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ABSTRACT:

Vision-aided inertial navigation is a navigation method which combines inertial navigation with computer vision techniques. It can
provide a six degrees of freedom navigation solution from passive measurements without external referencing (e.g. GPS). Thus, it can
operate in unknown environments without any prior knowledge. Such a system, called IPS (Integrated Positioning System) is developed
by the German Aerospace Center (DLR).
For optical navigation applications, a reliable and efficient feature detector is a crucial component. With the publication of AGAST, a
new feature detector has been presented, which is faster than other feature detectors. To apply AGAST to optical navigation applications,
we propose several methods to improve its performance. Based on a new non-maximum suppression algorithm, automatic threshold
adaption algorithm in combination with an image split method, the optimized AGAST provides higher reliability and efficiency than the
original implementation using the Kanade Lucas Tomasi (KLT) feature detector. Finally, we compare the performance of the optimized
AGAST with the KLT feature detector in the context of IPS. The presented approach is tested using real data from typical indoor scenes,
evaluated on the accuracy of the navigation solution. The comparison demonstrates a significant performance improvement achieved
by the optimized AGAST.

1. INTRODUCTION

IPS was developed for real-time vision-aided inertial navigation
(Grießbach, 2014), especially under conditions where external
referencing is not available, such as for indoor environments, un-
derground, etc. It has been shown that IPS can output the trajec-
tory accuracy of about 2m/

√
h; that means, for our test database

with 410 meters track (about 6.8 minutes), the 3D error is about
0.65 meter (Grießbach et al., 2014). In order to improve the ac-
curacy and the real-time processing ability of IPS, we explore to
replace old KLT feature detector working inside IPS with the new
AGAST (Mair et al., 2010) feature detector. This paper describes
our work and the experimental results.

A reliable and efficient feature detector is a crucial component
for various computer vision applications, such as object tracking,
image matching and registration, optical navigation and localiza-
tion, etc. Therefore, a large number of feature detectors have
been proposed (Harris and Stephens, 1988, Shi and Tomasi, 1994,
Lowe, 2004, Bay et al., 2006). However, because of the demand
for real-time processing based on poor computational resources,
many feature detectors cannot meet the requirements needed for
optical navigation.

2. FEATURE DETECTOR REVIEW

There exist many different methods to extract image features that
are suitable for tracking them in an image sequence. The method
”good features to track”, proposed by Shi and Tomasi (Shi and
Tomasi, 1994), usually called KLT feature detector is based on
the early work of Lucas and Kanade (Lucas et al., 1981). KLT uti-
lizes the Harris matrix to calculate the eigenvalues of each pixel.
The pixel whose smaller eigenvalue is greater than a threshold is
defined to be a well trackable image feature. This condition as-
sures that KLT features lie on corners and blobs, which are locally
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distinctive points. Although KLT outputs high-quality features,
calculating the Harris matrix is a computational expensive task.
Based on our testing, the KLT feature detector needs about 15ms
on one image with a resolution of 680×512 pixels. Due to its
complexity KLT is not suitable for many applications requiring
high frame rates.

Another feature detector is Features from Accelerated Segment
Test (FAST) proposed by Rosten and Porter (Rosten and Drum-
mond, 2005). FAST is based on a characteristic feature criterion
accelerated segment test (AST). The method AST considers a cir-
cle of 16 pixels constituting a discrete circle around the center
pixel. It compares each pixel’s intensity on a circle with the cen-
ter pixel P . If there exist more than S connected pixels on the
circle with intensities greater than P ’s intensity plus a threshold
T , or all of them less than P ’s intensity minus a threshold T , the
center pixel is considered a feature. T is a user defined thresh-
old. In (Rosten et al., 2010) shown when S equal 9 has a high
efficiency and reliability compare with else values. Based on this
concept, FAST is an order of magnitude faster than other feature
detectors such as SIFT (Lowe, 2004), SURF (Bay et al., 2006),
etc.

FAST has obvious advantages from many points of view. How-
ever, there is still an imperfection that limits FAST to be used
in optical navigation applications. FAST is enhanced by a ma-
chine learning algorithm ID3 (Quinlan, 1986), for the purpose of
improving processing speed. ID3 is a method used to generate a
decision tree from a training dataset. FAST needs to be trained on
an image dataset from the environment where it works, and then
get a decision tree to classify each center pixel to be a feature or
not. However, this method cannot guarantee each combination
of pixels to be found; this may produce incorrect results. Fur-
thermore, the FAST feature detector has to be trained every time
the working environment changes. This weakness restricts FAST
to work on computer vision systems such as IPS (Grießbach et
al., 2012), which shall work without any prior knowledge of the
environment.

In order to overcome the weakness of FAST, the Adaptive and

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-4, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-4-133-2016

 
133



Figure 1: IPS prototype

Generic Corner Detection Based on the Accelerated Segment Test
(AGAST) feature detector is proposed by Mair and Hager (Mair
et al., 2010). AGAST is based on the same AST feature criterion
as FAST, but uses a different decision tree. AGAST is trained
based on a dataset that includes all possible combinations of 16
pixels on the circle. This ensures that the decision tree works
in whatever environments. Moreover, AGAST introduces a dy-
namic tree switching algorithm, which automatically changes the
decision trees. One tree is trained under homogeneous areas, and
the other is trained under heterogeneous areas. In this way, the
performance of AGAST increases for random scenes. By com-
bining these two improvements, AGAST works in any arbitrary
environments without any training steps. This makes AGAST
very promising for IPS and other real-time computer vision ap-
plications.

3. IPS AND PREVIOUS WORK

3.1 Integrated Positioning System

IPS is a portable research device developed by the German Aero-
space Center (DLR), which provides a real-time vision-aided in-
ertial navigation solution. IPS is designed to work in indoor envi-
ronments but it also works in outdoor environments. The output
of IPS is a 6 DOF trajectory that includes the position and ori-
entation. Furthermore a high-density 3D points cloud of the sur-
rounding can be produced. IPS is capable to record sensor data
(video sequences, inertial data, etc.) for a later off-line process-
ing. This is very useful for testing and evaluation purposes.

IPS consists of multiple sensors including stereo cameras, a micro-
electromechanical IMU (MEMS), an inclination sensor, and two
NIR LEDs light source in case of bad light conditions. In addi-
tion, IPS also takes the interface for other sensors, for example,
GPS, barometer and so on, for the purpose of redundancy and
more accuracy. However, IPS does not rely on external refer-
ences, but can make use of them if available. Figure 1 shows the
prototypic senor head used.

Figure 2 shows the software flow of the IPS system. The image
data from the stereo cameras is handled by the feature detector
and the stereo matcher. A data processing chain is set up, to fuse
low-level sensor data by means of a Kalman filter to obtain ego-
motion information.

This research focuses on the feature detector, where a KLT fea-
ture detector was used until now. To improve the processing
speed and the trajectory accuracy of IPS, the AGAST feature de-
tector was used to replace the KLT feature detector. We propose

several optimizations enabling AGAST to meet the requirements
of IPS, and improve the performance and reliability of the origi-
nal AGAST.

Stereo
Cameras

Feature
Detector

Stereo
Matcher

3D
Perception

IMU

Tilt

Other
Sensors

Tracker Filter

Figure 2: The data flow of IPS system

3.2 Optimization of AGAST

AGAST adopts the non-maximum suppression algorithm inher-
ited from FAST, using a 3×3 square mask sliding over all fea-
tures, and suppress low rating features in neighborhood area (Ros-
ten and Drummond, 2006). However, even after the suppression
more than 600 features per image remain with a threshold of 15.
Although a higher threshold could decrease the number of fea-
tures, this results in many features close together in structured
areas of the image but no remaining features in the less struc-
tured areas. This is suboptimal because the accuracy of the op-
tical navigation strongly depends on a good distribution of fea-
tures over the image (Grießbach et al., 2014). At the same time,
the number of features shall be kept low because it unnecessarily
increases the processing time needed to track them without a sig-
nificant improvement of accuracy. In order to achieve real-time
processing, the ideal feature numbers are around 100. On the
other hand, during the whole navigation process, the scene con-
stantly changes. Different scenes needs different feature detector
threshold. Therefore, an algorithm that calculates thresholds for
various sub-areas as well as for changing scenes is an essential
part of feature detector for IPS. The algorithm is described be-
low:

1. Divide the image into m×m sub-areas, m is a user defined
value.

2. Start from top left sub-area.
3. Extract features from the sub-area based on the AGAST de-

cision trees.
4. Calculate the feature’s scores. This method is the same with

FAST or AGAST.
5. Compare the scores of the features within a circle area. The

radius of the circle is the given minimum feature distance,
the feature with the highest score in its circle is kept, others
are suppressed, fig. 3 show this concept.

6. If the remaining feature number n is greater than N/(m×m),
then use pseudo code in fig. 4 to decrease the number of out-
put features, and increase the threshold for next frame, N is
a user defended value, which is the desired feature number
of the whole image. If N less than N/(m×m), decrease the
threshold for the next frame. In any case the threshold is
kept greater or equal to a user defended minimum threshold
value., preventing the feature selection from being unrea-
sonably sensitive and find features in actually homogeneous
areas, structured only by the camera noise. (Possibly this
could be also described below this list)

7. Repeat step 3 to 6 for all sub-images and output the final
feature list.
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1: ftlt = 0 . a list holding the output features
2: for ft in flans do . flans is the features list after non-maximum suppression
3: if ftlt.size/maxNum ≤ ft.index/fans.size then . maxNum is a user defined maximum feature numbers
4: ftlt.push back(ft)
5: end if
6: end for
7: return ftlt

Figure 4: Feature reduction algorithm

Figure 3: The green crosses are the features being kept; the red
are suppressed. The radius of circle is the minimum feature dis-
tance, the center point in the top left circle is suppressed, because
it has not the highest score in its circle

(a) Original AGAST (b) Optimized AGAST

Figure 5: Comparison of the AGAST feature extractors

4. PERFORMANCE TEST

Figure 5 shows the comparison between the original AGAST
and the feature detector which combines AGAST and the new
non-maximum suppression algorithm, called optimized AGAST
in the following. Both detectors use identical initial parame-
ters, but the optimized AGAST dynamically adjusts the threshold.
The difference between the two images is very evident, showing
the advantage of the optimized AGAST. Although the optimized
AGAST adjusts the threshold and tries to extract features from
each sub-area, there are no features extracted from the floor area.
This is caused by a minimum threshold limit, needed to avoid the
selection of features on homogenous areas caused by the readout
noise of the camera.

To check the performance of the optimized AGAST, we do rig-
orous tests on it. The research purpose is to explore the feature
detector which is working best for IPS, hence getting the most
accurate optical navigation results. Therefore the tests are per-
formed with realistic data including the entire processing chain.
The performance is evaluated in terms of the accuracy of the re-
sulting trajectory and the processing time. IPS works with a con-

figuration file, which include various configuration information
for each module, such as camera calibration data, feature detec-
tor parameters, etc. During the testing of the optimized AGAST,
a crucial task is to find the optimal configuration parameters for
the optimized AGAST. The best value for each parameter is hard
to know, fortunately we know the reasonable range for them. A
brute force search method is therefore used to find out the best
parameters combination. To compare the performance of the op-
timized AGAST and the KLT detector, the same testing process
is used for KLT as well. The testing sequence is described below.

First, a dataset is recorded by walking with IPS through a realistic
scene, an office building and the surrounding outdoor areas with
a length of about 410 meters. In order to evaluate the accuracy of
the resulting trajectory the start and end position of the walk are
exactly identical. One complete data sequence from a single walk
is called Session. We recorded eight sessions in total. In an off-
line processing step, the IPS application is used to calculate the
trajectory for various configuration parameters using the different
feature extraction algorithms. The accuracy of the resulting tra-
jectory is rated by the difference between the start point and end
point of the 3D trajectory.

For each, KLT and AGAST feature detector, 24 different config-
urations were tested. Each configuration includes valid combi-
nations of parameters like minimum feature detector threshold,
minimum feature distance, the number of sub-images, etc. Be-
cause a RANSAC algorithm is used for the optical navigation, for
an identical video sequence and configuration, each run outputs a
slightly different trajectory due to the random component. Hence,
the evaluation of each configuration requires several runs of the
trajectory calculation and a statistical evaluation of the resulting
deviation of the start and end point. To get high accurate testing
results, we run IPS application 50 times for each configuration
and calculate the average 3D error. The minimum trajectory error
means the best configuration parameters for the feature detector.
During the test, the processing times of the feature detectors are
recorded and evaluated. In total, we do 8×24×2×50=19200 test
runs producing 107GB of output data. The best configuration for
AGAST and KLT can be determined based on this data. Figure 6
present the whole testing sequence.

5. EXPERIMENTAL RESULTS

Figure 7 shows the processing times of KLT and optimized AGAST,
which are independent of the configuration. The upper figure
shows 4100 images testing results, and from the lower figure, the
optimized AGAST is about 8.8 times faster than KLT, this is a
great advance.

For each session, due to the RANSAC results, the testing outputs
50 trajectories per configuration file. The data processing steps
are described below:

1. Calculate the root-mean-square (RMS) of 50 trajectory er-
rors, this gives one trajectory error per configuration.
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Figure 6: The whole testing sequence
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Figure 7: Processing times comparison

2. Calculate the mean of 8 session results generated with the
same configuration, after this step, get 24 3D errors correla-
tion with 24 configuration.

3. Do same calculations for both AGAST and KLT.
4. Output 48 calculated results.

Figure 8 shows the 3D errors for each configuration. These re-
sults gives an indication for the quality of the feature detectors.
Because a configuration may be better for one session but worse
for other sessions, it is necessary to review the mean of the 8
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Figure 8: 3D-errors for 24 configuration
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Figure 9: Box plots of 50 testing results. The upper and lower
edges of the boxes are the 25th and 75th percentiles, the red
crosses are the outliers, the diamonds are the RMS results.

session results to find out the best configuration. The result for
the best parameters of the optimized AGAST is about 0.46 meter,
the best for KLT is about 0.64 meter. According to these results
AGAST is not only much faster that KLT, but also leads to better
trajectories.

Finally, we compare the qualities between original AGAST, KLT,
and optimized AGAST. Lacking of experiment time, we just test
one representative session with the best configuration file for KLT
and AGAST respectively. The original AGAST uses identical pa-
rameters as the optimized AGAST. Figure 9 shows that the opti-
mized AGAST is not only more accurate but also more robust
than the others. These results have proved that the optimizations
of AGAST lead to a clear improvement of the overall-system.

6. CONCLUSION AND OUTLOOK

In this paper, an optimized AGAST feature detector is proposed.
Its performance is evaluated using realistic data from real indoor
test runs and compared to the original AGAST and KLT. The ex-
perimental results show that the optimized AGAST is about 8.8
times faster than the KLT feature detector. At the same time, it
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decreases the 3D trajectory error of IPS system from 0.64 me-
ter to 0.46 meter for the given trajectory. Furthermore, the op-
timized AGAST shows a large improvement of the accuracy of
the resulting trajectory compared to the original AGAST. The
processing time saved by the optimized AGAST could be used
in post-processing steps, that enables IPS to do more complex
calculations to improve the accuracy, as well as to improve the
ability to real time processing.

Our future works will address the used feature matcher. IPS
calculates the relative transformation between adjacent frames
which is fused with the inertial data within a Kalman filter. In
this process, the cumulative error could become high. The idea
is to identify key-frames within the video sequence to decrease
this error. The error can also be decreased by using refining the
matching itself, e.g. by using subpixel matching approaches.
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