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ABSTRACT: 

 

Video surveillance systems are increasingly used for a variety of 3D indoor applications. We can analyse human behaviour, discover 

and avoid crowded areas, monitor human traffic and so forth. In this paper we concentrate on use of surveillance cameras to track 

and reconstruct the path a person has followed. For the purpose we integrated video surveillance data with a 3D indoor model of the 

building and develop a single human moving path tracking method. We process the surveillance videos to detected single human 

moving traces; then we match the depth information of 3D scenes to the constructed 3D indoor network model and define the human 

traces in the 3D indoor space. Finally, the single human traces extracted from multiple cameras are connected with the help of the 

connectivity provided by the 3D network model. Using this approach, we can reconstruct the entire walking path. The provided 

experiments with a single person have verified the effectiveness and robustness of the method. 
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1. INTRODUCTION 

With video surveillance system being widely available and 

providing real-time data, video data has become a new kind of 

data source. Such information is increasingly integrated into 

GIS commercial platforms, such as GoogleTM StreetView 

(2007), Microsoft® Live Maps (2005), and Intergraph’s® 

GeoMedia. Video data can be applied in wide range of 

applications, and the most common one is visual tracking. 

Visual tracking aims at understanding behavior of moving 

objects after moving objects detection, recognition and tracking.  

 

At present, visual tracking is mainly used in monitoring systems 

of parking lots, campus monitoring, public security, etc. 

(Collins et al., 2000; Haritaoglu et al., 2000; Pavlidis et al., 

2001). Visual tracking is also widely used in transportation 

system, mainly including traffic flow control, vehicle abnormal 

behavior detection, pedestrian behavior judgment, etc. (Magee, 

2004; Tai et al., 2004; Pai et al., 2004; Persad R. et al., 2012). 

Nowadays, visual tracking technology combined with GIS is 

mainly used in outdoor scenes, such as GoogleTM StreetView 

(2007), Microsoft® Live Maps (2005), and Intergraph’s® 

GeoMedia. In this paper we present an approach of video 

tracking in 3D indoor environment.  

 

Strictly speaking, video tracking research can be classified into 

several types according to different criteria. Classified by the 

number of cameras, it can be divided into Monocular camera 

and Multiple camera; classified by camera moving or not, it can 

be divided into static camera and moving camera; classified by 

number of moving objects, it can be divided into single target 

and multiple target (Moeslund and Granum, 2001; Hou and 

Han, 2006. The video sequences involved in this research were 

captured by one static uncalibrated camera, which was used to 

track single human traces in video. Using the videos and a 3D 

model, we are able to reconstruct the path a human followed.  

 

The approach consists of three major steps as follows: (1) single 

moving traces extraction based on video tracking; (2) derivation 

a 3D network based on 3D indoor model; (3) matching single 

moving traces in video with 3D indoor path model based on 3D 

scene depth information. The experiments verified the validity 

of method proposed by this paper in the last part. The following 

sections explain the steps in detail. 

  

2. TRACKING A WALKING HUMAN 

Single moving traces tracking mainly includes background 

modelling, foreground detection and trajectory generation. The 

first two steps aim at moving targets detection. The methods of 

moving objects detection can be classified in three major groups: 

optical flow, frame difference and background subtraction. This 

paper uses a background subtraction which is quite often used. 

(Maddalena, 2008). The major principle is that first the 

background is determined and then it is deduced from current 

frame. The result is the only foreground remains. Single 

Gaussian Model and Mixture Gaussian Model are two 

representative models in background subtraction. Single 

Gaussian Model has poor stability, much noise and high 

possibility of incompleteness of targets in detection result In 

contrast, Mixture Gaussian Model can describe Multi-peak 

Gaussian feature better in theory, so that's which we use it. 

Displaying moving object detection results extracted from each 

frame on the background model, which generates moving traces 

of target. Because moving target detection is the key in traces 
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tracking, we explain the target detection methods in detail in the 

next section. 

 

2.1 Mixture of Gaussian Model 

We use the Gaussian Mixture Model (GMM) in video image 

foreground extraction as presented by (Stauffer, 1999). 

According to this model, the history of a particular pixel, (x0, y0} 

in a given time t, within a given image sequence I, can be 

expressed as follows: 

 

     1 0 0,..., , , :tX X I x y i i i t       (1) 

 

The recent history of each pixel, {X1, ..., Xt}, is modelled by a 

mixture of K Gaussian distributions. The probability of 

observing the current pixel value is then represented as: 
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where K is the number of distributions, ωi,t is an estimate of the 

weight (what portion of the data is accounted for by this 

Gaussian) of the ith Gaussian in the mixture at time t, μi,t is the 

mean value of the ith Gaussian in the mixture at time t, Σi,t is the 

covariance matrix of the ith Gaussian in the mixture at time t, 

and η is a Gaussian probability density function. 
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K is determined by the available memory and computational 

power. At this research we have used values from 3 to 5. To 

improve the computational performance, the covariance matrix 

is assumed to be of the form: 

 

    
2

,  k t k I      (4) 

 

The distribution of recently observed values of each pixel in the 

scene is characterized by a mixture of Gaussians. A new pixel 

value will, in general, be represented by one of the major 

components of the mixture model and used to update the model. 

We implement an on-line K-means approximation. Every new 

pixel value, X t, is checked against the existing K Gaussian 

distributions, until a match is found. A match is defined as a 

pixel value within 2.5 standard deviations of a distribution. This 

threshold can be perturbed with little effect on performance. 

This is effectively a per pixel/per distribution threshold. If none 

of the K distributions match the current pixel value, the least 

probable distribution is replaced with a distribution with the 

current value as its mean value, an initially high variance, and 

low prior weight. The prior weights of the K distributions at 

time t, ωi,t, t, are adjusted as follows. 

 

     , , 1 ,1k t k t k tM          (5) 

 

Where α is the learning rate and Mk,t is 1 for the model which 

matched and 0 for the remaining models. After this 

approximation, the weights are renormalized. 1/α defines the 

time constant which determines the speed at which the 

distribution’s parameters change. ωk,t is effectively a causal 

low-pass filtered average of the posterior probability (using 

threshold)  that pixel values have matched model k given the 

observations from time 1 through t. This is equivalent to the 

expectation of this value with an exponential window on the 

past values. 

 

The μ and σ parameters for unmatched distributions remain the 

same. The parameters of the distribution which matches the new 

observation are up- dated as follows. 
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Where the second learning rate, ρ, is 

 

 ρ αη | ,t k kX        (8) 

 

This is effectively the same type of causal low-pass filter as 

mentioned above, except that only the data which matches the 

model is included in the estimation. The original background 

color remains in the mixture until it becomes the Kth most 

probable and a new color is observed. Therefore, if an object is 

stationary just long enough to become part of the background 

and then it moves, the distribution describing the previous 

background still exists with the same μ and σ2, but a lower w 

and will be quickly reincorporated into the background. 

 

2.2 Foreground Detecting 

Foreground can be adjusted via reducing the background model 

of current frame. But in our approach we require very clear 

foreground, getting rid of “hole”, fragments and noise points. 

Therefore we apply a different approach, applying the following 

steps: 

 

1. Dilation: Scanning original image with sizeable kernel, 

then calculating intersection area. If intersection area 

does exist, pixel values are kept unchanged so as to 

expand the edge of a graph. Dilation is used to 

eliminate holes in edge or inside of the image. 

2. Erosion: Similar as dilation, but the pixel values 

remain unchanged only if both the kernel and original 

value are “1”. Erosion is used to get rid of small hole 

in the image so as to remove isolated noise spots. 

3. Median filter: At this step the one pixel value is 

replaced by the average value of neighborhood pixels. 

This step smooths the image.    

 

Applying this approach we succeeded to obtain more realistic 

foreground images based, which allowed to better distinguish 

the contours of the moving objects. The bottom points of the 

contour of the moving object are extracted from all frames, 

which generate continuous traces of moving target.  

 

3. 3D INDOOR NETWORK 

In this research, GeoScope software, developed by Wuhan 

University, is chosen as 3DGIS platform to browse and operate 

3D indoor model. GeoScope supports importing general 3D 

data; such like .obj, .3ds, .skp, etc, having functions those 

include browsing, modeling, creating and managing 3D model 

database, also implementing common operations of 3D model, 

such as choosing 3D model, zooming in, zooming out, 

translation, rotation, etc. (http://vrlab.whu.edu.cn). GeoScope 
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provides extended 3D graphic user interface, which allow users 

to extend 3D model application based on their needs. Using this 

software we have manually generated the 3D indoor network as 

follows: 

1. Import 3D indoor model into GeoScope, edit 3D 

geometry and assign semantics, such as stairs, corridor, 

room, hall, door, etc., which are of interest for the 

tracking.  

2. Create 3D edges of the network. In case of 

stairs/corridor, we drew the center line by AutoCAD 

software and consider it as edge in the network. In 

case of hall/room, the center point (2D projection on 

the floor) of the geometric shape was connected to the 

center point of the door (again using the projection on 

the floor). The two center points were connected by 

an edge.  

3.  Logically, stairs must connect corridors that belong 

to different floors; therefore, we connected a pair of 

endpoints of the center line of stairs with the 

corresponding center lines of corridors (drawing 

vertical line from endpoint of stairs to center line of 

corridor in the same floor). 

 

Fig.1 shows the final 3D indoor network, which consist of 3D 

edges, connected at their end points. 

 

 
(a) 3D geometrical model  

 

 
(b) 3D indoor network 

Figure 1  3D indoor path modelling  

 

 

4. MATCHING VIDEO TRACE TO THE 3D INDOOR 

NETWORK 

 

The next step in the process is matching of the traces obtained 

from the videos with the edges from the 3D indoor network. 

Matching traces with the model requires referencing traces in 

the coordinate system of the 3D model. Calculating 3D space 

coordinates of each point in traces, couldn’t be completed only 

based on video images. Therefore, we used existing 3D scenes 

data and obtained depth information of background image in 

video. We rendered the 3D scenes that had same camera 

position, pose and visual angle as the original video. Then by 

taking the center of the bottom of the moving object as a feet 

position of traced human, we calculated the coordinates of the 

3D scenes of the human with depth information and mapping 

coordinates to the nearest 3D path. Following this procedure we 

obtained a quite accurate path position. 

 

The key steps of creating depth image can be summarized as 

follows (Fig.2 (a) - (c)): 

 

1. Prepare 3D scenes: 3D scenes should include what 

can be seen in video, such like roads, walls, stairs and 

other main facilities related to path. 

2. Identify camera parameters: Camera position, pose, 

angle of view, aspect ratio, etc. 

3. Render the scenes: In OpenGL, we set (visually) the 

viewpoint to corresponding to the surveillance camera 

position; we keep line of sight to correspond to the 

orientation of medial axis of the surveillance camera, 

and making the view angle to fit the one of the camera, 

so as to render one frame 3D scene. 

4. Save depth image: After rendering, we got depth 

information of each pixel and saved them.  

 

Preparing 3D scenes

(a)

Identifying camera parameters 

and rendering scenes

(b)

Saving depth image

(c)

Acquiring human's touch 

points on the floor 

(d)

Calculating 3D coordinates of 

touch points（blue curve）
(e)

Calculating corresponding 

lines of 3D path(red line)

(f)

Video monitoring images

 
Figure 2 Matching traces to 3D indoor path 

 

The steps to create the depth image as listed below (Fig.2 (d) - 

(f)): 
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1. Acquire contact points between the human and the 

floor: When calculating the movement of the human, 

we took the center point of bottom blob, assuming 

that this is the human’s feet point.  

2. Calculate 3D scenes coordinates related to these touch 

points: Based on combining pixel coordinates of the 

touch point with the depth information that was 

associated with those pixels in the depth image, we 

calculated 3D coordinates of human’ s projection on 

the floor. We achieved this via space projection 

inverse transformation.  

3. Calculate the nearest points in 3D path: after 

comparing minimum distances between the points and 

edges of the 3D network, we projected 3D scenes 

coordinates, which corresponding to touch points, to 

the nearest lines of 3D path. It was taken as the 

positions of the human in 3D network. 

 

 
(a) Background 

 

 
(b) Foreground: green ellipse indicating the person and the red 

trace of the lowest part of the ellipse 

 

 
(c) Trace of walking person 

 

Figure 3: Tracking a human 

 

 

  
 

Figure 4 the result of matching video trace to 3D indoor path:  

the computed trace in red (left) and the matched trace on the 3D 

indoor model (in blue) 

 

5. EXPERIMENTS 

We have performed several experiments at different buildings. . 

As discussed above, we detected moving target with Gaussian 

Mixture Model, using inverse binary thresholding to separate 

foreground and background. We displayed the feet point (the 

bottom point of bounding contour of the human) of each frame 

in the background model, which created continuous trajectory. 

(Fig. 3). Applying the approach introduced in section four, we 

matched traces of moving target to the nearest 3D network edge, 

and those edges became paths of the human in the 3D network. 

 

 
 

Figure 5 the result of 3D indoor path tracking. (the purple line 

denotes the derived path) 

 

If the visible range of multiple surveillance cameras can cover 

the whole 3D path space and the single moving traces detected 

by each camera can be matched to the corresponding 3D indoor 

network, we can get the complete single moving 3D indoor path 

by simply connecting these 3D paths. If the visible range of 

multiple surveillance cameras can’t cover the space completely, 

we might obtain multiple 3D paths. In this case, we need to 

create the complete path based on the 3D network model. Fig 4 

and Fig. 5, show the results. The red line on Fig 4 is the single 

human traces; the blue line is the virtual path after the matching. 

The purple line on Fig 5 is the reconstructed path, and we 

speculate the whole single moving path based on 3D path model. 

 

6. SUMMARY AND FUTURE WORK 

This paper presented an approach for single human tracking 

from surveillance camera and making use 3D network model. 

The experiments have convincingly shown that the results are 

stable if the person is walking. As video surveillance systems 

are widely available in many buildings, we believe this 

approach have a great potential in indoor security surveillance 

and indoor navigation. As mentioned above our approach is 

applicable for only one moving person. In future research we 

will investigate possibilities to follow multiple moving humans. 
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