin in 

2014. In our previous work (Nguyen Thai and Olasz, 2015) 

the Big Data concept and the well-known four dimensions: 

Volume, Velocity, Variety (originally Laney came up with 

this three dimensions in 2001) and Veracity have been 

discussed taking into account of geospatial considerations 

and characteristics. Additional dimensions have been 

continuously appearing to describe better the concept of the 

workflow such as: Value, Validity, Visibility, etc. (Li et al, 

2015). 

Moreover, we have concluded a fifth “V” to Geospatial Big 

Data as Visualization, because it has a great importance to 

communicate the desired information in Geographical 

Information Science from the very beginning. From geo-

location information transform into knowledge going through 

the pipeline of Data Life Cycle in every phase of conversion 

(collect, aggregate, analyse, return as knowledge, share) 

Visualization is fundamental (Nguyen Thai Binh and Olasz, 

2015). Beyond, we consider that in Big Data environment 

Visualization plays an important role in (1) geospatial data 

processing (due to volume and variety) that help analysts to 

identify trends, relations, correlations and  patterns in an 

efficient way; (2) facilitate broadcasting geo-information to 

citizens (and decision makers) employing interactive and eye 

tracking approaches. According to our conclusion 

Visualization is a definite geospatial component of Big Data. 
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2.2 Defining Geospatial Big Data 

 
Spatial data (also known as geospatial data, geo-information, 

geodata, etc) have many definitions depending from the 

background of the author. All of them emphasize the 

geographic location of the phenomena to be described as 

basic criteria. The nature of the digital representation of the 

continuous space can be grouped in 4 or 5 type. Traditionally 

we consider two type of geospatial data vector and raster 

(Elek, 2006) owing to the development of information 

technology nowadays we can have higher abstraction type of 

data such as point clouds, graph networks. An additional 

particular kind of location-aware data is also examined by 

analysts; social media-like data which requires a particular 

approach to collect and process as well. Along with Big Data 

theory geospatial big data is defined as volume, variety and 

update frequency rate that exceed the capability of spatial 

computing technology (Lee and Kang, 2015, Li et al., 2015, 

Kambatla et al., 2014). In Table 1. we have collected the 

main characteristics of geospatial big data for each type of 

formats such as: representation formats, GIS operations, 

volume, velocity, variety and visualization aspects. To have a 

better understanding on what are the main attributes of 

geospatial data because it is hard to delineate the margin 

starting to “exceed the capability of spatial computing 

technology”. To estimate the size of the processable amount 

of data are use-case specific, there are some good examples 

(Evans et al., 2014) where the authors tried to identify the 

Geospatial Data and Geospatial Big Data differences.  

 

 
Data type Formats GIS operations Volume Velocity Variety Visualization 

Vector 
point, line, polygon 

(multi) 

Overlapping vector 

geoprocessing 

available amount of vector data 

(for instance nation-wide 

cadastre, or land cover,roads, 

waterways, utility network, etc) 

real time 

monitoring, and 

rapid response is 

emerging 

consider in a 

GIS 

processing 

several types 

of previously 

mentioned 

data need to 

be combined 

to extract 

the relevant 

information 

thanks to OGC standards 

and web-gis platforms non 

researchers are able to use 

GIS data for many different 

purposes 

3D 

representation 

point cloud,TIN (or 

Triangular mesh) 

3D modeling, urban 

modeling,simulation,flight 

from above camera view, 

visibility operations, semi-

automatic point cloud 

feature detection, 

classification, terrestrial 

laser scanning, BIM 

available amount of point cloud 

data (or TIN) for the creation of 

DSM, DTM modelling, feature 

extraction and simulation 

requires huge computational 

capacity 

time sensitive 3D 

data requires rapid 

processing (disaster 

management and 

simulation) 

3D view (perspective) 

together with thematic 

content with reduced 

information are essential 

to spreading information 

for different level of end-

users 

Raster grid 

Local, Focal, Zonal (Global) 

Map Algebra processing, 

image analysis 

available (free) series terrestrial, 

aerial and satellite (multispectral 

and hyperspectral) imagery 

(airplane, UAV), earth observation 

data requires huge computational 

capacity using raster image 

processing methods 

real time spatio 

temporal earth 

observation data 

processing is need 

more than ever 

(independently 

from the extent of 

the processing) 

to deliver results of earth 

observation monitoring 

and processing novel 

solution in visualization 

also needed to transform 

information human 

readable 

Network 
graph (nodes, 

edges), line 

routing, network analysis, 

allocation (Geo-business) 

trillions of edges, nodes for graph 

processing available from location 

based networks (also from social 

media) originally big data concept 

made for text-based and graph-

like structures 

real time 

monitoring of 

moving objects, 

transportation 

decision support is 

needed 

in network analysis and 

routing visualization 

techniques are 

indispensable to serve it 

real time 

Geolocation-
aware media 

text:post, tweets, 
web-logs,check-ins, 
media: GPS tracks 
from smart 
phones,UAV 
video,geoPDF 
profiles: name, 
geocodes, 

disaster management 
decision support, crowd 
sourcing, human 
geography, sociology, 
crime mapping uses 
geoprocessing, GEOINT 
techniques 

data mining, geostatistical 
techniques and predictive 
modelling are traditionally 
considered as big data processing 
methods which requires 
computing capacity even on web 
content analysis (text based 
media files) 

real time social 
media and 
information flow is 
faster than ever, 
geospatial sector is 
already taking part 

for location-based social 
media visualization is the 
basis which exceed the 
traditional barriers of GIS 
sector, novel solutions are 
rising every day to collect 
and analysing geolocated 
web content. 

Table 1. Geospatial 

Big Data characteristics  

 

According to the previously mentioned definitions and 

characteristics of Big Data and Geospatial Big Data 

represented in the table are reasonable. We do not intend to 

identify other characteristics of Big Data, because they are 

not closely related to Geoprocessing topic. In order to process 

Big Data distributed computing environment and techniques 

have been introduced and applied to handle time-consuming 

operations. In our related work feasibility aspects were 

targeted together with a conceptual framework for 

benchmarking experimental processing.  

 

3 PREVIOUS AND RELATED WORKS  

 
3.1 Distributed computing 

 

Distributed computing environment is a software system 

where computational and storage components are on 

networked computers ,communicating and coordinate their 

actions by passing messages through “network socket” 

endpoints within the network. Components interact with each 

other to achieve a common goal. Three significant 

characteristics of distributed systems are: concurrency of 
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components, lack of a global clock, and independent failure 

of components. Plainly, a distributed system is a collection of 

computers within the same network, working together as one 

larger computer. Massive computational power and storage 

capacity have been gained due to this architecture. We must 

note that processes’ running in a distributed system does not 

share memory with each other, like parallel computing 

systems. Processes in distributed system communicate 

through message queues. Two architectural models are 

suggested for distributed computing systems: 

● Client-Server model: where clients initiate 

communication or processing job(s) to the server, 

which distribute that request(s) to all processing 

and storage units if necessary to do the real work 

and returning results to client. 

● Peer-to-Peer model: where all units involved in 

distributed system are the client and server at the 

same time, without any distinction between client 

or server processes. 

The technology of used in distributed computing of 

geospatial data is similar to any other process of distributed 

computing. Several solutions are introduced to accelerate 

geoprocessing usually time consuming methods. Along with 

the available amount of data together with its particular 

procedures to derive information geographical information 

systems constantly invokes novel solutions from the IT 

sector.  

 
3.2 Distributed geospatial computing 

 
The Encyclopaedia of GIS (Phil Yang 2008,) defines 

distributed geospatial computing (DGC) as “geospatial 

computing that resides on multiple computers connected 

through computer networks”. So “geospatial computing 

communicates through wrapping applications, such as web 

server and web browser”. To translate it, distributed 

geospatial computing is when geoprocessing is done within a 

distributed computing environment. In the Handbook of 

Geoinformatics (2009) Yu et al. focus on the multi-agent 

system with ontology to perform distributed processing of 

geospatial data. The distributed processing of geospatial data 

is continuously evolving together with the evaluation of 

computer networks. In this study due to limited length, the 

introduction of the historical evolution of DGC is not in 

purpose. A single milestone we would like to emphasize from 

the evaluation progress is when Google Earth was issued in 

2004; by reason of it caused a life changing effect on the 

citizens’ everyday life and made popular geospatial 

applications. Furthermore, until nowadays Google’s solutions 

are leading in the process of massive dataset along with the 

development of easy-to-use interface (e.g., Google BigTable) 

and play an important role in the open source community 

developments. Consequently, distributed systems supports 

heterogeneous network and infrastructural background, cloud 

solutions have been developed to exploit the advantages of 

distributed systems and made available services for 

geospatial computing as well. 

 

3.3 Cloud computing 

 
Cloud computing involves deploying groups of remote 

servers and software networks that allow different kinds of 

data sources be uploaded for real time processing to generate 

computing results without the need to store processed data on 

the cloud, while focusing on maximizing the effectiveness of 

the shared resources. As we see cloud computing system has 

evolved from distributed systems (Bashar, 2013). 

Plainly, a cloud is aiming for scalability and flexibility 

providing computational and storage power to customers and 

users (Mei et al., 2008). Main components are: 

● Clients (any end device having Internet connection 

can be a client) 

● Data-center (server farm) 

● Distributed servers 

The key factor in cloud computing is the power of 

virtualization by creating virtual machines on-demand. The 

model of the cloud computing allows access to handy 

resources like: storage, applications, computing capacity and 

services in an efficient way (Jajodia et al., 2014). Even some 

data provider and cloud infrastructure provider cooperated 

and incorporate advanced services with available public data 

sets (for example over 85 TB of Landsat 8 satellite imagery, 

or NASA NEX images of the Earth’s surface available on 

Amazon AWS). 

 
3.3.1 Cloud computing model 

 
Often cloud computing model demonstrated as a stack of 

computing services. At the bottom of the stack Infrastructure-

as-a-Service (IaaS) take place, symbolizing the basis of the 

system. (Sosinsky, 2011). In the middle of the stack the 

Platform-as-a-Service (PaaS) sits providing the tools 

designed to deploying applications dynamic and powerful. 

On the top of the stack Software-as-a-Service (SaaS) facing 

the customers with the software and Application 

Programming Interfaces (APIs).  

 
Infrastructure-as-a-Service (IaaS) 

 
The user accesses the storage, network and basic computing 

resources, can deploy and execute particular programs, the 

operating system. The user is free from the management of 

the infrastructure background but has right to configure the 

operating systems, storage, deployed applications, and 

perhaps narrow control of select networking components 

(e.g., host firewalls). The user’s operating system together 

with applications can be migrated to the cloud and substitute 

the data center of the company.  

 

Platform-as-a-Service (PaaS) 

 
The user can install or develop own web software on the 

virtualized environment that are created using programming 

languages and tools supported by the provider. The user 

doesn’t have right to make changes on operating system, 

storage, network and servers only to the deployed apps along 

maybe with application hosting configurations.  

 
Software-as-a-Service (SaaS) 

 
The users can use the predefined applications on the cloud 

accessible with heterogeneous devices through web browser. 

The user can only configure the software but the underlying 

solutions are hidden. 

 
Data-as-a-Service (DaaS) and Data-as-a-Product 

(DaaP) 

 
The users have access to dataset (public or private made 

available on the cloud) and probably the software 
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environment to process the data as a service on the top of the 

hidden architecture. The user not allowed making 

infrastructural, network or storage parameterisation. Within 

such centralized solution the data management (frequent 

update, cleaning, conversions) are served by the provider 

(Olson, 2009). Data-as-a-Product concept defined by Huang 

(2015) is a “small sized summary of the original data and 

can directly answer user’s queries”. 

In the next section we are introducing a comparison matrix 

for current technologies from the Geospatial aspects of the 

usage. In the Table 2. our intention was to collect aspect from 

the advanced GIS users who would use the provided services 

on their own data without programming knowledge. Also 

some case studies were collected as instance to harvest 

information on practical realization. Also wanted to gather 

information on data management flexibility in 

decomposition, association and distribution and control of the 

data distribution among nodes but it was tough to dig deep in 

implementation details of each tool. We admit that these 

environments are not only expensive to build, but they 

require highly-trained DevOps Engineers to maintain them 

and grow them as the data accumulates. At the popular 

ranking site of DB-Engines we can derive information on the 

evolution of popularity calculated with a complex method of 

scoring (Fig.1.). Method of calculating the scores of the DB-

Engines Ranking: based on the popularity of the system 

(number of mentions of the system on website, searches in 

Google Trends, number of interested users on the Stack 

Overflow and DBA Stack Exchange, number of offers on the 

leading job search engines Indeed and Simply Hired, Number 

of profiles in professional networks, in which the system is 

mentioned LinkedIn, number of Twitter tweets, in which the 

system is mentioned (db-engines.com, 2016). The most 

popular database engine which is highly excels is HBase 

from those 8 engine, the second is SPARK SQL and 

Accumolo right away following it. Rasdaman is lacking 

behind since the publication but the trend is rising. 

 

 

Fig.1. Comparison of the DB engines according to DB-

Engines Ranking from April 2016 (1.HBase, 2. Spark, 3. 

Accumulo, 4. Oracle NoSQL, 5. SciDB, 6. Google Cloud 

BigTable, 7. Rasdaman (Hadoop, GeoTrellis, Akka, 

Geowave, GeoMesa are not DB Engines to be compared) 

 

 FILE EcoSYSTEM FRAMEWORK TOOLKIT DB-ENGINE 

Name Apache Hadoop (+Spatial Hadoop) Apache Spark (+GeoSpark) Akka (+GeoTrellis) 

Google Cloud BigTable 

(*commercial) 

Short Description 

allows distributed processing. 

Spatial Hadoop is MapReduce 

framework for spatial data 

fast and general engine for 

large-scale data processing 

for building highly concurrent, 

distributed, and resilient 

message-driven applications on 

(JVM)  

managing structured data that 

is designed to scale to a very 

large size 

Supported GIS data type 

Input/Output Point, Rectangle and Polygon 

Point, Rectangle, and 

Polygon 

no GIS alone, together with 

GeoTrellis Raster 
together with GeoMesa, 
Google’s geo related apps. 

GIS case studies/projects 

Calvalus system, several projects 

GIS functions,mainly operating 

with vector data 

Research projects writing 

GIS functions on the top of 

Spark 

Clarus, GeoTrellis, see more with 

GeoTrellis below listed. 

nearly all of Google’s largest 

applications, GeoQlick 

Supported GIS processing (or 

executable languages) 

no GIS alone, together with 

Spatial Hadoop or other modules 

vector processing is supported, or 

other predefined solution 

Python, R, (java) no GIS 

alone, together with 

developed services capable 

predefined GIS functions, 

no GIS alone, together with 

GeoTrellis, Java - 

Operates over HDFS YES 

Database Model File Server  RDD Actor Based Model Wide column store (NoSQL) 

Execution of existing 

processes written in any 

language Java Java, Scala, Python, R. 

.NET Framework, Mono via the 

Akka.NET project. 
 
Java, Go 

Data Management flexibility Not supported yes, utilizing Spark Core Advanced Scheduling Sharding 

Scalability potential Scalable Highly scalable Scalable Incredible scalable 

Programming paradigm 

(MapReduce) Supported Shared memory 

Sharding raster data across the 

cluster Supported 

Supported OS /Platform 

dependencies Linux, Unix Linux, OS X, Windows 

cross-platform (Java Virtual 

Machine) hosted 

Development programming 

language Java, C, shell scripts, Pigeon Scala,  Developed in Scala and Java Java, Python, Go, Ruby 

Table 2. Technical comparison matrix 

 

In the following table we have collected the most popular 

frameworks supporting distributed computing with GIS data. 

We wanted to investigate the capabilities of each framework,  

 

which data types are supported or suitable for that particular 

framework, what kind of infrastructure are they supporting, 

what kind of data storage are they using (Table 3).  
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 DB-ENGINE FRAMEWORK DB-ENGINE DB-ENGINE DB-ENGINE TOOLKIT LIBRARY DB-ENGINE 

Name 

Apache 

HBASE GeoTrellis SCiDB Rasdaman Apache Accumulo GeoMesa GeoWave 

Oracle Spatial and Graph 

Georaster 

Short Description 

open-source, 

distributed, 

versioned, 

modelled 

after Google's 

Bigtable 

Scala framework 

for fast, parallel 

processing of 

geospatial data. 

Array database 

designed for 

multidimensiona

l data 

management 

and analytics 

Allows storing 

and querying 

massive 

multi-

dimensional 

arrays 

based on Google’s 

BigTable design 

and is built on top 

of Apache Hadoop, 

Zookeeper, and 

Thrift. 

open-source, 

distributed, spatio-

temporal database 

built on cloud data 

storage systems. 

highly parallelized 

indexing strategy 

library for 

storage, index, 

and search of 

multidimensiona

l data 

delivers advanced spatial 

and graph analytic 

capabilities to supported Big 

Data platforms 

Supported GIS 

data type Input 

/output 

no GIS alone 

together with 

predefined 

programs 

vector, point 

supports vector, 

raster formats and 

services ,also 

supports raster 

data processing on 

Apache Spark 

together with 

GeoTools 

Using GDAL to 

convert GIS data 

in a format of 

SciDB 

together with 

Petascope 

supports 

raster formats 

and OGC 

standards, to 

import GDAL 

is used no GIS alone 

vector, raster 

together with Spark, 

Geoserver, GeoTools 

and GDAL 

vector, raster, 

grid together 

with Spark, 

Geoserver, 

GeoTools and 

GDAL 

vector, raster, point cloud, 
TIN, OGC web services, RDF 
semantic graph, 
independent from any file 
formats 

GIS Case 

studies/projects 

research 

papers 

mention 

applications 

developed on 

the top of 

HBase for GIS 

Model My 

watershed, City of 

Asheville, Priority 

Places, Visualizing 

Emancipation, sea 

level rise,urban 

forest 

several studies 

(mainly using 

raster 

processing) 

using R, IDL, 

Scala, R 

Earthserver, 

PublicaMundi 

Project 

together with 

geoMesa and 

GeoWave 

some example 

studies 

Accurate 

Geology 

Reproduces 

Observations, 

Microsoft 

Research 

GeoLife page 

wide use cases and project 

from situational analysis, 

cloud computing, 

cartography, network and 3D 

applications, etc. 

Supported GIS 

processing 

(executable 

languages) 

predefined gis 

actions 

developed by 

third party 

predefined GIS 

actions Map 

Algebra like, local, 

focal,zonal,global,s

tatistical 

operations 

predefined gis 

actions 

developed by 

third party 

python, R, 

QGIS, and 

ESRI (SQL-

style query 

language) 

predefined gis 

actions developed 

by third party 

predefined gis 

actions 

predefined gis 

actions 

Groovy-based console to 

execute Java and Tinkerpop 

Gremlin APIs complex gis 

operations. 

OPERATES OVER 

HDFS YES YES NO NO YES NO YES YES 

Database Model 

Wide-column 

store based 

concepts of 

BigTable 

RDD (Resilient 

Distributed 

Dataset) 

ARRAY 

DATABASE 

(Multivalue 

DBMS) 

multi-

dimensional 

array db 

key-value store, 

Wide column store 

Key-value store, (on 

Accumolo, KafkaDB) 

Key-value store, 

(on Accumolo) 

enterprise grid computing 

technology 

Execution of 

existing processes 

written in any 

language 

C,C#,C++,Gro

ovy,Java,PHP,

Python,Scala pre-programmed 

R, Python, 

MatLab,IDL, C++ 

and SAS style 

R, rasql, GDAL 

(image 

processing 

library) Java R 

pre-

programmed Groovy and Python 

Data Management 

flexibility  

Immediate 

Consistency no information not supported not supported no information 

RDD transformations, 

Filters, Aggregations, 

Distributed Raster 

Computation 

Hadoop 

MapReduce for 

bulk 

computation 

Data security, replication, 

partitioning, bulk load 

utilities are readily available. 

Scalability 

potential 

scalable, 

default default yes no yes yes yes 

GeoRaster object can flexibly 

have one devoted RDT table 

to improve scalability 

Programming 

paradigm 

(MapReduce) Sharding 

 Sharding raster 

data across the 

cluster 

Array (shared 

nothing 

architecture) 

Array shared 

nothing and 

shared-disk  

highly scalable 

structured store 

based on Google’s 

BigTable 

Using MapReduce, 

Accumulo, Spark, 

Storm, Kafka, 

Cassandra 

Using 

MapReduce, 

Accumulo, 

Spark, Kafka 

Parallel processing 
capabilities are added into 
mosaicking, pyramiding and 

all raster algebra functions 

Supported 

OS/Platform 

dependencies Linux, Unix 

Linux, Mac OSX, 

NSF, Windows with 

rsync 

Ubuntu 12.04, 

CentOS 6, Red 

Hat Enterprise 

Linux (RHEL) 6 

Linux SuSE 9.1 

/ 9.2 

Linux,Centos 6.6 

Java7Hadoop 

2.2.0,.ZooKeeper 

3.4.x  

Accumulo,Hadoop, 

Zookeeper, or Kafka, 

Java JRE or JDK, 

Apache Maven,on 

Linux Linux Linux, Windows 

Development 

language Java Scala AQL C++ Java Scala Scala 

Tinkerpop Blueprints and 

Rexter REST APIs, and Java 

graph APIs 

Structure 

(Modular, 

Components) 

Bigtable-like 

capabilities on 

top of 

Hadoop and 

HDFS. Modular no moduls 

mixed 

applying OGC 

standards 

COMPONENTS: 

TabletServers, one 

Garbage Collector 

process, one 

Master server and 

many Clients. Modular Modular Components 

Table 3. Technical details of existing solutions on distributed GIS processing 
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5 DESIGN AND IMPLEMENTATION DETAILS 

 
IQLib has been initiated by three project partners in IQmulus 

project, namely FÖMI-Hungary, IMATI-Italy and IGN-

France. During the first two years of development, we have 

experienced that some of our services are not compatible with 

Hadoop infrastructure including HDFS file system. While 

most of current processing frameworks follow the same 

methodology as Hadoop and utilize the same data storage 

concept as HDFS. One of the biggest disadvantage from 

processing point of view was the data partitioning mechanism 

performed by HDFS file system and distributed processing 

programming model. In most cases we would like to have full 

control over our data partitioning and distribution 

mechanism. Also most of our services cannot be altered to 

fulfil MapReduce programming model, due to the nature and 

logic behind those services. In this paper we are focusing on 

the data distribution Tiling and Stitching and Data Catalogue 

components of the conceptual framework called IQLib. On 

the Fig 2 the architectural concept is described our future 

intention is to create a framework for distributed processing 

of R, Python or any other language written geospatial 

analysis. 

 

 

 
Fig.2 High level concept of IQLib processing framework 

 

5.1 Introduction of IQLib 

 

At the beginning we have created a feasibility study on 

technological and conceptual aspects. The outcome of this 

was presented in our previous paper, where we have 

described the architecture of this demo application as well as 

processing results on calculating NDVI values using Spot5 

satellite images for Hungary. The processing results seemed 

really convincing, so we have started to design and 

implement IQLib framework. This framework should be able 

store metadata information on our dataset, tracking 

partitioned data, their location, partitioning method. It should 

distribute data to processing nodes as well as deploying 

existing processing services on processing nodes and execute 

them in parallel. 

As a result IQLib has three major modules; each module is 

responsible for a major step in GIS data processing. The first 

module is called Data Catalogue, second module is Tiling 

and Stitching, the last module is called Processing.  

Data catalogue module is responsible for storing metadata 

corresponding to survey areas. A survey area contains all the 

dataset that are logically related to inspection area, regardless 

of their data format and purpose of usage. We would like to 

store all the available, known and useful information on those 

data for processing.  

Tiling and Stitching module does exactly what its name 

defines. Usually tiling algorithms are performed on raw 

datasets before running a specific processing service on given 

data.  Stitching usually runs after processing services have 

successfully done their job. Tiling algorithms usually process 

raw data, after these tiled data are distributed across 

processing nodes by data distribution component. Metadata 

of tiled dataset are registered into Data Catalogue. With this 

step we always know the parents of tiled data. Distributed 

processing module is responsible for running processing 

services on tiled dataset. 

 
 

5.2 Data Catalogue  
 

Based on user and developer needs, we have collected those 

requirements and created a data model specification 

document.  

 

The first version of this documentation contains the 

specification of data structures on how we would like to store 

our metadata accessible by both users and processing 

services. In the beginning we intended to use Geonetwork 

have as a metadata storage, however as we progressed on 

defining and refining our data model, it became clear for us 

that we have to implement our own metadata store. 

 
5.3 Data model 

 
In order to organize our data, we have gathered the most 

common use cases on data processing along with existing 

Tiling algorithms, as a result the following terms: “Survey 

Area”, “Dataset” and “Data file” have been introduced. A 

Survey Area has at least one dataset, depending on 

processing requests. Each dataset has at least one data file, 

which may vary from size to format. 

Depending on the type and content of each data files, each 

processing service accesses them with different strategies, 

these strategies are called data access patterns (DAP). Data 

access patterns are based on local (L), global (G), focal (F), 

zonal (Z) and the combination of zonal and focal (ZF) - 

applied as a combination of topological and coordinate 

neighbourhood operations. Along with data access patterns, 

we have also categorized data into three groups: Meshes (M), 

Point clouds (P) and Raster data (R). Table shows the 

relationship between data access patterns and file groups: 
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DAP File Type Description 

L MPR each sample is processed independently 

F M requires access to the vertex attributes within a given 

edge-distance N 

F R squared centred window in raster for e.g. 

convolutions 

Z P requires all data within a given 1D range around one 

coordinate of the output vertex 

Z MPR requires all data within a given a more general range 

around the output vertex, (e.g., 1m spherical 

neighbourhood) or requires all vertices within an 

identical attribute. 

G MPR Take the whole file and process it. 

Table 4. Relationship between data access patterns and file 

groups 

 
We also store the status of each data file, whether they are 

“raw”, “processed”, “tiled” or “buffer-zone”. Tiled and buffer 

zones will be explained in the next section. 

 
5.4 Technical solution 

 
From technical point of view a data catalogue should be 

platform independent and available for most clients. The 

most convenient solution was to implement a web application 

which provides RESTFUL web service endpoints, where 

client applications may connect to and utilize its 

functionalities. The web application itself should be as simple 

as possible, meaning that it should be easy to install, maintain 

and use.  

After examining mainstream programming languages and 

corresponding frameworks, we have decided to use Java 

programming language and Spring MVC framework to 

implement the Data catalogue module. As for data storage we 

have considered using either graph database or traditional 

relational databases. Data catalogue will migrate from 

relational database to graph database when Tiling and 

Stitching module is completed, until then we are using 

PostgreSQL as data storage media (Fig 3.). 

The web application itself can be deployed on almost any 

Java application servers. For simplicity and testing purposes, 

we recommend the usage of Tomcat as a default application 

server. 

 

 
Fig.3. Architecture of Data Catalogue module 

 
5.5 Tiling & stitching 

 
Tiling and stitching is a composite module. In order to 

distributed process a large dataset, processing services 

require their input data to be tiled before processing. We must 

also think of use cases where intermediate or end results 

should be stitched together. This step is done by stiching 

algorithms; they are closely related to tiling algorithm.  That 

is why tiling and stitching as a module should prepare and 

distribute data for processing services. Based on preliminary 

user’s and processing service developer’s requirements we 

have come up with the following data structures to model 

tiling aspects.  

First of all we would like to define the data structure for a 

Tile. A Tile is a single read-write connected area of the 

original dataset. But from processing aspects a set of Tiles 

does not contain all the necessary information on its 

neighbours, surrounding areas. Therefore we have defined the 

data structure for Buffer zones. A buffer zone is a collection 

of data around a tile, which can be used in read-only mode by 

a processing algorithm to edit/process the tile (under 

processing) related to this buffer zone. A buffer zone can be 

empty; when processing algorithm does not require any 

surrounding data around the Tile (e.g. the service algorithm 

has a local data access pattern). At last, A tile and a buffer 

zone together creates a logical entity, called Patch. A Patch 

may contain two components: a Tile and related Buffer Zone 

depending on Tiling algorithm. As defined in Buffer Zone, 

there are some cases where we do not need Buffer Zones; 

therefore a "Simple" Patch has a Tile, where a “Compound” 

Patch contains a Tile and a Buffer Zone. 

A tiling algorithm creates Tiles and buffer zones and 

corresponding Patches. IQLib tiling and stitching module 

should provide a set of predefined tiling algorithms 

developed by IQmulus project partners for service 

developers. As well as supporting third party developers to 

join and add their own tiling algorithms to the community. 

After original dataset have been tiled, newly created Patches 

should be registered into Data catalogue module and 

distributed among processing nodes. Currently Tiling and 

Stitching module only support distribution of data via SMB 

and SFTP protocols. 

 

5.6 Technical Solution 

 

Tiling and stitching module should also be platform 

independent like the Data catalogue module. Our intension 

was not to setup any programming language limitations on 

Tiling and stitching algorithm developers, so that they could 

use the language they are familiar with (Fig 4.). 

 

 
Fig.4 Architecture of Tiling and Stitching module 
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5.7 Processing 

 

Partners within IQmulus project, have existing services that 

they would like to run on a distributed system with Tiled 

dataset. Currently Processing module is still under design 

phase with the following requirements: all services should be 

easily deployable and maintainable on processing nodes, each 

processing node should be able to inform users that currently 

which services are available and running, logging and 

notification system should be developed for both error and 

status report (Fig 5.). 

 

 

 
Fig.5 Architecture of Processing module 

 
 

6 CONCLUSIONS AND FUTURE WORK 

 
IQLib documentation on data model and Data catalogue is 

available on Github at https://github.com/posseidon/iqlib. We 

have decided not to publish Data catalogue module’s source 

code until it has been reviewed and finalized by IQmulus 

project partners. However, the RESTFUL API is available on 

Heroku cloud infrastructure for all project partners to test and 

give feedbacks and suggestions at http://iqlib.herokuapp.com.  

In our future work we are going to focus on further 

development of the framework development along with the 

processing executables and experimental benchmarking of 

processing time. 
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