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ABSTRACT:

This paper aims to present some of the main features of the Workflow Description Language (WorDeL) and demonstrate their usage in
defining Earth Data processing tasks. This description language is based on the flexible description of processing tasks as workflows,
composed of basic processing operators. This approach allows the language to offer an intuitive way of representing processing tasks,
without requiring programming expertise from its users. It also allows its users to employ and integrate existing functionality into
their design, thereby reducing the design complexity and development effort of newly defined processing workflows. WorDeL supports
the transparent adaptive parallelization of the processing tasks over high performance computation architectures, such as cloud-based
solutions. Throughout the paper, we will exemplify this language’s use in creating flexible, reusable and easy-to-understand earth data
processing descriptions, with an emphasis on satellite image processing.

1. INTRODUCTION

The ability to store and manage data has always been a defin-
ing characteristic of human civilization, reflecting its level of so-
phistication. Keeping records has been instrumental in the estab-
lishment of any form of social organization, from the early city-
states, to kingdoms, nations and the first commercial entities.

While society’s data management capabilities have been steadily
increasing over the last centuries, the era of the computer and the
internet has really sparked off a revolution in terms of size of the
raw data produced and processed around the globe. According
to some estimates (Hilbert and Lopez, 2011), the total amount
of data stored globally had reached 2.9x1020 bytes as of 2007,
following a twenty-year growth period of 23% per year.

A more recent estimate (Murdoch, 2012) places the quantity of
globally stored data at approximately 2.8x1021 bytes - 2.8 zetabytes
- as of 2012, a tenfold increase since 2007. According to the same
source, out of these data only about 3% had any kind of use-
ful tags associated, making them usable, and barely 0.5% were
actually being analyzed. This goes to highlight a trend of data
acquisition rates overtaking the available processing capabilities.

The term Big Data has been steadily gaining popularity over the
last years due to the abundance of raw data in many different
fields, from astronomy and earth observation to finance and the
retail industry. Although the term is usually implicitly associ-
ated to the problem of managing very large quantities of data,
it should be noted that the concept of Big Data has a somewhat
broader definition, as it is concerned with a number of problem-
atic characteristics of modern data sets (Gartner, 2011):

• Volume - perhaps the most intuitive characteristic, this has
to do with the actual size of the data sets;

• Variety - this refers to the multitude of data sources and het-
erogeneous data types;
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• Velocity - this characteristic refers to both the rate at which
new data is gathered and the rate at which the available data
can be processed;

The problem of Big Data is prevalent in many fields of study, one
important category being those dealing with Earth Observation
EO - data. The main issues, in this case, are the volume and ve-
locity, seeing as most often we are talking about raster image data
captured by an increasing number of aerial and space-borne sen-
sors. Thus, the sheer volume and acquisition rates may threaten
to overwhelm many organizational storage capabilities, leading
to situations in which data value is overtaken by storage costs,
which will, in turn, lead to the loss of aging data.

Within the BigEarth project (BigEarth, 2014), we are trying to
offer solutions for increasing the efficiency of the data process-
ing efforts. In order to achieve this, we are focused on a two-
pronged approach. On one hand, we are experimenting with a
high-performance, cloud-based computing solution in order to
shorten the overall process execution time. On the other hand, we
intend to provide a highly flexible method of specifying the data
processing tasks, in order to improve the description process. In
the case of this paper, the focus is on a workflow based approach,
which is meant to increase the modularity of the design and, as a
consequence, promote reusability.

As a means of specifying the structure of the workflow we have
decided to use a specially designed description language called
WorDeL - Workflow Description Language. This language is
meant to offer the user - EO data specialist - an intuitive, flexible
and effective way of creating, re-using and integrating workflow
descriptions of data processing tasks.

Throughout this paper we will present the main concepts of the
WorDeL language, highlighting and exemplifying their use in
defining earth data processing tasks.

The paper is structured as follows. Section 2 will briefly present a
series of languages used for describing process descriptions over
various types of data. In Section 3, we are going to highlight the
overall function and usage of the WorDeL language, followed by
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a brief description of its main elements, in Section 4. Through-
out Section 5 we will present a couple of examples in which we
employ WorDeL for the purpose of defining satellite image batch
processing tasks, highlighting its features and explaining their us-
age. The last section will contain our concluding remarks with
regards to WorDeL and its role within our system.

2. RELATED WORKS

The processing of EO data is invariably tied to the use of geo-
graphical information systems - GIS - which, by definition, refer
to any information system capable of performing operations like
editing, analyzing, visualizing or in any way manipulating geo-
graphical data (Clarke, 1986).

Nowadays there are a plethora of GIS solutions allowing users to
manage and process a variety of data types and formats. GRASS
GIS (GRASS, 2015) is an open-source solution with a modu-
lar architecture, consisting of over 350 modules, which offers
many features and capabilities, like processing and manipulating
both raster and vector data, rendering maps and analyzing multi-
spectral images, among many others.

ArcGIS (ArcGIS, 2015) is a tool which brings the processing of
geographical data to the cloud. It is also notable that it provides
a collection of integrated components, usable from both desktop
computers and portable devices.

Another interesting development, QGIS (QGIS, 2015) comes as a
cross-platform open-source system, which builds upon a host of
other open-source solution such as GRASS and PostGIS (Post-
GIS, 2015).

When it comes to specifying the data processing tasks, most mod-
ern GIS solutions employ some form of graphical user interface -
GUI. While they may prove intuitive to most users, GUIs can also
become cluttered in the case of complex systems, increasing the
user training time. Therefore, some systems also offer the option
of specifying the processing tasks using some form of description
language. As a prime example, GRASS GIS was originally in-
tended to allow users to interact with it via Unix shell commands
and scripts. In this case, the user would invoke the functional
modules provided, and prepare their execution using such com-
mands. This approach, however, may prove quite problematic for
users unaccustomed to UNIX-style commands.

In (Choi, 2014), the authors propose the usage of a domain spe-
cific language - DSL - to describe the processing of high volume
and high throughput telescope and microscope data. The lan-
guage, called Vivaldi, has a Python-like syntax and can be used
for distributing the data processing tasks on heterogeneous com-
puting architectures.

(Kramer and Senner, 2015) suggests the usage of a DSL for spec-
ifying big data processing workflows, in an approach similar to
our own. Once the workflow is parsed, a series of executable jobs
are determined, all of which are then sent for execution to a cloud
system.

Diderot (Chiw et al., 2012) is another domain specific language,
designed for processing and analyzing biomedical images. This
language has a C-like syntax and was created in order to man-
age large processing tasks which can be decomposed into many,
smaller, independent sub-computations. This way, it can take ad-
vantage of the inherent computation parallelism in order to im-
prove the process execution performance.

Pigeon (Eldawy and Mokbel, 2014) is an interesting approach
to using Hadoop (Hadoop, 2015) for the purpose of processing
EO data. It is intended as an extension for the Pig Latin lan-
guage (Pig, 2012), which allows users to define MapReduce pro-
grams for spatial data. Pigeon is implemented with user-defined
functions, which are a Pig feature allowing users to specify cus-
tom processing tasks using languages such as Java, Python, and
JavaScript.

Another category of description languages used to describe pro-
cessing workflows is represented by the XML-based solutions
used for the definition of web service aggregates. (Leyman and
Roller, 2002) shows the use of BPEL4WS in defining, what are
called, business processes. In this particular case, there is a need
to link together self-contained functional units, represented by
web services, in order to form larger, more complex processes.
For this scenario, XML-based solution are quite useful, since
linking web services entities requires a lot of information - like
address, port, method of access and so on - which is included in
the description.

Similar to BPEL4WS, MOML (Lee and Neuendorffer, 2000) -
Modeling Markup Language is another interesting XML-based
description language. Unlike the former, however, this one does
not make any assumptions whatsoever about the nature of the in-
terlinked entities, or even the meaning of the relationships be-
tween them. Essentially, MOML provides an abstract way of
defining relationships between entities. For this reason, it comes
as a highly customizable solution, with features like the possi-
bility of defining classes of entities and relationships, and even
extending and building upon existing definitions.

MOML is used within the Ptolemy project (Ptolemy, 2014) -
an ongoing UC Berkeley research project which aims to model
and simulate the behavior of concurrent, real-time systems - and
served as the main inspiration for our work in the development
of WorDeL as a workflow definition language. In our case, we
wanted to create a language specialized on allowing users to con-
nect operators, so we opted in favor of a more compact, less
verbose, non-XML approach. A major development considera-
tion, in our case, was that of keeping the description as human-
readable as possible, encapsulating any extra information within
the entities. This is derived from our need to create a language
that could allow users without programming experience - which
could be at a disadvantage when dealing with languages such as
Python or shell scripts - to easily define processing descriptions.

3. THE PROPOSED SOLUTION

3.1 BigEarth platform

Our solution for the description of data processing tasks is an es-
sential part of the BigEarth project (BigEarth, 2014), wherein we
are trying to improve the overall efficiency of Earth Data process-
ing by combining flexible description methods with high perfor-
mance, cloud-based computing architectures as execution envi-
ronments.

As seen in Figure 1, the overall architecture of the system is based
upon three essential components. These also dictate the actual
execution flow of a user-specified process.

First, the user submits the description of the processing task, to-
gether with the data it is to be applied on, to the system. The
Parser processes the description files, generating a workflow rep-
resentation which is then made available for use by the Scheduler.
This component, using the data and the workflow representation
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starts determining the atomic executable tasks which make up
the user-defined workflow. The atomic tasks generated by this
component, also known as commands, are then sent to the Ex-
ecutor component, which has at its disposal a pool of processing
resources that it will use in order to effectively distribute and pro-
cess these tasks.

Figure 1. BigEarth platform processing chain

3.2 WorDeL (Workflow Description Language)

Our system is built around the concept of a workflow being used
in order to describe virtually any kind of processing algorithm. In
this approach, the user needs no programming experience what-
soever, instead relying on a set of already implemented, of-the-
shelf operators to do the processing.

In order to facilitate the act of defining big data processing tasks
we designed and implemented an easy-to-use description lan-
guage which is intended to provide a simple and flexible way of
linking together existing operators into processing workflows.

WorDeL allows the user to define workflows using basic units
of functionality. These are called operators and are, in essence,
executable programs onto themselves. They can have any form,
from shell scripts to ’.exe’ or ’.jar’ files, the only requirement be-
ing that they should have at least one input and one output, both
supplied via file names. By incorporating the functionality en-
closed within an operator, we intend to increase design reusabil-
ity and modularity. These are some of the most important aspects
of WorDeL, and centerpieces of its flexibility. The possibility of
re-using and re-integrating existing processing descriptions into
new designs allows the user to supplement and personalize the
default operator library to fit specific needs and requirements.

4. MAIN CONCEPTS OF WORDEL

4.1 Operator

As mentioned before, WorDeL uses the concept of the operator
as a self-sufficient functional unit in order to create processing
workflows of ever-increasing scope and complexity. In WorDeL,
each operator has an interface, which is a collection of input and
output ports. Each port has a name and a type, representing an
argument of the operator. The user has access to a list of operator
specifications - including name, number and type of parameters
(ports) - which can be consulted when trying to make use of them.

The employment of the operators inside a new process descrip-
tion - also known as operator instantiation - requires the user to
specify the name of the operator, along with a list of arguments to
match its input and output ports. The example below shows the
instantiation of the operator named ’SUM’, requiring two input
parameters and one output.

[variable1, variable2] SUM : instance [sumResult]

Understanding the format of this example instruction can help the
user grasp the representation model employed by WorDeL, as a
processing description consists mainly of a list of such instanti-
ation operations. Generally, such an operation has the following
format:

[in params] OP NAME : instance name [out params]

It is important to note that the parameters are just names given
by the user to keep track of the connections between different op-
erators. As for the connections, they are inferred by the parser,
based on the correspondence between the parameter names. Fig-
ure 2 illustrates an example of just how such a connection might
be formed.

Generally, when talking about connections formed between two
operators, they form when one operator’s output parameter matches
one of the inputs of the other. In this case, the output of ’inst1’ -
’sum’ - is also used as the input of ’inst2’.

As one can see in the figure, we also provide a viewer tool, in or-
der to help the user keep track of the workflow state and visualize
its content - operators and connections. The viewer tool, coupled
with a mechanism for error detection, can greatly help users de-
bug any connection errors which might appear during the design
of a processing description.

Figure 2. Connection example

4.2 Workflow

This is another central concept of WorDeL, since it represents the
processing algorithm defined by the user. What’s more, because
of its properties, it allows for design modularity and component
reuse.

In WorDeL, a workflow - also referred to as flow - is very similar
to an operator, so much so that a user can employ them inter-
changeably. Just like an operator, a workflow has an interface,
made up of input and output ports - Figure 2. Because of this, it
can be instantiated inside other workflows, allowing the user to
build upon already existing processing descriptions.

The workflow structure, as seen in Figure 2, is defined by a list of
operator instances and the connections formed between them and
the workflow’s ports.

4.3 Process

This is what may be called the actual business end of the lan-
guage, as it allows the user to launch into execution any existing
processing description.
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In order to execute a given processing, one must supply both the
processing description - in the form of a workflow - and the input
data. The ’process’ element provides the mechanism for this.

Figure 3 shows a process example. In this case, the process is
reliant on the workflow description from Figure 2. In order for
the process to be able to use the ’test’ workflow - which it instan-
tiates - it has to point to its actual location - in this case, the file
’test.wdl’.

We strongly encourage the practice of defining workflows and
processes within separate files in order to better organize one’s
design. By keeping the workflow descriptions and the data they
are to be associated with into separate files, one can more easily
reuse and integrate the workflow description into more complex
designs, or employ them in multiple, different processes without
having them tied to a specific data set.

Another aspect of note is that launching tasks into execution is
actually done by instantiating workflows (and even operators).
Notice in the figure that the process only contains the instance of
the test workflow.

Figure 3. Process example

One should note, however, that there is a difference in instanti-
ating operators/workflows inside a workflow definition and do-
ing so inside a process. When inside a workflow definition, one
should use the parameters of the instances to define connections,
in which case the actual parameters are formal and only need to
match in terms of name and type. On the other hand, when inside
a process, instances must receive as parameters the actual values
intended for the execution of the algorithm instantiated. This is
exemplified in Figure 3, line 5.

4.4 Data Types

In order for the user to employ operators properly, WorDeL en-
forces a system of data types. This system is used inside a work-
flow definition in order to validate the connections between op-
erators. It is also useful when defining processes, since it allows
the user to specify the input values.

In WorDeL, there are five basic types: Integer, Float, String,
Boolean and File, as well as two composite types: List and Tu-
ple. Although the operators share data exclusively through files,
assigning custom types to their ports offers a formal way of en-
suring the compatibility of the specified connections. It also pro-
vides a means of verifying the content of the intermediate files
associated to the connections. However, the main advantage in
having this type system is that it gives the user the possibility of
specifying the values directly inside the process definition - as
seen in Figure 3.

The two composite types allow the user to create custom value
aggregates. The list is a homogeneous collection - containing any
number of values of the same type - while a tuple may contain any
number and any combination of values. A list type is declared
using the keyword ’List’ and assigning a sub-type, which will

be the type of the values contained within - like in the example
below:

List < Integer >

Similarly, a tuple is declared using the ’Tuple’ keyword and the
collection of contained types. The example below defines a cus-
tom tuple type which contains four values - two integers, a float
and a string. Keep in mind, however, that the order of the param-
eters matters.

Tuple(Integer, String, F loat, Integer)

The composite types allow the user to define custom types to suit
virtually any necessity. That being said, complex, recursive def-
initions are also possible - like in the example below. This kind
of flexibility allows the user to create objects by aggregating to-
gether different values.

Tuple(List < Integer >, String, Tuple(String, F loat))

This typing mechanism could be used in image processing for
specifying various data structures which might be needed by the
defined workflow. For example, one could define a list of image
regions like this:

List < List < Tuple(Float, F loat) >>

In this example, the inner tuple defines a two-dimensional point
with x and y coordinates and the inner list is a list of points inter-
preted as a closed region.

4.5 For-Each replication mechanism

There may be cases in which the user wants to run a given work-
flow or operator on multiple input data sets. This would normally
require the user to create a number of different processes - one
for each data set - and run them one at a time. This would result
in time lost by the user defining each individual process and time
lost by the system having to wait for the user’s input.

The ’for-each’ mechanism aims to solve this problem by giving
the user the possibility to specify the workflow and the input data
set, allowing the system to generate the processing tasks dynami-
cally, according to the number of items in the data set. The overall
structure of this construct is the following:

[in list1 : i1, in list2 : i2, ... ]for − each[out list1 : o1, ... ]

< sub− workflow >

end

At first look, this construct retains the basic syntactic form of an
operator instance. The first difference can be seen in the input
and output parameters. This construct is heavily reliant on lists,
which it uses for the definition of the input and output data ports.
These lists hold both the input value pairs and the outputs to be
generated. Each parameter in the input and output lists is a pair
having the format:

list name : item name

This is done in order to refer to each individual element of the
input and output lists when defining the inner workflow. The lists
are supplied from the outside of the construct, while the items are
only visible inside, so that they can be accessible to the internal
workflow.

The inner workflow is actually just a series of instantiated oper-
ators. There is a major restriction when defining the inner work-
flow. WorDeL treats this inner workflow as if it were completely
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isolated from the outside. Therefore, its operators can only con-
nect to the ’for-each’ construct’s input and output parameters or
among themselves. In other words, elements inside the ’for-each’
construct cannot be linked to elements outside.

This construct actually generates instances of the contained work-
flow for each input-output pair in its provided lists. It goes with-
out saying that those lists should have the same length, or else the
workflow cannot be instantiated.

The ’for-each’ language feature offers the user two major bene-
fits. First of all, and perhaps the most obvious, is the ability of
applying different input sets to an existing workflow, without the
need of specifying a new process for each such occasion. This can
speed-up the procedure of running different data sets through the
processing workflow defined by the user. Another, more subtle,
advantage is the fact that this approach can break down a process-
ing task into several, smaller, independent and parallel processes
which can then be executed on a multi-core computing architec-
ture, which could drastically reduce the overall run time of the
process.

5. EXPERIMENTS AND VALIDATION

Throughout this section we will exemplify the usage of our de-
scription language for defining earth data processing tasks. To
this extent, we will provide a couple of examples, presenting the
WorDeL syntax and showing the results of the processing execu-
tion.

5.1 Simple For-Each example

The first example is intended to show the usage of a simple ’for-
each’ structure in generating a series of processing commands.
These consist of a single NDVI - Normalized Difference Vegeta-
tion Index - operator applied on a set of input image data. The
NDVI is used as a simple graphical indicator for the presence
of live, green vegetation. It was first formulated in (Kriegler et
al., 1969) and employed by (Rouse et al., 1974) in a study of
the Great Plains region of the central United States. The NDVI
formula is the following:

NDV I =
(NIR−RED)

(NIR+RED)
(1)

In the formula, the NIR and RED inputs represent the near in-
frared and red spectral bands of an image. In the example seen
in Figure 4 we describe a simple workflow which operates on
two lists of input files - containing NIR and RED band images.
This workflow employs a ’for-each’ construct in order to apply
the NDVI operator on successive pairs of the input images. As
seen on lines 3 and 4, the workflow has two inputs - lists of files
containing the two spectral bands - and an output. This is also
in the form of a file list, representing the list of NDVI images
resulted from applying the operator on pairs of input data taken
from the two input lists. The workflow consists of a single ’for-
each’ element which, in turn, is made up of one NDVI operator
instance.

Notice on lines 6 and 7 how the iteration mechanism is used.
’nirImage’ and ’redImage’ are employed in order to refer to the
elements of the two input lists while inside the ’for-each’ struc-
ture. They also represent the input ports of the internal workflow
created within the ’for-each’ element. In other words, one can-
not link nodes inside the ’for-each’ structure with nodes from the
outside; each set of instances inside the structure forms a local,
independent workflow which is linked to the outside via the input
and output parameters of the ’for-each’ structure.

Figure 4. For-each workflow example

Figure 5 shows the structure of the workflow described in Figure
4. The top side represents the structure of the ’repeatNDVI’ work-
flow, while the bottom side shows the structure of the inner work-
flow, defined within the ’for-each’ structure. Notice how ’nirSet’
and ’redSet’ are the inputs interfacing with the actual worklow,
while ’nirImage’ and ’redImage’ provide the input interface for
the inner workflow.

Figure 5. For-each workflow structure

Figure 6 shows the executable commands generated by the Sched-
uler component after applying the inputs to the workflow repre-
sentation, which was obtained from the Parser component. The
outcome consists of three executable commands, each able to
launch into execution the operator - represented by ’NDVI.sh’
- with three different sets of input data. In this case we employ
some of the operators made available by the GRASS GIS library
and incorporate them into shell scripts, which act as wrappers
exposing a simple, file-based interface. It should be noted that
the operators can come in any conceivable form, from shell or
python scripts, to normal executable programs, as long as their
functionality can be accessed in a uniform, file-based manner.

5.2 Compound For-Each example

The second example builds upon the first one and demonstrates
the use of one ’for-each’ structure within another. We started with
the NDVI operator applied on an input image, and envisaged a
scenario where the user might want to apply this operator on a set
- or list - of image regions. The regions are defined as rectangular
areas, delimited by four floating-point values.

The basic processing algorithm would consist of: clipping the
images against a given region, applying the NDVI operator on the
result and executing a pseudo-coloring operation on the image in
order to make it more relevant to the user.
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Figure 6. For-each scheduling results

Figure 7. Double for-each scheduling results

In order to do this, one would need a something like the ’frag-
ment NDVI’ workflow - shown in Figure 8(a). This workflow
is similar to the one from the previous example. There is, how-
ever, one major difference. Instead of iterating on a set of im-
ages, the ’for-each’ structure in this case uses the same image
data - ’imgNIR’ and ’imgRED’ - for all iterations. The only
thing that changes over the iterations is the fragment definition.
The fact that the same image is used within multiple iterations, is
specified by employing the notations ’imgNIR:imgNIR’ and ’im-
gRED:imgRED’ - seen on line 6. By using the same name for the
collection and for the iterating instance, the user tells the system
that there should be no iteration on that particular input. The re-
sult is that this workflow operates on a single image - represented
by the two image bands - clipping it against different regions and
applying the NDVI operator on each of the resulting fragments.

The next step was to take this workflow and execute it repeatedly
for a set of images. Since ’fragment NDVI’ requires two image
bands and a list of regions as input data, it follows that our new,
larger workflow would require two input lists of image files - one
list for NIR-band images and one for RED-band images - as well
as a number of region lists, one list for each NIR-RED image pair.
This workflow’s description can be seen in Figure 8(b).

The first thing to notice in the definition of the ’image List NDVI’
workflow is the usage of the ’include’ statement. This is neces-
sary in order to access the ’fragment NDVI’ workflow, which is
in a separate file - ’fragment NDVI.wdl’. Of course, one could
easily have defined both ’for-each’ structures within the same file.
However, defining part of the functionality inside another file has
the double advantage of making the code more readable and in-
creasing the modularity of design. Once defined as an indepen-
dent piece of functionality, ’fragment NDVI’ can subsequently
be employed in any number of designs, saving time and reducing
the complexity of the description.

Apart from the two lists used to specify the collections of image
bands, one can notice the input ’fragmentLists’, which is a list
of file lists. Each file contains the specification of a rectangular

region. A list of such files is associated to a given image, there-
fore, for a set of images, multiple region lists are required. The
workflow has one output, which is also a list containing lists of
files. This is because each image and its associated regions will
produce a list of NDVI-ed regions.

As for the body of the workflow, it only consists of a ’for-each’
structure which will dynamically instantiate the ’fragment NDVI’
workflow for each image band set and associated fragment list.
As seen on line 8, this time, the ’for-each’ structure will iterate on
all of its inputs. The instance elements of the input lists specified
on line 8 serve as the inputs of the instantiated operator within the
’for-each’ structure.

Workflow description aside, one of the most interesting elements
in this example is represented by the process ’p1’ - responsible
for the execution of the workflow. As mentioned before, the op-
erator instantiation within a workflow is different from that done
within a process. When creating an instance within a process,
one must always provide the actual values, the data with which
the processing description should be executed. Another thing to
note is the fact that while inside a process, only one operator or
workflow can be instantiated. If there is a need to link up different
operators, the user is encouraged to do so within another work-
flow and instantiate it afterwards. This measure has the benefit
of forcing a clear demarcation between the processing descrip-
tion and the data its needs to process, thus increasing the overall
modularity of design.

Another aspect of note within this example is the mechanism for
specifying the input values to the process. On the one hand, we
employ the ’fromDirectory’ directive in order to automatically
create a list of all the files within the directory given as argument.
This is useful for situations in which the number of list elements
is too large for the user to manually input. The second method, a
more direct approach, relies on the user to specify the contents of
the list within the process definition.

Figure 7 shows the partial result of the scheduling process for
this example scenario. The figure shows the database listing of
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Figure 9. For-each processing results

Figure 8. Double for-each example

the generated commands. In this case we only listed about half
of the table, due to space limitations, but this is enough to get a
grasp of the overall effect.

As seen in the figure, there are a total of 12 rows containing gen-
erated commands. The first eight represent the result of the first
iteration of the outer ’for-each’ element. Each iteration of the in-
ner ’for-each’ generates four commands: two used for clipping
the image bands against a given region, the third applying NDVI
and a fourth one doing a pseudo-coloring on the resulted image.
Figure 7 lists the result of three such iterations, highlighting the
result files.

One can notice that the first two iterations make up one itera-
tion of the outer ’for-each’. As seen in Figure 8(b), this iteration
works with the first set of image bands - ’i1RED’ and ’i1NIR’
- and the first fragment list - {‘f1‘,‘f2‘}. As a result, this outer
’for-each’ iteration produces two output files: ’resultImage0’ and
’resultImage1’. These two form the first output list. The last four
commands are part of the second iteration of the outer ’for-each’
structure and generate the first element of the second output list:
’resultImage10’.

As for the input of this example, we used Landsat satellite im-
age data taken from the repository made available by the Global
Land Cover Facility from the University of Maryland (GLCF,
2014). The processing was done on three images, and a total of
six randomly defined regions. We selected three images, found
in the sets ’WRS2/p017/r021’ through to ’WRS2/p017/r023’ -
’GLS2010’. We used band number 3 for RED and band number
4 for NIR. Figure 9 shows the resulting pseudo-colored NDVI re-
gions, along with their positioning within the original images -
NIR band - and the color table used for the NDVI values.
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An important aspect to note is the fact that all these generated sets
of commands are actually independent and all six processing in-
stances resulted from this example could be executed in parallel,
given enough resources. This is one of the main benefits of em-
ploying the ’for-each’ construct, making it suitable for defining
repetitive, compute-intensive, batch processing tasks.

CONCLUSIONS

When talking about Big Data, the most challenging aspect lays in
processing them in order to gain new insight, find new patterns
and gain knowledge from them. This problem is likely most ap-
parent in the case of Earth Observation data. With ever higher
numbers of data sources and increasing data acquisition rates,
dealing with EO data is, indeed, a challenge in itself.

To answer this trend, the BigEarth project (BigEarth, 2014) aims
to combine the advantages of high performance computing solu-
tions with flexible processing description methodologies, in order
to reduce both task execution times and task definition time and
effort. As a component of the BigEarth platform, WorDeL is in-
tended to offer a flexible, compact and modular approach for the
user to employ in the task definition process.

WorDeL, unlike other description alternatives such as Python or
shell scripts, is oriented towards the description of topologies, us-
ing them as abstractions for the earth data processing algorithms.
This feature is intended to make it an attractive alternative for
users lacking in programming expertise.

By promoting a modular design, WorDeL not only makes the
processing descriptions more user-readable and intuitive, but also
helps organizing the processing tasks into independent sub-tasks,
which can be executed in parallel on multi-processor platforms,
in order to improve execution performance.

As a platform component, WorDeL represents the means by which
the user interacts with the system, describing processing algo-
rithms in terms of existing operators and workflows, which are ul-
timately translated into sets of executable commands. As shown
in the previous examples, WorDeL was designed to help in the
definition of compute-intensive batch tasks, which can be dis-
tributed and executed on high-performance cloud or grid-based
architectures, in order to improve the processing time and ulti-
mately increase the effectiveness of EO data analysis methods.
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