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ABSTRACT:

The paper presents a novel method to measure 3-D deformation of a large metallic frame structure of a crane under loading from one to
several images, when the cameras need to be attached to the self deforming body, the structure sways during loading, and the imaging
geometry is not optimal due to physical limitations. The solution is based on modeling the deformation with adequate shape functions
and taking into account that the cameras move depending on the frame deformation. It is shown that the deformation can be estimated
even from a single image of targeted points if the 3-D coordinates of the points are known or have been measured before loading using
multiple cameras or some other measuring technique. The precision of the method is evaluated to be 1 mm at best, corresponding to

1:11400 of the average distance to the target.

1. INTRODUCTION

Image-based deformation measurement is typically based on a
stationary camera set-up. The object points are measured before
and after deformation, and the difference tells the object defor-
mation. The cameras may also move but then there is something
in the object space which remains the same so that the orientation
of the cameras can be solved before and after deformation with
respect to a common coordinate system.

However in this paper, we are facing a measurement task, where
these assumptions are no longer valid. The task deals with mea-
suring the deformation of a large metallic frame structure of a
crane when it is loaded with a weight of 40000 kg. The size of
the frame is 25 X 8 m and it is located at a height of 25 m. Fig-
ure 1 shows a view of one camera illustrating the frame structure
and a carriage across the frame in the middle of the longitudinal
direction. Due to physical limitations, the cameras need to be at-
tached to the deforming frame so that they move when the object
deforms neither there is anything stable in the scene which could
be used to link the camera orientations to the same system before
and after deformation. The structure also sways during loading
so that the image capturing needs to be synchronized. The cam-
eras are considered to move from one orientation to another and
the measuring to occur in temporary static conditions in both ori-
entations.

The lack of a stable datum for deformation estimation has been
previously addressed by considering only relative changes deter-
mined, e.g., by aligning the point sets so that the difference in the
direction of one coordinate is minimized (Fraser and Gustafson,
1986). Another approach is proposed by Papo (1986), where a
free net adjustment is extended with additional parameters and
constraints, which enable to remove the datum defect. Shahar
and Even-Tzur (2014) use the same principle to extract a datum
area, where changes are due to deterministic dynamics and can
be estimated. Deformation of the rest of the network is obtained
after cleaning the deterministic component from the data.
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Figure 1: Frame and carriage of a crane to be measured.

We propose to address the crane deformation problem by mod-
eling the deformation with appropriate shape functions, the pa-
rameters of which are solved in a least squares adjustment mini-
mizing the difference between observed and modeled image co-
ordinates of circular target points attached onto the object. The
shape functions constrain the problem so that it becomes solv-
able. The key issue is to find shape functions which adequately
describe the deformation and then, to determine the dependence
of modeled image observations on the shape function parameters.

Shape functions have been previously used to constrain possi-
ble deformations in order to cope with weak imaging geometry
or even estimation from a single image (Jokinen and Haggrén,
2011). They assume that the orientations of the cameras remain
fixed while in Jokinen and Haggrén (2012), the method is ex-
tended to changing orientations. The problem can also be viewed
as non-rigid registration of 3-D data sets, which thus assumes that
3-D point sets, surfaces, or volumes are first reconstructed before
and after deformation, and then a non-rigid transformation is esti-

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-I11-5-11-2016 11



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume lII-5, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

mated to account for rigid changes in orientations and a non-rigid
change or deformation of the object. To regularize the problem,
constraints are typically included for the shape of the deforma-
tion (Hirshberg et al., 2012). For example, Chui and Rangarajan
(2003) assume that the deformation can be presented as a thin-
plate spline, while Rueckert e al. (1999) apply B-splines, which
can better describe local deformations. Small local deformations
may be also recovered using elastic models (Bajcsy and Kovacic,
1989). If certain structures of the object should not change the
shape, a penalty term may be included which forces the trans-
formation to be rigid in that region (Loeckx et al., 2004). In
many cases, the shape is represented as a linear combination of
shape bases and the measurements include only image observa-
tions. The non-rigid shape and motion are then solved using rank
constraints on the measurement matrix and orthonormality con-
straints on camera rotations (Bregler et al., 2000; Brand, 2001;
Torresani et al., 2001), while Xiao et al. (2006) show that a
unique solution is obtained when basis constraints are also in-
cluded. Fayad et al. (2009) extend the method to a quadratic
deformation model, which is able to cope with object bending,
stretching, shearing, and twisting. Most of these approaches that
utilize shape bases assume an orthographic camera projection
model, while Hartley and Vidal (2008) propose an algorithm for
a perspective camera.

For the crane deformation, however, we can do more than just
non-rigid registration as changes in the camera orientations are
not arbitrary but directly dependent on the frame deformation.
Further, we need not reconstruct the 3-D points after deforma-
tion explicitly, but only the shape function parameters are solved,
which can be used to evaluate the deformation at any point. As
measurements, we also use only the image coordinates of the tar-
get points in a single image or optionally in multiple images after
deformation. Ranta (2015) studies the same problem but registers
the 3-D object points before and after deformation by assuming
that one beam of the structure remains unchanged which leads
to less accurate deformation estimation. Our main contribution is
thus to couple changes in the cameras orientations with the object
deformation for estimation of deformation with high precision.

The paper is organized as follows. The methods are described in
Section 2 including description of the object geometry and cam-
era set-up, introducing a mathematical model for the deformation
utilizing shape functions, deriving the influence of deformation
on the camera orientations, and solving the deformation by least
squares adjustment. Experimental results are discussed in Section
3 and conclusions are presented in Section 4.

2. METHODS
2.1 Object Geometry and Camera Set-up

The object geometry is illustrated in Fig. 2. It consists of a metal-
lic frame supported by four columns at the corners. The frame is
not anchored but stands on wheels. In the middle of the longi-
tudinal direction, there is a carriage k across the frame, which is
loaded with a heavy weight. Due to loading, the carriage bends
downwards. This causes beams a and b to bend downwards and
slightly towards the carriage since the beams are assumed non-
stretchable. Beams a and b drag also beams ¢ and d towards the
carriage, while the columns bend slightly. Four calibrated indus-
trial Mightex SME-C050-U cameras of resolution of 2560 x 1920
pixels are attached to the beams: one at beam a, one at beam b,
and two at beam d. The camera viewing directions are towards
beam c. The imaging geometry is not optimal for high measur-
ing accuracy but dictated by physical limitations. The interior

orientations of the cameras are assumed to remain stable during
loading as the camera optics are locked. The image capturing
is synchronized with a hardware trigger in order to cope with
considerable swaying of the structure that occurs during loading.
To measure the deformation, circular target points are evenly at-
tached to the carriage and beam c (see Fig. 1). In addition, some
bolts visible on beams a and b are used as measurement targets.
For solving the scale of photogrammetric measurements, a scale
bar with a known length is attached to the carriage. The scale bar
moves but does not deform when the structure is loaded.

Figure 2: Object geometry.
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Figure 3: Measured target points and camera locations in the ob-
ject coordinate system before loading.

The image coordinates of the targets are measured manually be-
fore and after loading using a centroiding tool of iWitness soft-
ware (Www.iwitnessphoto.com). The software solves also the im-
age orientations and the 3-D object coordinates needed before
loading. An object coordinate system shown in Fig. 3 is defined
as follows. Planes are fitted to the points on the carriage and on
beam c. The average of the normals of these planes defines the
direction of the Y -axis. The direction of the X -axis is given by
orthogonal projection of the normal of a plane fitted to the points
on beam a onto a plane perpendicular to the Y-axis. The direc-
tion of the Z-axis is obtained by the cross product of directions
of X- and Y-axes. The origin is located at the intersection of
three planes defined as follows. The first plane is defined by the
X-axis direction and the mean of points on beam a, the second
plane is defined by the Y -axis direction and the location of the
one of the cameras on beam d the projection center of which has
a smaller Y -coordinate value, and the third plane is defined by the
Z-axis direction and the lowest point on beam a. The 3-D points
reconstructed originally in a camera coordinate system of one of
the cameras are transformed to the object coordinate system and
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also, the exterior orientations are computed with respect to the
object coordinate system. The lines in Fig. 3 help to illustrate the
inner outline of the frame. The line between points A and B is the
intersection of the XY-plane with a plane perpendicular to the Y-
axis and passing through the center of points on the carriage. The
same holds for the line below points on beam c. Point C is the
Y-axis intercept of a plane perpendicular the Y-axis and passing
through the center of points on beam c.

2.2 Model for Object Deformation

The object is assumed to deform according to the following math-
ematical model. The carriage bends downwards according to a
shape function

AZ = f(Ya,a) + BX (X — Xp), )

where « and 8 are unknown parameters and f (Y4, «) is the de-
formation of beam a at point A.

Beam a deforms downwards according to another shape function
AZ=aY(Y -Yc) = f(Y,a). 2)

This model implicitly assumes that the maximum deformation in
Z appears at Yp = Y /2. More complex models such as piece-
wise defined polynomials of second degree (a different polyno-
mial for the part of beam a which is in front of the carriage and
which is behind of the carriage) should thus be used if the car-
riage is not placed in the middle of the longitudinal direction of
the frame. Since beam a is assumed non-stretchable, the length
lg(Y, AY, a)| of the deformation curve AZ = f(Y, «) from the
mid point to the deformed point equals the distance from the mid
point to the measurement point before deformation. Thus, defor-
mation AY («) is solved from the equation

Y+AY () ( P

g(Y,AY,a)z/ 1+ (2

Yp oY

(3)

Denoting the partial derivative of f by V. = «(2Y — Y¢) and
denoting Vi = a(2(Y + AY («)) — Yc¢) yields

Vi
L7 irveav
2a /g
1 /
= E |:VT 1 + ng =+ a,I‘SiIthT:| =Y — YD.

“
Equation 4 is nonlinear in AY'. Tt is thus solved iteratively. Let
Yo =h(Yc —Yp)/H,h=0,...,H, where H = 1000. Since
9(Y,0, a) is increasing in the interval Y € [Yp, Y¢], an initial
estimate for AY is obtained by finding the value h = L, where
the sequence

g(Y,AY, )

g(Yn,0,a) = |Y = Yp|, h=0,....,.H ®)
changes the sign. The initial estimate is then
AY® = Yp 4 (Y — Yp)sgn(Y — Yp). (6)

For the refinement of the initial estimate, Eq. 4 is linearized and
at each iteration, the correction AV7r is obtained from

Y —Yp— [V}Aﬂ (V) + arsinhvﬁ] /(4a)
- L+ (V)2

AVr

)

@)
where V2 = a(2(Y + AY?) — Y¢). Further, the correction
A(AY) = AVr/(2a). Beam b is assumed to deform similarly
as beam a.

(Y,a))2dY = Y —Yp.

Deformation of beam c is modeled as a rotation around a line
parallel to the X-axis and having an equation ¥ = Yo, 2 =
Zg, where Zg(a) and the rotation angle 6(a) depend on the
deformation of beam a. The rotation angle is obtained from the
slope of normal of curve in Eq. 2 at Y = Yo + AYe. Itis given
by

6(a) = arccot(—1/(a(Ye + 2AYc))). (8)

The coordinate Zg is the intercept of the normal with line X =
0,Y = Y given after some simplification by

ZE(a) = a(Yc + AYc)AYc + AYc/(a(Yc + QAYc)). ()]

Beam d is assumed to deform similarly as beam c except that the
rotation is around line Y = 0, Z = Zg by angle —6.

2.3 Changes in Camera Orientations

Due to object deformation, the projection centers of cameras on
beams a and b change by AYcam and AZcym similarly as the
measurement points move according to Eqs. 2 - 7. The cam-
era rotations change by a rotation Rx () around a line paral-
lel to X-axis and passing through the changed camera location.
The rotation angle is obtained from the slope of tangent of curve
AZ = f(Y, «) at the changed camera location and it is given by

o(a) = arctan(a(2(Yeam + AYcam(a)) — Yo)). (10)

Small corrections by rotations Rx (w,) and Rz (k) around lines
parallel to the X-axis and twice rotated Z-axis, respectively, and
passing through the changed camera location are included to com-
pensate for swaying of the object during loading. The changed
rotation matrix of the camera on beam a is obtained from

Riew = RiaRz(ka) Rx (wa) Rx (), an

where Ry is the rotation matrix before loading. A similar for-
mula holds for the camera on beam b.

The cameras on beam d rotate by —6 () around a line parallel
to the X-axis and passing through (0,0, Zg). Small corrections
of rotations around lines parallel to the X-axis and twice rotated
Z-axis and passing through (0,0, Zg) are also included so that

Ry = RA4Rz(ka)Rx (wa) Rx (—0). (12)

The changed camera location is given by

thew = to + Rx (0) Rx (—wa) Rz (—ka) (650 — te), (13)
where t&; is the translation vector before loading and tp =
[0,0, Zg]".

2.4 Least Squares Adjustment

According to the collinearity equations, the measured image co-
ordinates x;x, yir of target point ¢ in camera k after deformation
are related to the object coordinates X, Yik, Zir in the camera
coordinate system of camera k after deformation by

Tik + Vaik = —cu Xi/Zik = Tig, (14)
Yik + Vyix = —ckYin/Zix = Y

where ¢y, is the camera constant of camera k, the image coordi-
nate origin is in the principal point, and vz, vyx are residuals
in the x and y directions, respectively. Further, we have

(Xik, Yir, Zin] " = Ree (X, V8, ZHT —thy),  (15)
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where the deformed object coordinates
(X2 Y 20T = (XL Yi+ A Zi+ AZ]T (16)

and the changed rotation matrices RE., and translation vectors
t”,, depend on the shape function parameters c, 3 and on the
rotation angles w”, k¥ (two parameters for each camera k). For
K cameras, there are thus 2 + 2K parameters, which are solved
by minimizing the merit function

K N K N
X3 =0 D win (@i — xa)® + (Wi — yin)*]/ DD war,
k=1 i=1 k=1 i=1

a7
where w; are weights. The weight w;; equals one if the dif-
ferences between the measured and modeled ;5 and y;, coor-
dinates are both below an adaptive threshold. The threshold is
based on the mean and standard deviation of differences in the im-
age coordinates of points having positive weight at the previous
iteration, and it gets tighter as the iteration proceeds similarly as
proposed for registration of curves and surfaces by Zhang (1994).
Otherwise, the weight equals zero, and also when the point is not
visible in camera k.

The minimization problem is solved using the Levenberg-Marg-
uardt algorithm. Consequently, the derivatives with respect to
the unknown parameters are needed. These can be derived using
elementary calculus after figuring out how the modeled image
coordinates depend on the parameters. For points on the carriage,

x;k - w'/zk(AZl (a7 /6)7 Rl’lcew(a7 wky K’k)z tx’few(OQ wk7 H'k))

y;k (AZZ(Oé, ﬂ): Rll'few(aa wkv K'k)v tll*few(av wkv K'k))
(18)

/
Yik
For points on beams a, b, and c,

i = Tip (AYi(), AZi(@), Ryeow (", £5), by (@, 0", £1))

19)
The derivative 9(AY;)/O« is obtained for points on beams a and
b by differentiating Eq. 4 with respect to «. It yields

1 .
el [VT\ /1+VZ+ arsthT]

(20)
1 7 Vr O(AY;)
R 1 2| L 20—~ | =
+ 200 Ve { o e Oa 0
from which we can solve
0(AY;) _ 1 v arsinhVr 7 @1
Oa 42 m

where Vi = a(2(Y; + AY;(a)) — Yo).

3. RESULTS

The results of deformation estimation with all the four cameras
are illustrated in Fig. 4. It shows that the points on the carriage
and beams a and b move mainly downwards while the points
on beam ¢ move mainly towards the carriage. The cameras on
beam d move also mainly towards the carriage and the cameras
on beams a and b move mainly downwards. In order to verify
that the solution is correct, the 3-D points after deformation are
projected onto the images using the changed orientations. Figure
5 shows the projected points as red plus signs, which correctly hit
the image targets visible by this camera.

The method was then tested with different number of cameras
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Figure 4: Direction and 100 times the magnitude of movement of
target points and camera locations due to object deformation.

Figure 5: 3-D points (red plus signs) projected onto the image
after deformation. The image has been cropped (zoom in to see
the red plus signs).

ranging from one to four cameras and with all the possible 15
combinations of them. The method worked in all cases except in
two, where the deformation in the middle of beam a and in the
middle of beam b was larger than in the middle of the carriage.
The parameter 5 was negative in these cases, which is unnatu-
ral. The mean and standard deviation of quantities that character-
ize the deformation are given in Table 1 calculated using all the
combinations of the cameras. The maximum deformations are
reported in the middle of the carriage and in the middle of beam a
or beam b. The RMSE gives the difference between the measured
image coordinates and the 3-D points projected to the image after
deformation using all the points, while the square root of the merit
function x? is based only on points with a positive weight. The
standard deviations describe the variation due to different camera
configurations. For the carriage with well-defined target points,
a standard deviation of 1 mm is achieved while for beams a and
b, the standard deviation is larger as the bolt targets are more un-
certain to measure and they are also located farther away from
the cameras on the average. These standard deviation values are
regarded as experimentally estimated precisions of the quantities
mentioned, although the number of camera combinations is quite

Mean  Std
Max deformation of carriage / mm -25 1
Max deformation of beams a and b/ mm -22 6
Rotation angle 6 of beam c / degrees 0.19  0.05
RMSE of all image points / pixels 0.92  0.30
(x*)"/* / pixels 031 0.06

Table 1: Mean and standard deviation of deformation results of
all 15 combinations of one to four cameras.
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small. No ground truth for the deformations was available so that
the accuracy of the method could not be verified. The swaying of
the structure also limits alternatives that might possibly be used
for acquiring such reference data.

-23 T T T

24+

Max deformation carriage / mm

The dependence of the method on the number of cameras is fur-
ther studied in Figs. 6 - 8, which show the deformation in the
middle of the carriage where it is at its maximum, the deforma-
tion in the middle of beam a or beam b, and the rotation angle
of beam c, respectively. The red crosses are the deformation or
rotation angle values averaged over all combinations of cameras
possible for the given number of cameras. For 1, 2, and 3 cam-
eras, there are thus 4, 6, and 4 combinations, respectively. The
blue lines show the uncertainty given by the standard deviation
of the deformation values. For four cameras, there is only one
combination so that the standard deviation is not defined. It can
be seen that the estimation of deformation is possible using only
a single camera although the lowest uncertainty is obtained for
three cameras.
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Figure 6: Deformation in the middle of the carriage £ sample
standard deviation as a function of the number of cameras.
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Figure 7: Deformation in the middle of beam a or beam b £
sample standard deviation as a function of the number of cameras.
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Figure 8: Rotation angle of beam ¢ + sample standard deviation
as a function of the number of cameras.
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Figure 9: Analytically derived precision of deformation in the
middle of the carriage and in the middle of beam a or beam b as
a function of the number of cameras.

x10°

beam c\

8l 4

Precision of rotation angle / degree
(&

1 . .
1 2 3 4

Number of cameras

Figure 10: Analytically derived precision of the rotation angle of
beam c as a function of the number of cameras.

The precision (square root of variance) of the quantities listed in
Table 1 was also estimated analytically through error propaga-
tion from the covariance matrix of the parameters given by the
inverse of the coefficient matrix of the normal equations multi-
plied by the reference variance estimated during least squares ad-
justment. The precision values on the average for different num-
bers of cameras are shown in Figs. 9 - 10. The precision clearly
increases with increasing number of cameras as expected. The
values in Figs. 9 - 10 are considerably lower than the standard de-
viations in Table 1 calculated experimentally with different com-
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binations of cameras. Possible reasons for this include that the
method is sensitive to image viewpoint or there are systematic er-
rors caused by inaccuracies in interior or exterior orientation, or
that the mathematical model for deformation does not perfectly
describe the true deformation. The considerable swaying of the
structure during loading is considered to be the main reason as
it causes deformations which have not been modeled although
the orientations of the cameras are corrected by small rotations.
According to the specifications of the cameras used, the camera
trigger delay is less than 0.2 ms, which describes the uncertainty
in synchronization of image capturing. However, the obtained
standard deviation of 1 mm for the maximum deformation of the
carriage is better than the measuring tolerance of 4 mm set by
the manufacturer of the crane. When three cameras are used,
the standard deviation of deformation in the middle of beam a or
beam b is 0.7 mm, which is also below the tolerance. For com-
parison, the iWitness software reports overall accuracies of 7 mm
and 6 mm for the 3-D object points before and after deformation,
respectively, so that estimating the deformation as a difference
between the object coordinates does not give satisfactory results.
According to iWitness, the imaging geometry is moderate and the
smallest angles of intersection of 3-D points are 10.7°. The esti-
mated accuracy of image referencing before deformation is 0.16
pixels, which also affects the precision of the scale determined by
measuring the image coordinates of circular targets at both ends
of the scale bar. The length of the scale bar is known with an
accuracy of 0.001 mm. However, we note that for the proposed
method, all random errors in image measurements, orientations,
scale, and 3-D points are included and fully accounted for in the
covariance matrix of the shape function parameters, which is used
to estimate the analytically derived precision values.

4. CONCLUSIONS

The paper has presented a new method to estimate the deforma-
tion of a large frame structure in challenging conditions, where
the imaging geometry is not optimal, the structure sways during
loading, and the cameras move along with the deforming body
without anything stable in the scene. The proposed solution was
based on modeling the object deformation with two quadratic
shape functions and assuming that the beams of the structure are
non-stretchable. A careful analysis was then performed to derive
how the measurement targets move and the exterior orientations
of the cameras change as a function of the shape function param-
eters estimated in a least squares adjustment. The experimental
results show that the deformation of the carriage can be measured
with a precision of 1 mm on the average using any combination
of one to four cameras, while a similar precision is obtained for
beams a and b, when three cameras are used. These values are
better than the measuring tolerance requested by the manufac-
turer of the crane, which verifies that the mathematical model
proposed for the deformation is adequate. Future research in-
cludes continuous monitoring of the frame deformation with one
or more video cameras during crane operation. For such an ap-
plication, it is advantageous that the method works also with a
single camera so that the need to synchronize the image captur-
ing is eliminated. However, the precision is not so high as with
multiple cameras. Continuous monitoring would also allow to
learn how the frame deforms in different situations, which could
be used to improve the mathematical model for deformation and
to lessen the influence of measuring uncertainties on the preci-
sion of the results. Different configurations of targets should be
also tested since the distribution, number, and distances of target
points might play a crucial role in determining a correct deforma-
tion shape.
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