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ABSTRACT: 

 

In the Alps as well as in other mountain regions steep grassland is frequently affected by shallow erosion. Often small landslides or 

snow movements displace the vegetation together with soil and/or unconsolidated material. This results in bare earth surface patches 

within the grass covered slope. Close-range and remote sensing techniques are promising for both mapping and monitoring these 

eroded areas. This is essential for a better geomorphological process understanding, to assess past and recent developments, and to 

plan mitigation measures. Recent developments in image matching techniques make it feasible to produce high resolution 

orthophotos and digital elevation models from terrestrial oblique images. In this paper we propose to delineate the boundary of 

eroded areas for selected scenes of a study area, using close-range photogrammetric data. Striving for an efficient, objective and 

reproducible workflow for this task, we developed an approach for automated classification of the scenes into the classes grass and 

eroded. We propose an object-based image analysis (OBIA) workflow which consists of image segmentation and automated 

threshold selection for classification using the Excess Green Vegetation Index (ExG). The automated workflow is tested with ten 

different scenes. Compared to a manual classification, grass and eroded areas are classified with an overall accuracy between 90.7% 

and 95.5%, depending on the scene. The methods proved to be insensitive to differences in illumination of the scenes and greenness 

of the grass. The proposed workflow reduces user interaction and is transferable to other study areas. We conclude that close-range 

photogrammetry is a valuable low-cost tool for mapping this type of eroded areas in the field with a high level of detail and quality. 

In future, the output will be used as ground truth for an area-wide mapping of eroded areas in coarser resolution aerial orthophotos 

acquired at the same time. 

 

 

                                                                 
 Corresponding author 

1. INTRODUCTION 

In the Alps as well as in other mountain regions shallow eroded 

areas occur frequently on steep grassland slopes from the 

montane to alpine elevation zone (Wiegand and Geitner, 2010). 

They are characterised by displacement of vegetation together 

with unconsolidated material. This type of eroded areas often 

results from small landslides or snow movements. Secondary 

erosion (e.g. by surface runoff) can deepen and expand the 

eroded areas. By mobilising and transporting material, these 

processes play a role for hillslope evolution. Depths exceed 

rarely more than a few decimetres and individual eroded areas 

typically range from 2 to 200 m² (Tasser et al., 2005; Wiegand 

and Geitner, 2010). However, affected slopes typically feature 

many of these small areas (e.g. >30 areas per ha; Wiegand et al., 

2013). The resulting loss of soil can have negative impacts on 

mountain agriculture and promote natural hazards. Thus, for 

example the soil conservation protocol of the Alpine 

Convention explicitly stipulates the monitoring and prevention 

of soil erosion (CIPRA, 2005). 

 

An area-wide, yet accurate monitoring of eroded areas is 

required to gain a profound understanding of the erosion 

phenomenon and its dynamics. This is essential to evaluate 

current developments, estimate future trends and give 

recommendations on sustainable land management (Wiegand 

and Geitner, 2010, 2013; Meusburger and Alewell, 2014). 

Mapping in the field by global positioning system (GPS) 

surveys or manual digitalisation based on orthophoto 

interpretation, are often subjective and inaccurate. Moreover, 

given the small size and large number of the eroded areas, these 

approaches are unfeasible for large study areas and multi-

temporal mapping. 

 

Today geomorphological mapping increasingly relies on 

automated techniques for classifying remotely sensed images 

and digital elevation models (DEMs) (Otto and Smith, 2013). 

Morphometric parameters, such as slope or curvature are 

derived to characterise geomorphological forms and processes. 

Arithmetic operations with image bands can highlight certain 

object classes. Vegetation indices are often used to classify 

vegetation and separate it from other classes (e.g. bare earth) in 

remote sensing data. The Excess Green Vegetation Index (ExG; 

Woebbecke et al., 1995) is one of the most popular indices if 

only bands in the visible light are available. Some studies apply 

object-based image analysis (OBIA) for geomorphologic clas-

sification of remote sensing data (e.g. Rau et al., 2014; 

Rutzinger et al., 2008; Schneevoigt et al., 2010; Kim et al., 

2011). Compared to pixel-based classifications OBIA 

approaches often show superior performance with high 

resolution remote sensing data, particularly when pixels are 

smaller than the objects of interest. OBIA enables to combine 
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image processing and spatial concepts (Blaschke, 2010). OBIA 

approaches are based on an initial segmentation of images or 

geometric data (e.g. 3D point clouds) into spatial entities called 

objects. Each object is analysed or assigned to a semantic class 

(classification) according to its characteristics in terms of size, 

shape, location, spectral properties or its spatial context (Bishop 

et al., 2012; Drăgut and Blaschke, 2006). A few recent studies 

(Torres-Sánches et al., 2015a, 2015b) combine automated 

thresholding of classification features and OBIA for vegetation 

classification in UAV (unmanned aerial vehicle) images. This 

strategy avoids the need for training areas in a classification 

procedure. 

 

To map and analyse the spatio-temporal dynamics of shallow 

erosion Wiegand et al. (2013) used multi-temporal orthophotos. 

They used a range of thresholds for the classification of colour 

channels and compared the results to a classification with an 

expert-based threshold. Uncertainties in such a mapping 

approach result from limitations in the resolution and 

georeferencing of orthophotos as well as choice of the 

classification threshold. For a calibration and accuracy 

assessment of future classifications with updated orthophotos 

Wiegand et al. (2013) suggest collecting reference data in the 

field. 

 

Reference data can be acquired for instance by measuring points 

at the boundary of eroded areas with a (differential) global 

positioning system. Modern close-range sensing methods 

(terrestrial laser scanning or photogrammetric image matching 

methods) can survey surfaces and geomorphological forms with 

a high level of detail and accuracy. Heng et al. (2010) and 

Rieke-Zapp and Nearing (2005) tested close-range 

photogrammetry to measure soil erosion (volumetric/elevation 

change) within a laboratory plot. Considering the type of 

erosion described in the beginning, we are at first interested in 

the areal extent of eroded surface. This is what can be extracted 

from remote sensing data with a larger spatial extent (Wiegand 

et al., 2013). Since we are about to develop and validate such 

area-wide approaches, we focus on this aspect here. 

 

Geomorphological objects, however, often lack crisp 

boundaries. Instead, transitions are often fuzzy or gradient-like 

(Blaschke et al., 2014). This hampers an objective and 

repeatable survey of eroded areas with manual delineation in the 

field (e.g. with a differential GPS) or in close-range sensing 

data, since it is often unclear where to define and measure the 

boundary exactly. An automated delineation of eroded areas in 

close-range data is more objective but challenging as well. 

Again, the fuzziness of natural objects, as well as the noisiness 

of high resolution data representing natural surfaces hampers 

the delineation of discrete objects. Finally, the spectral 

characteristics of the classes vary with space and time (e.g. 

colour of grass depending on phenology, differences in 

illumination, colour of eroded areas depending on lithological 

differences of soil and substrate). This is compromising the 

robustness of a classification with a fixed threshold as well as 

its transferability to other study areas or even repeated 

measurements in the same area. 

 

In this paper we propose to survey shallow eroded areas (mean 

size is about 30 m²) with a high level of detail and accuracy 

using close-range photogrammetry. Terrestrial oblique images 

of a hillslope scene affected by shallow erosion are processed 

with the image matching software Agisoft Photoscan (Agisoft, 

2015) where Structure-from-Motion and dense matching 

algorithms are implemented (Snavely et al., 2006, 2008; 

Fonstad et al., 2013; Westoby et al., 2012; Remondino et al., 

2014). This produces 3D point clouds and centimetre resolution 

orthophotos (with 2 cm ground sample distance (GSD)). We 

present an automated approach to extract eroded (bare earth) 

and non-eroded (grass-covered) parts of each scene by object-

based image classification. Histogram based thresholding 

optimizes the classification with the Excess Green Vegetation 

Index (ExG) in each scene without user intervention. This 

workflow is tested with 10 test plots / scenes and compared to a 

manual classification of the same orthophotos. 

 

In upcoming projects this approach shall be used to acquire 

reference data (ground truth) for automated mapping of eroded 

areas in coarser scale remote sensing data (such as orthophotos 

acquired from unmanned or manned aircraft). This reference 

data is required for i) training the classifiers and ii) accuracy 

assessment. Furthermore, repeated surveys with this close-range 

sensing approach can be used for detailed change detection and 

plot to local scale monitoring of selected erosion hot spots. 

 

In the following, we describe the acquisition of terrestrial 

images in the field and the production of orthophotos and point 

clouds from these images. Then, we propose an approach for 

segmentation and classification of eroded areas in an 

orthophoto scene. In Section 3 we show results for this 

classification in ten different scenes. We discuss these results in 

Section 4 and finally conclude our work in Section 5. 

 

 

2. METHODS 

2.1 Data Acquisition 

The data used within this work was acquired at an east-facing, 

30 - 40 degree steep slope, located below the summit of Hohe 

Warte (2398 m) in the Central Alps of Tyrol (Austria). Until the 

1960s the slope was used as a meadow for hay making but 

today it is only used as a pasture for sheep. Ten different scenes 

on this slope were chosen to contain a bare earth surface patch 

where grass cover, soil and unconsolidated material had been 

eroded. Other unvegetated surface types, such as rock walls or 

scree slopes were avoided. Hence, the classification of each 

scene into eroded and non-eroded area (Section 2.4) 

corresponds basically to the task of separating grass covered 

(non-eroded) hillslope surface from eroded (bare earth) areas. 

 

For each scene a set of several hundred oblique images was 

taken. We mounted the camera, a Canon 5D, on a pole to 

elevate it higher above the ground. The shutter was released 

with a cable remote control. The images were acquired from 

multiple positions in an approximately circular pattern around 

the eroded area, with a focal length of 24 mm. For use as 

ground control points (GCPs) four polystyrene spheres (with a 

10 cm radius) were pinned to the ground with 300 mm nails. 

Their positions were surveyed with a real-time kinematic 

differential Global Positioning System (RTK-DGPS). 

  

2.2 Image Matching 

Three-dimensional (3D) models of the scenes were 

reconstructed from the image sets in Agisoft Photoscan 1.1.6 

(Agisoft, 2015). This software implements the Structure-from-

Motion (SfM) approach (Snavely et al., 2006, 2008; Fonstad et 

al., 2013) and dense matching (Remondino et al., 2014). The 

GCPs were used to georeference the models. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-5-137-2016

 
138



 

The accuracy of the GCPs is crucial for the accuracy of the 

models since they were used for georeferencing (and thus 

scaling). The precisions of the DGPS survey were reported to be 

in the order of 1 – 2 cm. According to the provider of the GPS 

correction data, accuracies of ± 1.5 cm horizontally and ± 4 cm 

vertically (mean error with a confidence level of approximately 

68%) can be assumed for the corrected positions under good 

conditions (Federal Office of Metrology and Surveying, 2015). 

Moreover, inaccuracies are introduced by local conditions 

which are not corrected with the differential technique as well 

as by placing the spheres and the antenna. Thus, we estimate the 

accuracies of the GCPs to be in the order of 10 cm. 

 

Moreover, non-linear distortions of the 3D model can cause 

inaccuracies (Fonstad et al., 2013). These can result from the 

SfM based reconstruction of a sparse point cloud and estimation 

of the camera parameters using convergent terrestrial oblique 

images. We tried to reduce such inaccuracies by including the 

GCPs in the bundle adjustment. Moreover, we assume the 

image block to be fairly stable due to the large number of 

images with high overlap. 

 

The 3D models were textured to produce orthophotos with 2 cm 

resolution by mosaicking the image set. 3D point clouds were 

aggregated to a raster digital elevation model (DEM, cell size 

2 cm), using the 25% trimmed mean of the points’ z-values in 

each raster cell (to discard outliers). The orthophotos, DEMS 

and point clouds were manually cut to exclude peripheral parts 

of each scene where the quality of the image matching is poor. 

 

 

Figure 1: RGB coloured 3D point cloud of scene 10. Blue 

planes and black lines represent the reconstructed camera 

positions and orientations. 

 

2.3 Segmentation 

Segmentation and the subsequent classification workflow are 

implemented with Python scripts (Python Software Foundation, 

2015) and SAGA GIS (Conrad et al., 2015). Each scene is 

segmented by seeded region growing (Adams and Bischof, 

1994) based on four raster features: the RGB (red, green, blue) 

channels of the orthophoto and slope. The morphometric 

attribute slope is used to constrain the region growing at edges 

of the eroded area where the spectral features may be influenced 

by shadow. Slope is derived from the raster DEM with a 

window size of 5x5 cells using the method proposed by Wood 

(1996). Seed points are generated as the minima of variance of 

the normalized features (R, G, B and slope) using a bandwidth 

of 15 cells (Adams and Bischof, 1994). 

 

2.4 Vegetation Index and Classification 

2.4.1 Excess Green Vegetation Index (ExG): In order to 

classify grass and eroded area we calculate the Excess Green 

Vegetation Index (ExG; Woebbecke et al., 1995) from the red 

(R), green (G) and blue (B) colour bands of the orthophotos, 

with 

 

ExG  =  2g  –  r  –  b  (1) 

 

and 

 

g  =  G / (R  +  G  +  B)  (2) 

r  =  R / (R  +  G  +  B)  (3) 

b  =  B / (R  +  G  +  B).  (4) 

 

2.4.2 Classification threshold: The data was acquired on 

several days between July and late September. Along with the 

phenological cycle of the grass, its colour changed from green 

towards brown. Moreover, differences in the spectral feature 

space result from varying illumination as well as variability of 

the bare earth properties (grain sizes of the material, soil vs. 

rock). An automated thresholding for the classification with 

spectral features is implemented to adapt to the characteristics 

of each scene individually. This will allow batch processing of a 

large number of scenes without the need for manual threshold 

selection or a supervised classification with training areas. 

 

Despite the brownish colour of the grass in some scenes the 

ExG values still tend to be higher in the grass covered part of 

the scene than in the eroded area. Thus, for the thresholding we 

assume a bimodal frequency distribution (histogram) of the ExG 

values, with each class forming one peak. In order to enhance 

the separability of the two classes grass and eroded a Gaussian 

filter is applied to blur the ExG raster. The parameters standard 

deviation σ = 1 and search radius r = 2 are used. This 

processing step has advantages for the subsequent 

determination of the classification threshold because it 

smoothes the ExG histogram and pronounces its bimodality. 

For the binarization of images with bimodal histograms Otsu’s 

method is frequently used (Otsu, 1979). This method, however, 

has problems if the two clusters in the histogram differ in size. 

In such cases our initial tests found the threshold to be biased 

towards the larger cluster. Therefore, we apply a different 

technique to optimize the threshold. The ExG histogram is 

analysed to find the two peaks first. Subsequently, the minimum 

between the peaks is searched and used as the classification 

threshold. 

 

2.4.3 Object-Based Classification: The raster based feature 

ExG is aggregated to the segments as mean values per segment. 

The resulting segment feature ExGmean characterizes the 

segments (objects) in terms of spectral properties. With the 

classification threshold determined from the ExG raster 

histogram the segments are classified as grass or eroded 

depending on their ExGmean value. Finally, the classification 

output can be vectorised for further analysis. 
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3. RESULTS 

3.1 Image Matching 

Table 1 summarizes the SfM-based reconstruction of the 10 

scenes. This overview is intended to evaluate the quality of the 

image matching. The SfM procedure was able to align between 

68% and nearly 100% of the images that were used as input. 

This resulted in 36,000 - 110,000 tie points per scene (sparse 

point cloud). Marker errors (i.e. mean deviations of GCPs in the 

model from GPS coordinates of the GCPs) typically are in the 

order of 2 - 3 cm. For two eroded areas, however, they are 

reported to be considerably higher (8 cm and 16 cm). The final 

dense point clouds contain between 1.5 and 5.2 Mio points. The 

point clouds appear smoothed to a certain degree but still 

contain morphological information concerning the more 

prominent structures. Edges at eroded area scarps and clods of 

soil and grass within the eroded areas are morphologically well 

represented (Figure 2). Most of the reconstructed GCP spheres 

appear at least with a sphere-like shape although they 

sometimes show some deformation or noise. A folding rule 

(scale bar) of 2 m length was placed in all scenes except scene 6 

(with its two 1 m-segments directed orthogonally; see Figure 4). 

By measuring the segments’ 3D length in the point cloud a scale 

error is determined for each reconstructed scene (maximum 

deviation of the two segments from reference; see Table 1). The 

point density is generally high (typically several hundred points 

per dm²) within the area of interest of a scene (i.e. the eroded 

area and its direct surroundings). Areas with lower point density 

occur at steep scarps of the eroded areas if they are in shadow 

due to their aspect relative to the sun position. Peripheral parts 

of the scenes suffer from considerably lower image matching 

quality. This was expected due to reduced coverage/overlap of 

images as well as increased ranges and obliquity of the images 

for these parts. 

 

 

Figure 2: Cross-section through a point cloud visualized in 

Cloud Compare (Girardeau-Montaut, 2011). The eroded area 

scarp (upper left) and two clods of soil within the eroded area 

(middle and lower right) can be identified. 

 

The orthophotos (2 cm GSD) contain a high level of detail but 

also a relatively high degree of noise. Only locally, the 

orthophotos appear very blurred, particularly in peripheral parts 

of a scene (where images were poorly matched; see above). 

 

The image matching results for scene 5 are the poorest of the 

entire data set (Table 1). Only 68% of the 342 images were 

aligned, resulting in a relatively low number of tie points 

(39,828). Additionally, the markers errors (16 cm) and scale 

errors (6%) were the highest in this scene. The orthophoto 

shows blur in some parts and the spheres are not reconstructed 

correctly. 

 

 

Scene 
Images 

used 

Images 

aligned 

Tie 

points 

Marker 

errors [m] 

Scale 

error [%] 

1 613 546 106,000 0.03 1 

2 539 484 55,000 0.03 2 

3 676 505 110,214 0.01 3 

4 480 342 77,315 0.08 1 

5 342 234 39,828 0.16 6 

6 243 233 47,000 0.04 - 

7 179 143 36,000 0.02 1 

8 279 275 60,787 0.03 1 

9 406 399 99,000 0.03 2 

10 251 250 53,000 0.03 2 

Table 1: Number of images that were used as input, number of 

images that could be aligned by SfM, number of tie points, 

marker errors and scale errors. 

 

 

3.2 Segmentation 

Segments produced for a scene by seeded region growing are 

shown in Figure 3. The parameters used for seed point 

generation (Section 2.3) created enough seed points to grow 

relatively small segments, compared to the objects of interest 

(eroded areas). This reduces the risk of a segment containing 

both grass and eroded area. 

 

 

Figure 3: Results of the segmentation (white) and classification 

(eroded area boundaries = yellow) for scene 3. The slope map 

(upper left) is used together with the RGB channels to segment 

the scene. The histogram for the Gaussian filtered ExG (lower 

right) is used to define the classification threshold (red line). 
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3.3 Classification 

Most of the classified scenes contain one main eroded area and 

sometimes a couple of small ones. In the following these multi-

part objects of a scene are analysed as one object. For any 

further analysis steps they could be vectorised and filtered by 

size to exclude very small objects. Table 2 presents the sizes of 

the classified eroded areas in the ten scenes. Their mean size is 

about 30 m². The smallest area is 4 m² and the largest area is 51 

m². In order to assess the results of the automated classification 

they are compared to a manual classification of the ten scenes 

based on the same orthophotos (Table 2). For most scenes the 

error of the determined size (i.e. the deviation from the manual 

classification) is below 10%. For the scenes 5 and 8, however, 

the size is overestimated by 18% and underestimated by 14% 

respectively. 

 

 

Scene 
Eroded area 

automated [m²] 

Eroded area 

manual [m²] 

Error 

[%] 

Error 

[m²] 

1 51.4 50.7 1.5 0.8 

2 28.9 31.0 -6.8 -2.1 

3 22.4 24.6 -8.8 -2.2 

4 37.4 38.5 -2.9 -1.1 

5 37.7 31.8 18.4 5.9 

6 4.0 4.3 -5.4 -0.2 

7 15.0 15.3 -1.6 -0.3 

8 29.7 34.5 -13.9 -4.8 

9 59.4 57.0 4.2 2.4 

10 12.0 13.2 -9.2 -1.2 

Table 2: Sizes of the eroded areas classified in the ten scenes 

with the automated approach and manually. The error of the 

automated classification is calculated as the deviation from the 

manual classification. 

 

 

Figure 4: Classification results (eroded area boundaries) for 

scene 10 (yellow) and the manual classification (blue). 

 

 

Figure 5: Gradient-like transition from eroded to grass. The 

segment in the middle (yellow boundaries) covers the transition 

zone. Thus, classification of this segment will result in error, 

compared to the manual classification (blue). 

 

For each scene individually as well as for all scenes together, 

the producer’s and user’s accuracies of the two classes (grass 

and eroded) as well as the overall accuracy are calculated 

(Table 3; cf. Congalton, 1991). Compared to a manual mapping, 

grass and eroded areas are classified with an overall accuracy 

between 90.7% and 95.5%, depending on the scene. 

 

Scene Class 

User's 

accuracy 

[%] 

Producer's 

accuracy 

[%] 

Overall 

accuracy 

[%] 

1 eroded 95.7 94.3 
95.4 

1 grass 95.2 96.4 

2 eroded 90.7 97.3 
95.4 

2 grass 98.4 94.3 

3 eroded 86.7 95.0 
92.8 

3 grass 96.9 91.5 

4 eroded 90.8 93.5 
94.5 

4 grass 96.6 95.1 

5 eroded 94.0 79.4 
90.7 

5 grass 89.2 97.1 

6 eroded 82.9 87.6 
94.3 

6 grass 97.1 95.8 

7 eroded 87.7 89.1 
92.6 

7 grass 94.9 94.2 

8 eroded 83.0 96.4 
94.3 

8 grass 98.8 93.6 

9 eroded 93.8 90.0 
93.3 

9 grass 93.1 95.7 

10 eroded 83.6 92.1 
95.5 

10 grass 98.3 96.2 

 
all eroded 90.7 91.0 

94.3 

all grass 95.9 95.8 

Table 3: Accuracy of the classification results compared to a 

manual classification of eroded areas and grass with the same 

data. Colour ramp: red (low accuracy) – yellow – green (high 

accuracy). 
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4. DISCUSSION 

In the following, we discuss our results from the ten scenes with 

regard to their accuracy and limitations of the approach that are 

identified by our tests. Moreover, we suggest how the remaining 

challenges may be tackled in future work. 

 

As expected, the orthophotos (with a GSD of 2 cm) produced 

by matching of the close-range images show much more detail 

than aerial orthophotos of the study area (GSD = 20 cm). Low 

point cloud densities at steep scarps of the eroded areas 

probably result from shadow due to their aspect relative to the 

sun position. Peripheral parts of the scenes suffer from 

considerably lower image matching quality. This was expected 

due to reduced coverage/overlap of images as well as increased 

ranges and obliquity of the images for these parts. Bearing this 

in mind, the orthophotos and point clouds from terrestrial close 

range photogrammetry have a high potential for local scale 

geomorphological investigations. 

 

Problems with image alignment (e.g. in scene 5) seem to occur 

particularly when camera positions are not distributed well but 

if they are rather clustered at a few standpoints. If these points 

are too distant or image overlap is insufficient the SfM 

algorithm probably fails to find corresponding features in the 

images and thus cannot reconstruct the camera positions. This 

causes gaps in the reconstructed circle-like camera position 

pattern. Hence, it is important to acquire well-directed images 

from well-distributed positions. In practice, this can be difficult 

in steep terrain. Therefore, we took a large number of images to 

increase the chance of aligned images with good coverage of the 

scene. 

 

With regard to the classification, we note that we did not 

exclude the white GCP spheres from the orthophotos. The 

workflow is not designed to classify them systematically.  

Accordingly, their classification as either grass or eroded is 

inconsistent. This means they account for some (unsystematic) 

error. For future studies at a similar scale we recommend 

smaller spheres (e.g. tennis balls) as they will be sufficiently 

visible in the images. This reduces both their bias on the 

classification and the volume of the field equipment. 

 

Taken all scenes together, both user’s and producer’s accuracy 

for eroded are slightly lower than for grass. This means that the 

approach tends to underestimate the class eroded slightly. For 

the ten scenes the mean user’s and the mean producer’s 

accuracy are 92.4% and 93.2% respectively, with standard 

deviations of 5.1% and 4.1%. This indicates that the 

classification accuracy is relatively constant from scene to 

scene. Thus, it can be assumed that the approach will deliver 

results with comparable accuracies (92.4% ± 5.1% and 93.2 

± 4.1%) when applied to other scenes under similar conditions.  

 

The overall accuracy for scene 1 is the second highest of all 

scenes. Producer’s and user’s accuracy are well balanced for 

both eroded and grass. This indicates a good classification 

success. That was expected because the images for this scene 

were acquired in July, when the grass was greener than during 

the other field campaigns in September. The contrast of the 

eroded area to the surrounding grass is better than for scenes 

with brownish grass. This has advantages for both the 

segmentation and the classification steps of the workflow. 

 

According to our tests the approach works well in the inner part 

of an eroded area, provided that there is no or only little 

occurrence of vegetation (Vegetation can occur inside an eroded 

area due to natural succession of vegetation or clods of soil and 

grass being transported and deposited.). Ideally, the boundary is 

well defined by a relatively sharp edge with good illumination 

(i.e. homogeneous illumination due to cloudy conditions or the 

position of the sun did not produce shadows in the eroded area). 

In these cases the classification is most accurate and robust. 

Misclassifications of some segments occur close to scarps that 

are casting shadows in the eroded area. In this regard, the 

integration of (2.5D/3D) geometric information (morphometric 

parameters, such as surface roughness) in the information 

extraction approach may improve the classification results. Parts 

of an eroded area where vegetation regrowth/succession has 

already occurred are problematic as well. Including segment 

features that e.g. describe the texture or the variability of 

spectral values within a segment may provide an opportunity to 

classify an additional class (regrown). This would add value to 

the classification from a process-oriented geomorphological or 

ecological point of view. In some scenes clods of material 

covered by grass lie in the eroded areas (e.g. scene 10; 

Figure 4). They either have resisted the erosion processes or 

they have been moved from above (by gravitation or snow 

movement) and deposited inside the eroded area. This raises the 

question what to do with grass segments representing such 

objects. One possibility is to include them into the surrounding 

eroded area object using object-based analysis and topological 

rules. 

 

Some scenes show relatively low user’s accuracies for eroded. 

Scene 8, for instance, has only a user’s accuracy of 83.0%. This 

means that 83% of the pixels in scene 8 that are classified as 

eroded by the automated approach are also eroded according to 

the manual classification. A closer look at this scene reveals that 

the differences between automated and manual classification are 

due to a combination of the problems described in the previous 

paragraph (shadows, gradual transitions and vegetation inside 

the eroded area). 

 

The overall accuracy for scene 5 is the lowest. The producer’s 

accuracy for eroded is only 79.4% due to a relatively high 

number of false negatives. This may be related to the fact that 

the image matching results for this scene are also the poorest of 

the entire data set (see Table 1). On the other hand, the original 

images show that the captured eroded area lacks a crisp 

boundary in downslope direction. In terms of vegetation 

abundance, and thus greenness, the transition from eroded area 

to grass is gradient-like. Morphologically as well, the transition 

is rather smooth than a pronounced edge. These conditions are 

unfavourable for a reliable and accurate mapping of the eroded 

area as a discrete object, both with a manual classification and 

with the automated approach. 

 

Figure 5 shows a situation in scene 3 that is problematic for the 

approach. One segment covers a gradient-like transition zone 

from eroded area to grass. This highlights the problem that a 

discrete classification to one of the two classes cannot represent 

the fuzziness of an eroded area. To address this aspect Wiegand 

et al. (2013) implemented the concept of vague objects (Dilo, 

2006) in a pixel-based classification of eroded areas with 

varying thresholds. Such approaches may be appropriate to 

characterize and define natural objects more realistically. 

 

In addition to the classification accuracy, the absolute accuracy 

of the delineated eroded areas depends on the spatial accuracy 

of the orthophoto produced by close-range image matching. 

This in turn is depending on the quality of the image matching 
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and on the accuracy of the GCPs. Considering our estimate of 

GCP accuracy and the marker errors from image matching 

(Section 2.2), the spatial accuracy of the close-range 

photogrammetric orthophoto and point cloud is estimated to be 

in the order of 10 cm. This can be regarded as sufficient for the 

intended purpose of eroded area mapping, in particular if the 

close-range mapping results are to be used as ground truth for a 

mapping with coarser resolution and less accurate aerial 

orthophotos. In future work, a comparison of a 

photogrammetric point cloud and a point cloud from terrestrial 

laser scanning may provide a validation of the image matching 

accuracy under the given conditions (natural surfaces, camera 

configuration and image acquisition geometry). For a change 

detection with repeated close-range surveys the classification 

accuracy as well as the positional and geometric accuracy of the 

data must be considered. These have implications on the 

minimum size of detectable changes. 

 

 

5. CONCLUSIONS 

We presented an application of close-range photogrammetry in 

geomorphological mapping. Our work comprises the entire 

workflow from data acquisition in the field to automated 

information extraction from the photogrammetric data. For our 

study, close-range photogrammetry had advantages over 

terrestrial laser scanning because of the relatively lightweight 

equipment and the lack of suitable scanning positions with a 

good view of the scenes. An advantage of the OBIA approach, 

compared to a pixel-based classification, is that it copes with 

the noise of the high resolution data. Smoothing of the spatial 

data is avoided prior to segmentation of the image to keep the 

eroded area boundaries as crisp and spatially accurate as 

possible. Aggregation of features on a segment basis (averaging 

pixel-based features over homogeneous objects), however, 

avoids a salt-and-pepper effect in the final classification. 

Avoiding the need for manual threshold selection or training 

areas, the information extraction workflow has advantages in 

terms of repeatability, objectiveness and transferability to other 

study areas. The workflow was successfully applied to ten 

scenes in the study area. The scenes are characterised by 

different conditions in terms of illumination and colour of the 

vegetation. Compared to a manual classification in the 

photogrammetric data, grass and eroded areas are classified with 

an overall accuracy of 94.3%. It is noted that the manual 

classification (as well as a GPS survey) of eroded area 

boundaries is not necessarily more accurate. The visual 

interpretation and definition of (in reality often fuzzy and 

gradual) boundaries by a surveyor involves a certain amount of 

subjectivity and hence the potential for inconsistency. Hence, 

we conclude that the automated and the manual approach are in 

relatively good accordance while the automated approach has 

advantages in terms of objectiveness and repeatability. The 

accuracy analysis highlights the importance of the image 

matching quality for the subsequent classification. 

Consequently, enough time should be reserved for a thorough 

and well-directed image acquisition in the field. We recommend 

acquiring several hundred images per scene with high overlap 

and from well distributed positions. This increases the 

redundancy and the stability of the image block geometry 

during reconstruction of the scene by image matching. 

Additionally, a strong focus should be on the accuracy of the 

GCPs. Precision and accuracy may be improved by additional, 

well distributed GCPs. If a larger areal coverage is the objective 

the image acquisition from an unmanned aerial vehicle (UAV) 

is an interesting option. Moreover, the results show that the 

fuzziness of many natural objects, such as eroded areas, still is a 

challenge for information extraction and delineation of discrete 

objects. However, we can conclude for future work that erosion 

areas mapped by terrestrial close-range photogrammetry are a 

reliable ground truth for the coarser resolution and less accurate 

aerial orthophotos. 

 

This study investigated the general applicability of automated 

image matching for eroded area mapping, including the 

information extraction part of the workflow. Future 

methodological work may focus on a more rigorous accuracy 

assessment of the orthophotos and point clouds or of the final 

outputs (i.e. delineated eroded areas). The presented approach 

may also be interesting for landslide mapping. Though, due to 

the larger size of most landslides, a different image acquisition 

strategy may be necessary in order to capture the entire 

landslide. In this case image acquisition from the opposite slope 

or from a UAV will be more appropriate. 
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