
A NEW INITIATIVE FOR TILING, STITCHING AND PROCESSING GEOSPATIAL BIG DATA IN

DISTRIBUTED COMPUTING ENVIRONMENTS

A. Olasz a*, B. Nguyen Thai b, D. Kristóf a

a Department of Geoinformation, Institute of Geodesy, Cartography and Remote Sensing (FÖMI),5. Bosnyák sqr. Budapest, 1149

(olasz.angela, kristof.daniel)@fomi.hu
b Department of Cartography and Geoinformatics, Eötvös Loránd University (ELTE), 1/A Pázmány Péter sétány, Budapest, 1117

Hungary, ntb@inf.elte.hu

Commission ICWG IV/II

KEYWORDS: Distributed computing, GIS processing, raster data tiling, data assimilation, remote sensing data analysis, geospatial

big data, spatial big data

ABSTRACT

Within recent years, several new approaches and solutions for Big Data processing have been developed. The Geospatial world is

still facing the lack of well-established distributed processing solutions tailored to the amount and heterogeneity of geodata,

especially when fast data processing is a must. The goal of such systems is to improve processing time by distributing data

transparently across processing (and/or storage) nodes. These types of methodology are based on the concept of divide and conquer.

Nevertheless, in the context of geospatial processing, most of the distributed computing frameworks have important limitations

regarding both data distribution and data partitioning methods. Moreover, flexibility and expendability for handling various data

types (often in binary formats) are also strongly required.

This paper presents a concept for tiling, stitching and processing of big geospatial data. The system is based on the IQLib concept

(https://github.com/posseidon/IQLib/) developed in the frame of the IQmulus EU FP7 research and development project

(http://www.iqmulus.eu). The data distribution framework has no limitations on programming language environment and can execute

scripts (and workflows) written in different development frameworks (e.g. Python, R or C#). It is capable of processing raster, vector

and point cloud data. The above-mentioned prototype is presented through a case study dealing with country-wide processing of

raster imagery. Further investigations on algorithmic and implementation details are in focus for the near future.

1 INTRODUCTION

Our goal is to find a solution for Geoprocessing of big

geospatial data in a distributed ecosystem providing an

environment to run algorithms, services, processing modules

without any limitations on implementation programming

language as well as data partitioning strategies and

distribution among computational nodes. As a first step we

would like to focus on (i) data decomposition and (ii)

distributed processing. The challenges associated with each

focus area, related methodology and first results are analyzed

and discussed in the paper.

2 PROBLEM DESCRIPTION

2.1 Geospatial Big Data

Reliable analysis of the geospatial data is extremely

important base for being able to support better decision

making with location-aware data even in our changing

World. The challenges for handling geospatial big data

include capture, storage, search, sharing, transfer, analysis,

and visualization (Jewell et al., 2014). Furthermore, with

newly adapted data management requirements and initiatives,

even more open data will be available on the web which need

to be handled, the latent information be shared and extracted

knowledge applied in the level of decision making as well

(Wu and Beng, 2014.). Big data, open data and open

government has joint interest in location and in many

challenges considered in geospatial aspect will soon benefit

from it (Jewell et al., 2014). We consider GI analysis as a

principal capability in a way to transform information to

knowledge.

The progress and innovation is no longer hindered by the

ability to collect data. The most important issue is how we

exploit these geospatial big data (Lee and Kang, 2015). We

consider that, we are facing the paradigm shift from data-

driven research to knowledge-driven scientific method in Big

Data which was considered as a challenge by R. Kitchin in

2014. In our previous work (Nguyen Thai and Olasz, 2015)

the Big Data concept and the well-known four dimensions:

Volume, Velocity, Variety (originally Laney came up with

this three dimensions in 2001) and Veracity have been

discussed taking into account of geospatial considerations

and characteristics. Additional dimensions have been

continuously appearing to describe better the concept of the

workflow such as: Value, Validity, Visibility, etc. (Li et al,

2015).

Moreover, we have concluded a fifth “V” to Geospatial Big

Data as Visualization, because it has a great importance to

communicate the desired information in Geographical

Information Science from the very beginning. From geo-

location information transform into knowledge going through

the pipeline of Data Life Cycle in every phase of conversion

(collect, aggregate, analyse, return as knowledge, share)

Visualization is fundamental (Nguyen Thai Binh and Olasz,

2015). Beyond, we consider that in Big Data environment

Visualization plays an important role in (1) geospatial data

processing (due to volume and variety) that help analysts to

identify trends, relations, correlations and patterns in an

efficient way; (2) facilitate broadcasting geo-information to

citizens (and decision makers) employing interactive and eye

tracking approaches. According to our conclusion

Visualization is a definite geospatial component of Big Data.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-4-111-2016

111

2.2 Defining Geospatial Big Data

Spatial data (also known as geospatial data, geo-information,

geodata, etc) have many definitions depending from the

background of the author. All of them emphasize the

geographic location of the phenomena to be described as

basic criteria. The nature of the digital representation of the

continuous space can be grouped in 4 or 5 type. Traditionally

we consider two type of geospatial data vector and raster

(Elek, 2006) owing to the development of information

technology nowadays we can have higher abstraction type of

data such as point clouds, graph networks. An additional

particular kind of location-aware data is also examined by

analysts; social media-like data which requires a particular

approach to collect and process as well. Along with Big Data

theory geospatial big data is defined as volume, variety and

update frequency rate that exceed the capability of spatial

computing technology (Lee and Kang, 2015, Li et al., 2015,

Kambatla et al., 2014). In Table 1. we have collected the

main characteristics of geospatial big data for each type of

formats such as: representation formats, GIS operations,

volume, velocity, variety and visualization aspects. To have a

better understanding on what are the main attributes of

geospatial data because it is hard to delineate the margin

starting to “exceed the capability of spatial computing

technology”. To estimate the size of the processable amount

of data are use-case specific, there are some good examples

(Evans et al., 2014) where the authors tried to identify the

Geospatial Data and Geospatial Big Data differences.

Data type Formats GIS operations Volume Velocity Variety Visualization

Vector
point, line, polygon

(multi)

Overlapping vector

geoprocessing

available amount of vector data

(for instance nation-wide

cadastre, or land cover,roads,

waterways, utility network, etc)

real time

monitoring, and

rapid response is

emerging

consider in a

GIS

processing

several types

of previously

mentioned

data need to

be combined

to extract

the relevant

information

thanks to OGC standards

and web-gis platforms non

researchers are able to use

GIS data for many different

purposes

3D

representation

point cloud,TIN (or

Triangular mesh)

3D modeling, urban

modeling,simulation,flight

from above camera view,

visibility operations, semi-

automatic point cloud

feature detection,

classification, terrestrial

laser scanning, BIM

available amount of point cloud

data (or TIN) for the creation of

DSM, DTM modelling, feature

extraction and simulation

requires huge computational

capacity

time sensitive 3D

data requires rapid

processing (disaster

management and

simulation)

3D view (perspective)

together with thematic

content with reduced

information are essential

to spreading information

for different level of end-

users

Raster grid

Local, Focal, Zonal (Global)

Map Algebra processing,

image analysis

available (free) series terrestrial,

aerial and satellite (multispectral

and hyperspectral) imagery

(airplane, UAV), earth observation

data requires huge computational

capacity using raster image

processing methods

real time spatio

temporal earth

observation data

processing is need

more than ever

(independently

from the extent of

the processing)

to deliver results of earth

observation monitoring

and processing novel

solution in visualization

also needed to transform

information human

readable

Network
graph (nodes,

edges), line

routing, network analysis,

allocation (Geo-business)

trillions of edges, nodes for graph

processing available from location

based networks (also from social

media) originally big data concept

made for text-based and graph-

like structures

real time

monitoring of

moving objects,

transportation

decision support is

needed

in network analysis and

routing visualization

techniques are

indispensable to serve it

real time

Geolocation-
aware media

text:post, tweets,
web-logs,check-ins,
media: GPS tracks
from smart
phones,UAV
video,geoPDF
profiles: name,
geocodes,

disaster management
decision support, crowd
sourcing, human
geography, sociology,
crime mapping uses
geoprocessing, GEOINT
techniques

data mining, geostatistical
techniques and predictive
modelling are traditionally
considered as big data processing
methods which requires
computing capacity even on web
content analysis (text based
media files)

real time social
media and
information flow is
faster than ever,
geospatial sector is
already taking part

for location-based social
media visualization is the
basis which exceed the
traditional barriers of GIS
sector, novel solutions are
rising every day to collect
and analysing geolocated
web content.

Table 1. Geospatial

Big Data characteristics

According to the previously mentioned definitions and

characteristics of Big Data and Geospatial Big Data

represented in the table are reasonable. We do not intend to

identify other characteristics of Big Data, because they are

not closely related to Geoprocessing topic. In order to process

Big Data distributed computing environment and techniques

have been introduced and applied to handle time-consuming

operations. In our related work feasibility aspects were

targeted together with a conceptual framework for

benchmarking experimental processing.

3 PREVIOUS AND RELATED WORKS

3.1 Distributed computing

Distributed computing environment is a software system

where computational and storage components are on

networked computers ,communicating and coordinate their

actions by passing messages through “network socket”

endpoints within the network. Components interact with each

other to achieve a common goal. Three significant

characteristics of distributed systems are: concurrency of

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-4-111-2016

112

components, lack of a global clock, and independent failure

of components. Plainly, a distributed system is a collection of

computers within the same network, working together as one

larger computer. Massive computational power and storage

capacity have been gained due to this architecture. We must

note that processes’ running in a distributed system does not

share memory with each other, like parallel computing

systems. Processes in distributed system communicate

through message queues. Two architectural models are

suggested for distributed computing systems:

● Client-Server model: where clients initiate

communication or processing job(s) to the server,

which distribute that request(s) to all processing

and storage units if necessary to do the real work

and returning results to client.

● Peer-to-Peer model: where all units involved in

distributed system are the client and server at the

same time, without any distinction between client

or server processes.

The technology of used in distributed computing of

geospatial data is similar to any other process of distributed

computing. Several solutions are introduced to accelerate

geoprocessing usually time consuming methods. Along with

the available amount of data together with its particular

procedures to derive information geographical information

systems constantly invokes novel solutions from the IT

sector.

3.2 Distributed geospatial computing

The Encyclopaedia of GIS (Phil Yang 2008,) defines

distributed geospatial computing (DGC) as “geospatial

computing that resides on multiple computers connected

through computer networks”. So “geospatial computing

communicates through wrapping applications, such as web

server and web browser”. To translate it, distributed

geospatial computing is when geoprocessing is done within a

distributed computing environment. In the Handbook of

Geoinformatics (2009) Yu et al. focus on the multi-agent

system with ontology to perform distributed processing of

geospatial data. The distributed processing of geospatial data

is continuously evolving together with the evaluation of

computer networks. In this study due to limited length, the

introduction of the historical evolution of DGC is not in

purpose. A single milestone we would like to emphasize from

the evaluation progress is when Google Earth was issued in

2004; by reason of it caused a life changing effect on the

citizens’ everyday life and made popular geospatial

applications. Furthermore, until nowadays Google’s solutions

are leading in the process of massive dataset along with the

development of easy-to-use interface (e.g., Google BigTable)

and play an important role in the open source community

developments. Consequently, distributed systems supports

heterogeneous network and infrastructural background, cloud

solutions have been developed to exploit the advantages of

distributed systems and made available services for

geospatial computing as well.

3.3 Cloud computing

Cloud computing involves deploying groups of remote

servers and software networks that allow different kinds of

data sources be uploaded for real time processing to generate

computing results without the need to store processed data on

the cloud, while focusing on maximizing the effectiveness of

the shared resources. As we see cloud computing system has

evolved from distributed systems (Bashar, 2013).

Plainly, a cloud is aiming for scalability and flexibility

providing computational and storage power to customers and

users (Mei et al., 2008). Main components are:

● Clients (any end device having Internet connection

can be a client)

● Data-center (server farm)

● Distributed servers

The key factor in cloud computing is the power of

virtualization by creating virtual machines on-demand. The

model of the cloud computing allows access to handy

resources like: storage, applications, computing capacity and

services in an efficient way (Jajodia et al., 2014). Even some

data provider and cloud infrastructure provider cooperated

and incorporate advanced services with available public data

sets (for example over 85 TB of Landsat 8 satellite imagery,

or NASA NEX images of the Earth’s surface available on

Amazon AWS).

3.3.1 Cloud computing model

Often cloud computing model demonstrated as a stack of

computing services. At the bottom of the stack Infrastructure-

as-a-Service (IaaS) take place, symbolizing the basis of the

system. (Sosinsky, 2011). In the middle of the stack the

Platform-as-a-Service (PaaS) sits providing the tools

designed to deploying applications dynamic and powerful.

On the top of the stack Software-as-a-Service (SaaS) facing

the customers with the software and Application

Programming Interfaces (APIs).

Infrastructure-as-a-Service (IaaS)

The user accesses the storage, network and basic computing

resources, can deploy and execute particular programs, the

operating system. The user is free from the management of

the infrastructure background but has right to configure the

operating systems, storage, deployed applications, and

perhaps narrow control of select networking components

(e.g., host firewalls). The user’s operating system together

with applications can be migrated to the cloud and substitute

the data center of the company.

Platform-as-a-Service (PaaS)

The user can install or develop own web software on the

virtualized environment that are created using programming

languages and tools supported by the provider. The user

doesn’t have right to make changes on operating system,

storage, network and servers only to the deployed apps along

maybe with application hosting configurations.

Software-as-a-Service (SaaS)

The users can use the predefined applications on the cloud

accessible with heterogeneous devices through web browser.

The user can only configure the software but the underlying

solutions are hidden.

Data-as-a-Service (DaaS) and Data-as-a-Product

(DaaP)

The users have access to dataset (public or private made

available on the cloud) and probably the software

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-4-111-2016

113

environment to process the data as a service on the top of the

hidden architecture. The user not allowed making

infrastructural, network or storage parameterisation. Within

such centralized solution the data management (frequent

update, cleaning, conversions) are served by the provider

(Olson, 2009). Data-as-a-Product concept defined by Huang

(2015) is a “small sized summary of the original data and

can directly answer user’s queries”.

In the next section we are introducing a comparison matrix

for current technologies from the Geospatial aspects of the

usage. In the Table 2. our intention was to collect aspect from

the advanced GIS users who would use the provided services

on their own data without programming knowledge. Also

some case studies were collected as instance to harvest

information on practical realization. Also wanted to gather

information on data management flexibility in

decomposition, association and distribution and control of the

data distribution among nodes but it was tough to dig deep in

implementation details of each tool. We admit that these

environments are not only expensive to build, but they

require highly-trained DevOps Engineers to maintain them

and grow them as the data accumulates. At the popular

ranking site of DB-Engines we can derive information on the

evolution of popularity calculated with a complex method of

scoring (Fig.1.). Method of calculating the scores of the DB-

Engines Ranking: based on the popularity of the system

(number of mentions of the system on website, searches in

Google Trends, number of interested users on the Stack

Overflow and DBA Stack Exchange, number of offers on the

leading job search engines Indeed and Simply Hired, Number

of profiles in professional networks, in which the system is

mentioned LinkedIn, number of Twitter tweets, in which the

system is mentioned (db-engines.com, 2016). The most

popular database engine which is highly excels is HBase

from those 8 engine, the second is SPARK SQL and

Accumolo right away following it. Rasdaman is lacking

behind since the publication but the trend is rising.

Fig.1. Comparison of the DB engines according to DB-

Engines Ranking from April 2016 (1.HBase, 2. Spark, 3.

Accumulo, 4. Oracle NoSQL, 5. SciDB, 6. Google Cloud

BigTable, 7. Rasdaman (Hadoop, GeoTrellis, Akka,

Geowave, GeoMesa are not DB Engines to be compared)

 FILE EcoSYSTEM FRAMEWORK TOOLKIT DB-ENGINE

Name Apache Hadoop (+Spatial Hadoop) Apache Spark (+GeoSpark) Akka (+GeoTrellis)

Google Cloud BigTable

(*commercial)

Short Description

allows distributed processing.

Spatial Hadoop is MapReduce

framework for spatial data

fast and general engine for

large-scale data processing

for building highly concurrent,

distributed, and resilient

message-driven applications on

(JVM)

managing structured data that

is designed to scale to a very

large size

Supported GIS data type

Input/Output Point, Rectangle and Polygon

Point, Rectangle, and

Polygon

no GIS alone, together with

GeoTrellis Raster
together with GeoMesa,
Google’s geo related apps.

GIS case studies/projects

Calvalus system, several projects

GIS functions,mainly operating

with vector data

Research projects writing

GIS functions on the top of

Spark

Clarus, GeoTrellis, see more with

GeoTrellis below listed.

nearly all of Google’s largest

applications, GeoQlick

Supported GIS processing (or

executable languages)

no GIS alone, together with

Spatial Hadoop or other modules

vector processing is supported, or

other predefined solution

Python, R, (java) no GIS

alone, together with

developed services capable

predefined GIS functions,

no GIS alone, together with

GeoTrellis, Java -

Operates over HDFS YES

Database Model File Server RDD Actor Based Model Wide column store (NoSQL)

Execution of existing

processes written in any

language Java Java, Scala, Python, R.

.NET Framework, Mono via the

Akka.NET project.

Java, Go

Data Management flexibility Not supported yes, utilizing Spark Core Advanced Scheduling Sharding

Scalability potential Scalable Highly scalable Scalable Incredible scalable

Programming paradigm

(MapReduce) Supported Shared memory

Sharding raster data across the

cluster Supported

Supported OS /Platform

dependencies Linux, Unix Linux, OS X, Windows

cross-platform (Java Virtual

Machine) hosted

Development programming

language Java, C, shell scripts, Pigeon Scala, Developed in Scala and Java Java, Python, Go, Ruby

Table 2. Technical comparison matrix

In the following table we have collected the most popular

frameworks supporting distributed computing with GIS data.

We wanted to investigate the capabilities of each framework,

which data types are supported or suitable for that particular

framework, what kind of infrastructure are they supporting,

what kind of data storage are they using (Table 3).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-4-111-2016

114

 DB-ENGINE FRAMEWORK DB-ENGINE DB-ENGINE DB-ENGINE TOOLKIT LIBRARY DB-ENGINE

Name

Apache

HBASE GeoTrellis SCiDB Rasdaman Apache Accumulo GeoMesa GeoWave

Oracle Spatial and Graph

Georaster

Short Description

open-source,

distributed,

versioned,

modelled

after Google's

Bigtable

Scala framework

for fast, parallel

processing of

geospatial data.

Array database

designed for

multidimensiona

l data

management

and analytics

Allows storing

and querying

massive

multi-

dimensional

arrays

based on Google’s

BigTable design

and is built on top

of Apache Hadoop,

Zookeeper, and

Thrift.

open-source,

distributed, spatio-

temporal database

built on cloud data

storage systems.

highly parallelized

indexing strategy

library for

storage, index,

and search of

multidimensiona

l data

delivers advanced spatial

and graph analytic

capabilities to supported Big

Data platforms

Supported GIS

data type Input

/output

no GIS alone

together with

predefined

programs

vector, point

supports vector,

raster formats and

services ,also

supports raster

data processing on

Apache Spark

together with

GeoTools

Using GDAL to

convert GIS data

in a format of

SciDB

together with

Petascope

supports

raster formats

and OGC

standards, to

import GDAL

is used no GIS alone

vector, raster

together with Spark,

Geoserver, GeoTools

and GDAL

vector, raster,

grid together

with Spark,

Geoserver,

GeoTools and

GDAL

vector, raster, point cloud,
TIN, OGC web services, RDF
semantic graph,
independent from any file
formats

GIS Case

studies/projects

research

papers

mention

applications

developed on

the top of

HBase for GIS

Model My

watershed, City of

Asheville, Priority

Places, Visualizing

Emancipation, sea

level rise,urban

forest

several studies

(mainly using

raster

processing)

using R, IDL,

Scala, R

Earthserver,

PublicaMundi

Project

together with

geoMesa and

GeoWave

some example

studies

Accurate

Geology

Reproduces

Observations,

Microsoft

Research

GeoLife page

wide use cases and project

from situational analysis,

cloud computing,

cartography, network and 3D

applications, etc.

Supported GIS

processing

(executable

languages)

predefined gis

actions

developed by

third party

predefined GIS

actions Map

Algebra like, local,

focal,zonal,global,s

tatistical

operations

predefined gis

actions

developed by

third party

python, R,

QGIS, and

ESRI (SQL-

style query

language)

predefined gis

actions developed

by third party

predefined gis

actions

predefined gis

actions

Groovy-based console to

execute Java and Tinkerpop

Gremlin APIs complex gis

operations.

OPERATES OVER

HDFS YES YES NO NO YES NO YES YES

Database Model

Wide-column

store based

concepts of

BigTable

RDD (Resilient

Distributed

Dataset)

ARRAY

DATABASE

(Multivalue

DBMS)

multi-

dimensional

array db

key-value store,

Wide column store

Key-value store, (on

Accumolo, KafkaDB)

Key-value store,

(on Accumolo)

enterprise grid computing

technology

Execution of

existing processes

written in any

language

C,C#,C++,Gro

ovy,Java,PHP,

Python,Scala pre-programmed

R, Python,

MatLab,IDL, C++

and SAS style

R, rasql, GDAL

(image

processing

library) Java R

pre-

programmed Groovy and Python

Data Management

flexibility

Immediate

Consistency no information not supported not supported no information

RDD transformations,

Filters, Aggregations,

Distributed Raster

Computation

Hadoop

MapReduce for

bulk

computation

Data security, replication,

partitioning, bulk load

utilities are readily available.

Scalability

potential

scalable,

default default yes no yes yes yes

GeoRaster object can flexibly

have one devoted RDT table

to improve scalability

Programming

paradigm

(MapReduce) Sharding

 Sharding raster

data across the

cluster

Array (shared

nothing

architecture)

Array shared

nothing and

shared-disk

highly scalable

structured store

based on Google’s

BigTable

Using MapReduce,

Accumulo, Spark,

Storm, Kafka,

Cassandra

Using

MapReduce,

Accumulo,

Spark, Kafka

Parallel processing
capabilities are added into
mosaicking, pyramiding and

all raster algebra functions

Supported

OS/Platform

dependencies Linux, Unix

Linux, Mac OSX,

NSF, Windows with

rsync

Ubuntu 12.04,

CentOS 6, Red

Hat Enterprise

Linux (RHEL) 6

Linux SuSE 9.1

/ 9.2

Linux,Centos 6.6

Java7Hadoop

2.2.0,.ZooKeeper

3.4.x

Accumulo,Hadoop,

Zookeeper, or Kafka,

Java JRE or JDK,

Apache Maven,on

Linux Linux Linux, Windows

Development

language Java Scala AQL C++ Java Scala Scala

Tinkerpop Blueprints and

Rexter REST APIs, and Java

graph APIs

Structure

(Modular,

Components)

Bigtable-like

capabilities on

top of

Hadoop and

HDFS. Modular no moduls

mixed

applying OGC

standards

COMPONENTS:

TabletServers, one

Garbage Collector

process, one

Master server and

many Clients. Modular Modular Components

Table 3. Technical details of existing solutions on distributed GIS processing

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-4-111-2016

115

5 DESIGN AND IMPLEMENTATION DETAILS

IQLib has been initiated by three project partners in IQmulus

project, namely FÖMI-Hungary, IMATI-Italy and IGN-

France. During the first two years of development, we have

experienced that some of our services are not compatible with

Hadoop infrastructure including HDFS file system. While

most of current processing frameworks follow the same

methodology as Hadoop and utilize the same data storage

concept as HDFS. One of the biggest disadvantage from

processing point of view was the data partitioning mechanism

performed by HDFS file system and distributed processing

programming model. In most cases we would like to have full

control over our data partitioning and distribution

mechanism. Also most of our services cannot be altered to

fulfil MapReduce programming model, due to the nature and

logic behind those services. In this paper we are focusing on

the data distribution Tiling and Stitching and Data Catalogue

components of the conceptual framework called IQLib. On

the Fig 2 the architectural concept is described our future

intention is to create a framework for distributed processing

of R, Python or any other language written geospatial

analysis.

Fig.2 High level concept of IQLib processing framework

5.1 Introduction of IQLib

At the beginning we have created a feasibility study on

technological and conceptual aspects. The outcome of this

was presented in our previous paper, where we have

described the architecture of this demo application as well as

processing results on calculating NDVI values using Spot5

satellite images for Hungary. The processing results seemed

really convincing, so we have started to design and

implement IQLib framework. This framework should be able

store metadata information on our dataset, tracking

partitioned data, their location, partitioning method. It should

distribute data to processing nodes as well as deploying

existing processing services on processing nodes and execute

them in parallel.

As a result IQLib has three major modules; each module is

responsible for a major step in GIS data processing. The first

module is called Data Catalogue, second module is Tiling

and Stitching, the last module is called Processing.

Data catalogue module is responsible for storing metadata

corresponding to survey areas. A survey area contains all the

dataset that are logically related to inspection area, regardless

of their data format and purpose of usage. We would like to

store all the available, known and useful information on those

data for processing.

Tiling and Stitching module does exactly what its name

defines. Usually tiling algorithms are performed on raw

datasets before running a specific processing service on given

data. Stitching usually runs after processing services have

successfully done their job. Tiling algorithms usually process

raw data, after these tiled data are distributed across

processing nodes by data distribution component. Metadata

of tiled dataset are registered into Data Catalogue. With this

step we always know the parents of tiled data. Distributed

processing module is responsible for running processing

services on tiled dataset.

5.2 Data Catalogue

Based on user and developer needs, we have collected those

requirements and created a data model specification

document.

The first version of this documentation contains the

specification of data structures on how we would like to store

our metadata accessible by both users and processing

services. In the beginning we intended to use Geonetwork

have as a metadata storage, however as we progressed on

defining and refining our data model, it became clear for us

that we have to implement our own metadata store.

5.3 Data model

In order to organize our data, we have gathered the most

common use cases on data processing along with existing

Tiling algorithms, as a result the following terms: “Survey

Area”, “Dataset” and “Data file” have been introduced. A

Survey Area has at least one dataset, depending on

processing requests. Each dataset has at least one data file,

which may vary from size to format.

Depending on the type and content of each data files, each

processing service accesses them with different strategies,

these strategies are called data access patterns (DAP). Data

access patterns are based on local (L), global (G), focal (F),

zonal (Z) and the combination of zonal and focal (ZF) -

applied as a combination of topological and coordinate

neighbourhood operations. Along with data access patterns,

we have also categorized data into three groups: Meshes (M),

Point clouds (P) and Raster data (R). Table shows the

relationship between data access patterns and file groups:

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-4-111-2016

116

DAP File Type Description

L MPR each sample is processed independently

F M requires access to the vertex attributes within a given

edge-distance N

F R squared centred window in raster for e.g.

convolutions

Z P requires all data within a given 1D range around one

coordinate of the output vertex

Z MPR requires all data within a given a more general range

around the output vertex, (e.g., 1m spherical

neighbourhood) or requires all vertices within an

identical attribute.

G MPR Take the whole file and process it.

Table 4. Relationship between data access patterns and file

groups

We also store the status of each data file, whether they are

“raw”, “processed”, “tiled” or “buffer-zone”. Tiled and buffer

zones will be explained in the next section.

5.4 Technical solution

From technical point of view a data catalogue should be

platform independent and available for most clients. The

most convenient solution was to implement a web application

which provides RESTFUL web service endpoints, where

client applications may connect to and utilize its

functionalities. The web application itself should be as simple

as possible, meaning that it should be easy to install, maintain

and use.

After examining mainstream programming languages and

corresponding frameworks, we have decided to use Java

programming language and Spring MVC framework to

implement the Data catalogue module. As for data storage we

have considered using either graph database or traditional

relational databases. Data catalogue will migrate from

relational database to graph database when Tiling and

Stitching module is completed, until then we are using

PostgreSQL as data storage media (Fig 3.).

The web application itself can be deployed on almost any

Java application servers. For simplicity and testing purposes,

we recommend the usage of Tomcat as a default application

server.

Fig.3. Architecture of Data Catalogue module

5.5 Tiling & stitching

Tiling and stitching is a composite module. In order to

distributed process a large dataset, processing services

require their input data to be tiled before processing. We must

also think of use cases where intermediate or end results

should be stitched together. This step is done by stiching

algorithms; they are closely related to tiling algorithm. That

is why tiling and stitching as a module should prepare and

distribute data for processing services. Based on preliminary

user’s and processing service developer’s requirements we

have come up with the following data structures to model

tiling aspects.

First of all we would like to define the data structure for a

Tile. A Tile is a single read-write connected area of the

original dataset. But from processing aspects a set of Tiles

does not contain all the necessary information on its

neighbours, surrounding areas. Therefore we have defined the

data structure for Buffer zones. A buffer zone is a collection

of data around a tile, which can be used in read-only mode by

a processing algorithm to edit/process the tile (under

processing) related to this buffer zone. A buffer zone can be

empty; when processing algorithm does not require any

surrounding data around the Tile (e.g. the service algorithm

has a local data access pattern). At last, A tile and a buffer

zone together creates a logical entity, called Patch. A Patch

may contain two components: a Tile and related Buffer Zone

depending on Tiling algorithm. As defined in Buffer Zone,

there are some cases where we do not need Buffer Zones;

therefore a "Simple" Patch has a Tile, where a “Compound”

Patch contains a Tile and a Buffer Zone.

A tiling algorithm creates Tiles and buffer zones and

corresponding Patches. IQLib tiling and stitching module

should provide a set of predefined tiling algorithms

developed by IQmulus project partners for service

developers. As well as supporting third party developers to

join and add their own tiling algorithms to the community.

After original dataset have been tiled, newly created Patches

should be registered into Data catalogue module and

distributed among processing nodes. Currently Tiling and

Stitching module only support distribution of data via SMB

and SFTP protocols.

5.6 Technical Solution

Tiling and stitching module should also be platform

independent like the Data catalogue module. Our intension

was not to setup any programming language limitations on

Tiling and stitching algorithm developers, so that they could

use the language they are familiar with (Fig 4.).

Fig.4 Architecture of Tiling and Stitching module

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-4-111-2016

117

5.7 Processing

Partners within IQmulus project, have existing services that

they would like to run on a distributed system with Tiled

dataset. Currently Processing module is still under design

phase with the following requirements: all services should be

easily deployable and maintainable on processing nodes, each

processing node should be able to inform users that currently

which services are available and running, logging and

notification system should be developed for both error and

status report (Fig 5.).

Fig.5 Architecture of Processing module

6 CONCLUSIONS AND FUTURE WORK

IQLib documentation on data model and Data catalogue is

available on Github at https://github.com/posseidon/iqlib. We

have decided not to publish Data catalogue module’s source

code until it has been reviewed and finalized by IQmulus

project partners. However, the RESTFUL API is available on

Heroku cloud infrastructure for all project partners to test and

give feedbacks and suggestions at http://iqlib.herokuapp.com.

In our future work we are going to focus on further

development of the framework development along with the

processing executables and experimental benchmarking of

processing time.

ACKNOWLEDGEMENTS

This research is co-funded by the project “IQmulus” (A

High-volume Fusion and Analysis Platform for Geospatial

Point Clouds, Coverages and Volumetric Data Sets) funded

from the 7th Framework Programme of the European

Commission, call identifier FP7-ICT-2011-8. The research

was also supported by the Hungarian Institute of Geodesy,

Cartography and Remote Sensing (FOMI. We would like to

thank Michela Spagnuolo research director of Institute for

Applied Mathematics and Information Technologies (CNR-

IMATI) for her huge effort on making opportunities as well

as support on IQLib.

REFERENCIES

Elek I. 2006. Bevezetés a geoinformatikába (Introduction to

geoinformatics) ELTE Eötvös Kiadó, Budapest, pp. 22-40,

Nguyen Thai B. and Olasz A. 2015. Raster data partitioning for

support distributed GIS processing, Proceedings of ISPRS.Vol.

XL-3/W3, pp. 543-550.

Kambatla K., Giorgos K., Vipin K., and Ananth G. 2014. Trends

in Big Data Analytics. Journal of Parallel and Distributed

Computing 74 (7) pp. 2561–2573.

Li S. , Dragicevic S., Anton F., M. Sester, S. Winter, A.

Coltekin, C. Pettit, B. Jiang, J. Haworth, A. Stein, and Cheng T.

2015. Geospatial Big Data Handling Theory and Methods: A

Review and Research Challenges, pp. 2-19.

Jewell D. et al. 2014. IBM RedBook, Performance and Capacity

Implications for Big Data, IBM Corp. pp. 7-20

Laney D. 2001. 3D Data Management: Controlling Data

Volume, Velocity, and Variety. Application Delivery

Strategies, pp. 1-4.

Lee J.-G. and Kang M. 2015. Geospatial Big Data: Challenges

and Opportunities, Big Data Research, vol. 2, no. 2, pp. 74–81.

Karimi H. A. 2014. Big Data Techniques and Technologies in

Geoinformatics. Taylor & Francis Group, LLC, pp. 149-153.

Kitchin R. 2014. Big Data, new epistemologies and paradigm

shifts, Big Data & Society, Vol. April–June pp. 1–12.

Eldawy A. and Mokbel M. F. 2015. The Era of Big Spatial Data.

In Proceedings of the International Workshop of Cloud Data

Management CloudDM co-located with IEEE ICDE

Wu, Z. and Ooi Beng C. 2014.From Big Data to Data Science: A

Multi-Disciplinary Perspective. Big Data Research, Special Issue

on Scalable Computing for Big Data, pp.1-4.

Yang, Chaowei Phil. 2008. Distributed Geospatial Computing

(DGC). Springer US. in Encyclopaedia of GIS Shekar S, and

Xiong H. ed. pp 246-247.

Bashar S. , D. A. T., 2013. Distributed Systems And Cloud

Computing Systems, Computation may someday be organized

as a public utility.

Mei L., Chan W.K., Tse T.H. 2008. A Tale of Clouds: Paradigm

Comparisons and Some Thoughts on Research Issues, IEEE

Asia-Pacific Services Computing Conference, pp. 464-469.

Jajodia S., Krishna K., Pierangela S., Anoop S., Vipin S., and

Wang C. , eds. 2014. Secure Cloud Computing. New York, NY:

Springer New York.pp. 23-34.

Sosinsky B. 2011. Cloud Computing Bible. Wiley Publishing

Inc.

Olson J. A. 2009. Data as a Service: Are We in the Clouds?

Journal of Map & Geography Libraries,

doi:10.1080/15420350903432739.

Huang G., J. He, C. H. Chi, W. Zhou and Y. Zhang, 2015. A

Data as a Product Model for Future Consumption of Big Stream

Data in Clouds, Services Computing (SCC), 2015 IEEE

International Conference on, New York, NY, pp. 256-263.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-4-111-2016

118

https://github.com/posseidon/iqlib
http://iqlib.herokuapp.com/

