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ABSTRACT: 
 
In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate 
within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types.  At first, there is the 
crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric 
methods. Finally, a laser profiling of the tunnel’s lining, for a narrow region close to detected crack is performed; allowing for the 
deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the 
computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based 
on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern 
classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic 
platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground 
infrastructure. 
 
 

1. INTRODUCTION 

Inspection and maintenance of transportation tunnels is a 
challenging and demanding process, due to the complex 
surveillance conditions and large scale requirements. Due to 
tunnel ageing, their efficient inspection has become a topic of 
great concern in engineering.  There are several factors affecting 
the health of a tunnel and these factors should be efficiently and 
effectively monitored and assessed in order the engineers to 
understand the reasons of a structure degradation (Sandrone and 
Labiouse, 2011; Yuan et al., 2012).  
 
Continuous inspection of the parameters (e.g., cracks, defections, 
deformations) that result in a deterioration of the tunnel 
infrastructure is an arduous and time consuming process 
(Victores et al., 2011; Yoon et al., 2009). Usually, inspection 
processes include scanning of the tunnel intrados for potential 
defects, such as cracks, opening of joints, concrete corrosion or 
spall, or deformations of the curved tunnel surface, which could 
have a serious impact on the tunnel stability.  
 
Currently inspection and maintenance of a tunnel relies on 
manual visual monitoring, a process that it has several 
drawbacks. Apart from being costly and time consuming, it is 
highly depended on the human subjectivity, resulting, 
consequently in inaccuracies mainly regarding the positioning 
and the type of the problem. For this reason, several approaches 
have been proposed in the literature to increase the cost-
efficiency in inspection through automation (Krisada, 2014).  
 
In this context, the European Union has funded a research project 
with the main target of providing automated solutions for tunnel 
inspection and monitoring by integrating a computer vision 
methods, photogrammetry and robotic technology. The presented 
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work is a part an intelligent platform, with the focus on 
developing an integrated autonomous robotic system, which 
utilizes deep machine learning architectures and intelligent 
control tools to automatically detect tunnel defects and provide 
structural engineers with sufficient data to evaluate the stability 
of underground infrastructures and curry out the required 
maintenance procedures.  
 
1.1 Related work 

In order to implement an autonomous robotic tunnel inspection 
platform, the following issues should be addressed: (a) non-
destructive assessment approaches (NDAs), (b) navigation 
platform and (c) communication among robotic parts. The 
majority of the NDA exploits RGB image based techniques. 
Since the entire inspection scheme is based on the assessment 
performance, NDA is considered as core technological tool of the 
presented research.  
 
In this context the work of Sinha and Fieguth (2006) develops a 
two-step algorithm to extract features and in the sequel to identify 
cracks in pipes. The presented approach exploits statistical 
filtering. The work of Paar et al. (2006) imitates a region 
expansion technique to detect and then to follow cracks. The 
architecture exploits a set of images that are unfolded on the 
theoretical surface of the tunnel intrados. Similarly, Lee et al. 
(2007) exploited image processing algorithms to detect and 
visually categorize cracks depending on surface analysis and 
pattern recognition methods. The whole system has been 
embedded on a robotic platform with the main purpose of taking 
images and, in the sequel, identify and measure the cracks. 
Intensity features and Support Vector Machines (SVMs) for 
crack detections on tunnel surfaces where used in Liu et al. 
(2002).  
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On the one hand, there is a two-step approach; feature extraction 
and identification (i.e. classification via machine learning 
approaches). Such approaches involve colour properties, 
different non-RGB colour spaces and various machine learning 
algorithms , edge detection techniques,  Abdel-Qader et al. 
(2003)  and graph based search algorithms, Yu et al. (2007). . The 
exploitation of more sophisticated features has also been 
proposed. Histogram of Oriented Gradient (HOGs) features and 
SVMs are utilized in the work of Halfawy and Hengmeechai 
(2014).. Shape-based filtering is another approach, exploited in 
the work of Jahanshahi et al. (2013) for crack detection and 
quantification.  
 
On the other hand we have the Convolutional Neural Networks 
(CNNs), which extract the most appropriate features, given a 
classifier. The work of Makantasis et al. (2015) exploit CNN to 
hierarchically construct high-level features, describing the 
defects, and a Multi-Layer Perceptron (MLP) that carries out the 
defect detection task in tunnels. Such an approach offers an 
automated feature extraction and adaptability to the defect type(s. 
Latter, Protopapadakis and Doulamis (2015) further improved 
the aforementioned approach, by incorporating a prior, 
unsupervised, image annotation mechanism to facilitate the 
initialization steps (i.e. training data creation) of the CNN.  
 
Stent et al. (2013) reconstruct the lining of a tunnel based on the 
prior knowledge of tunnel geometry. This model is then updated 
by new images in order to detect changes and defects.  Apart from 
image-based systems, 3D laser scanners, either time-of-flight, or 
phase-shift scanners have been tested for tunnel inspection 
(Fekete et al., 2010; Yoon et al., 2009; Yu et al., 2007; Yuan et 
al., 2012). The obtained data are processed off line and the 3D 
structure of the tunnel is reconstructed. However, the complete 
scan of kilometres of tunnelling results in huge amounts of data, 
which in the sequel are difficult to be manipulated. However, the 
advantages of such approaches is that they are not sensitive on 
the low lighting conditions of the tunnel and direct processing of 
the 3D point clouds results in extraction of features that can be 
used for a more efficient monitoring of tunnels’ conditions in 
contrast with the traditional image-based approaches (Sandrone, 
2013; Yoon et al., 2009).  
 
Integrated methods also appeared (Victores et al., 2011), where a 
robot is presented for correcting lining anomalies. Recently, 
(Sandrone, 2013) introduces a framework for condition tunnel 
assessment of Swiss railways. Defects are detected by surveying 
the lining with a laser scanner. However, in this case data are 
processed off-line. The system incorporates point cloud from 
laser scanner and thermal data processing in order to detect and 
identify specific anomalies.  
 
To sum up, tunnel inspection is a growing field for automation. 
Some work has been done in the past, but in an unstructured way 
missing real conditions. Our key difference is that our work is 
guided by the direct needs of structural engineers, hence the 
width of the cracks in quest, which are the tiniest of the defects, 
is significantly smaller (sub-millimetre) and the scale of the 
problem larger by order of magnitude, when compared to most 
relevant publications. Furthermore, real tests are missing and no 
testimony of accuracy is provided. Finally, large road tunnels are 
much wider in size than railways and are an unconstrained 
environment, thus more difficult to document and process due to 
much more data. 
 

1.2 Contribution 

This paper extends the current state of the art by proposing an 
integrated platform for automatic inspection of road and railway 
tunnels. The method incorporates advantages in computer vision, 
photogrammetry and robotic technology in order to improve the 
conditional tunnel assessment and the automation. Initially, a 
crack detector is implemented exploiting state-of-the-art 
computer vision and machine learning tools. This is performed 
via combining low level image processing methods and non-
linear deep machine learning algorithms. The latter, better 
emulates humans’ brain activity in understanding complex non-
linear patterns as shown in Hinton et al. (1995). Deep learning 
propagates the obtained information (i.e. the image patches) via 
a predefined hierarchical structure, constructing high level-
features. Such process offers significant advantages in 
information organization, classification and performance, 
compared to other learning paradigms, like conventional neural 
networks and SVMs.  
 
A crack can appear for many reasons, varying from rapid drying 
to load disorders. In order to identify correctly what caused the 
crack generation, the detected regions and the area in close 
proximity are scanned using a laser scanner. Then, the extracted 
point clouds are modelled though simplified geometrical surfaces 
by applying a two-step non-linear least square algorithm; (a) 
transformation of the detected point clouds from the arbitrarily 
coordination system of the laser scanner to a given one, where 
tunnel surface can be easily modelled; (b) fitness of the tunnel 
surface, as provided by the civil engineers during survey, to the 
transformed point clouds. This way, the system can provide 
information about the tunnel structure deformations that are 
mainly responsible for generating the cracks.      
 
Ιmage based 3D reconstruction methods, via customized dense 
matching algorithms, that take into consideration the geometry of 
the tunnel, were also exploited. Such module was used for 
extracting with high accuracy the 3D measurements of particular 
points in the image in order to allow navigation of the robotic 
arm. This is considered as a necessary step for the robotic 
platform so as to take local measurements regarding crack 
properties and geometric characteristics of very high precision. 
  
The rest of this paper is organized as follows: Section 2 presents 
the robotic platform and analyses the different components of the 
architecture. Section 3 describes the computer vision algorithm 
used for defects and cracks detection onto the 2D image plane. 
Section 4 discusses how a detailed 3D model of the crack surface 
is derived employing photogrammetric methods, while Section 5 
describes how a detailed 3D model of a slice of the tunnel is taken 
from laser scanners to measure deformations. Finally, 
conclusions are given in Section 6.    
 

2. THE ROBOTIC PLATFORM 

Figure 1 shows a block diagram of the proposed architecture. In 
particular, the system consists of a mobile vehicle which is 
autonomously moving within the indoor tunnel structure. The 
platform is equipped with the robotic arm that is used to touch a 
crack and then take measurements regarding its nature using 
ultrasound devices. Visual cameras are mounted on the platform 
and then computer vision algorithms are applied to detect cracks 
and defects onto the 2D image plane. This is a very arduous task 
due to the bad illumination conditions encountered in the tunnel, 
and the existence of many visual effects like shallow water 
erosions, paintings removals, etc. that should not be confused 
with defects and cracks.  
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The mounted camera system is also used to track the detected 
crack so as to navigate the robotic arm to touch the crack and take 
precise measurements. Finally, a detailed 3D model of the crack 
is derived using photogrammetric methods while a 3D model of 
a tunnel slice is created employing a laser scanner to measure 
deformations. A visual depiction of the robotic platform is shown 
in Figure 2. This figure presents both the autonomous vehicle and 
the robotic arm, while simultaneously illustrates the camera and 
the laser scanner sub-systems of our robot.  
 

 
Figure 1. The robotic platform task description. 

 
2.1. Mobile Vehicle and Crane 

The main platform is a wheeled vehicle, which is retrofitted with 
robotic sensors. It, also, includes an extendable crane system able 
to extend to up to 11 meters high (lengths commonly found in 
tunnel environments) and has a robotic manipulator (tip) attached 
to its end. The movement of all systems is automated through the 
usage of the respective robotic controllers and supported by the 
Integrated Global Controlling (IGC) system that is also 
responsible for the overall system operation and mission 
execution. 
 
The global controller accepts various inputs. Among them are the 
position of crack (computer vision output), semantic information 
on the state of the system and the required action/behaviour, laser 
status (the one that creates a 3D representation of the local area 
and tunnel wall), the robotic tip trajectory estimations and other 
sensing information.  
 
The robotic vehicle is equipped with additional laser systems for 
safety and navigation purposes. On the vehicle, also, are energy 
modules for the supply of the whole system. There are also 
appropriate modules and connection mechanisms for the 
communication physical interface. With this equipment on-
board, the robotic vehicle is able to execute missions on robotic 
inspection of tunnel linings in an autonomous manner. A 
description of the main robotic tasks are shown in Figure 3. 
 

  

Figure 2. Images of the first functional prototype robotic vehicle 
for tunnel inspection. Left image: an overall image of the 

autonomous vehicle, the robotic arm and the imaging system; 
right image: the robot’s sub-system of sensors, the cameras and 

the laser scanner. 

 

The system operation includes the robotic vehicle, rolling at low 
speed inside the tunnel (length), with the computer vision system 
continuously taking images of the tunnel walls. As soon as the 
computer vision detects any crack on the tunnel wall (in real 
time), the controller commands the robot to stop and perform a 
detailed inspection; this includes the 3D modelling of the 
surrounding (to the crack) area, a laser profiling of the tunnel 
cross-section and the positioning of the robotic arm at a suitable 
position so as precise crack width and depth ultra-sonic 
measurement can be performed. 
 

 
Figure 3. The robotic platform task description. 

 
As soon as all measurements were concluded, the robotic arm 
returns to its “home” position and the inspection continues until 
the next crack is detected. All measurements and defect 
information are also processed off-line for a series of other 
defects (e.g. spalling, delamination etc.) and also processed by a 
decision support system that characterises the severity of the 
damage and acting as the user interface of the tunnel 
operators/inspectors. 
 
2.2. Robotic Arm 

The robotic arm, mounted on the crane end, is a Mitsubishi PA-
10 arm, together with a servo driver controller. The arm 
movement is able to cover from few centimetres to one meter 
approximately. The arm has six degrees of freedom and can thus 
cover all the possible geometry of any fissure. The control 
software is based on the ROS (Robot Operating System) 
architecture (just like the mobile vehicle) and the internal 
modules communicate using YARP (Yet Another Robotic 
Platform - Meta et al., 2006).  
 
The robotic arm also uses a 2D range laser to compute trajectories 
during the inspection process mounted on the arm. The ultrasonic 
sensors are fixed to the tip of the arm so they can be directed to 
the exact position of measurement for direct measurement of the 
identified crack width and depth. The position of the crack is 
identified by the vision system as described below. 
 
2.3. Vision System 

The cameras along with the laser scanner are the sensors of the 
integrated surveying and recognition system. Two sets of stereo-
cameras are used for grabbing the necessary images. The cameras 
are synchronized through the Arduino Uno board, which serves 
as a trigger/ pulse generator. The first stereo pair is responsible 
for the crack and the other defects detection that lay on the tunnel 
lining; it operates in real-time from a distance of two to four 
meters and it extracts the 3D information, which is necessary to 
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the robot in order to place the ultrasonic sensor to the correct 
position for depth measurements.  
 
The second stereo pair is used for the full 3D reconstruction of 
high fidelity models of the areas of cracks. This setup regards the 
road tunnels, which have a large width (over 9m diameter); in the 
cases of railway tunnels (3.5m diameter) all four cameras form 
an array that can cover larger portions of the tunnel lining in each 
pass. Table Table 1 presents the technical specifications of the 
used hardware. It should be noticed that, while the results 
presented in this paper are definitely positive and promising for 
the automation in tunnel inspections, the hardware needed is still 
under investigation, as the discussed prototype is not, of course, 
ready for production. Thus, more suitable, from cost –benefit 
point of view, sensors configurations could exist. 
 
2.4. 3D Laser Scanner 

The FARO 3D laser scanner (Table Table 2) has been mounted 
on the robotic platform. This is being used for a precise 
calculation of any tunnel deformation at positions where a 
deformation could be present (i.e. at positions of cracks). This 
system is activated only at the positions of cracks detected by the 
computer vision system. The information are then passed to the 
decision support system for positioning and visualization 
purposes (user interfacing etc.). The laser system is able to 
operate with an accuracy of 2mm. 
 

Model Point Grey - GS3-U3-91S6C-C 
Number of pixels 9.1 Mega Pixels 

Pixel / Sensor size 3.69 μm / 3376 x 2704 pixels 

Focal length 12.5mm / 25mm 

FoV cf / CCD diagonal 1.7 / 1" 

Sensor type Sony ICX814, Global shutter 

Weight 2 x {90g (sensor) + 290g (lens)} 

Single Camera size 
44x29x58 mm (sensor) + 120x90 
mm (lens) 

Table 1. Stereo camera technical specifications. 

 
Model Faro Focus 3D X 130 
Scan density < 1mm  

Error 2mm @ 50m 

Noise 0.3 mm  

Beam diameter  3 mm @ exit 

Weight 5 kg 

Dimensions 240x200x100 mm 

Table 2. 3D laser scanner technical specifications. 
 

 
2.5. Information Exchange / Integration 

The different modules of the computer vision and the 
photogrammetry sub-system communicate among each other and 
with the Intelligent Global Controller of the autonomous 
platform with the YARP open-source middleware. YARP 
consists of libraries, protocols, and tools, designed to control and 
manage multiple devices and modules.  
 
During the operation of YAPR a message is sent over the 
communication buss channel of the robotic system. This message 
is passing though out the different modules of the robotic systems 
and sensors. Only the sensor that has been assigned to this port 
and to this interface are allowed to interact with the message. The 
selection of YARP was made due to the straightforward 

implementation and the ability to easily set it up in Linux and 
Windows OS, in contrast to other Robot Operating Systems. 
 

3.  2D INSPECTION 

We consider the detection of concrete defects in tunnels using 
monocular camera’s RGB images. Seen as an image 
segmentation problem, the detection of defects entails into a 
classification problem. Each one of the image’s pixels belong in 
one out of two classes; defection class and no defection class. 
Visual inspection is mainly based on deep learning approaches. 
In particular, CNNs are utilized for both defect recognition and 
crack identification. The innovation of such approach can be 
summarized in three main points; the automated feature 
extraction, adjustability to the defect type(s), and no need for 
special set-up for the image acquisition (e.g., specific camera-
object distance). 
 
CNNs hierarchically construct high-level features, and a Multi-
Layer Perceptron (MLP) carries out the defect detection task. 
Defects are described from both visual and special information. 
Visual information is derived using the RGB values of each pixel. 
Spatial information is obtained by taking into consideration a 
neighbourhood around each pixel.  
 
For any RGB image, the presented method creates a new binary 
image annotating the two possible classes; defect or non-defect, 
named positive (P) and negative (N) class, respectively. A 
comparison between actual ground truth and model annotated 
images results in the confusion table creation; A 2×2 matrix that 
reports the number of false positives (FP), false negatives (FN), 
true positives (TP), and true negatives (TN).  
 
Given these values we are able to calculate various performance 
metrics regarding the defect detection performance. Calculated 
metrics are: sensitivity (TPR), specificity (SPC), precision 
(PPV), negative predicted value (NPV), false positive rate (FPR), 
false discovery rate (FDR), miss rate (FNR), accuracy (ACC) and 
F1 score (F1). Metrics of special interest are: Sensitivity 
(proportional to TP) and miss rate (proportional to FN), which 
are both strongly connected to defect detection.   
 
3.1. Defect Recognition 

The defect recognition follows the pipeline of Makantasis et al. 
(2015). This is presented in Figure 4. High-level feature con-
struction, through the CNN, is based on low-lever features, such 
as: edges, frequency, entropy, texture, etc. A typical output of 
such mechanism is shown in Figure 5. 
 

 
Figure 4. The defect identification approach based on RGB 

images and laser scanning. 
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Figure 5. Areas with any type of defect are marked with blue 

dots. 

 
3.2. Crack Identification 

The crack identification module of the described system was 
implemented was based on the work of Makantasis et al. (2015); 
on CNNs.  Yet, in order to facilitate the data set creation, we 
employ an image processing technique as in Protopapadakis and 
Doulamis (2015).  
 
That technique exploits: the intensity of pixels and their spatial 
relations, morphological operations and filtering schemes. Such 
an approach does not require annotated data incorporates a prior, 
image processing, detection mechanism. Such mechanism stands 
as a simple detector and is only used at the beginning of the 
inspection. Possible defects are annotated and then validated by 
an expert; after validating few samples, the required training 
dataset for the deep learning approach has been formed (Figure 
6).  
 
The crack detection is based solely on the CNN. The input of the 
CNN are patches of dimensions 9×9, in order to take into 
consideration the closest 24 neighbours of each pixel. The first 
layer of the proposed CNN is a convolutional layer with �� = 15 
trainable filters of dimensions 5 × 5. Due to the fact that we do 
not employ a max pooling layer, the output of the first 
convolutional layer is fed directly to the second convolutional 
layer (30 kernels of size 3×3). Then, the third layer (45 kernels 
of size 3×3) creates the input vectors for the MLP. 
 
 

   
Figure 6. Left: original image; middle: possible defect areas 

presented for validation; right: CNN output after training. 

 

Once the final annotation is concluded the assessment 
mechanism is activated in order to describe located cracks, i.e. 
calculate the length, width and orientation over the wall. 
Minimum bounding boxes are calculated for all cracked areas 

above a predefined threshold. Then, for every bounding box, 
random pixels, depicting a crack, are uniformly selected. These 
pixels can provide an accurate description of the crack and reduce 
the processing of the quantification process.   
 
 

 
 

Figure 7. Illustration of the original image and the assessment 
over the CNN annotated one. The red bounding boxes depict the 

regions under inspection. The robotic arm will then move to a 
maximum-crack-width point, indicated by ‘+’, for further 

investigation.    
 

4. 3D INSPECTION  

As soon as a crack, described critical from the structural integrity 
point of view, is detected the inspection process moves towards 
the 3D world space. For this purpose, the two stereo-cameras are 
exploited in a twofold manner: the real-time 3D extrapolation of 
a crack and the full 3D reconstruction of a high fidelity model of 
the wider area of a crack.  
 
The stereo-cameras are calibrated at the beginning of the 
inspection process with the use of a chessboard pattern (Douskos 
et al., 2009). Prokos et al. (2009) show that stereo cameras 
calibration is feasible from a chessboard pattern without visible 
edges; which is the discussed case since the system cameras are 
calibrated from 1.5m and 3m with the same chessboard plane, 
thus it is only partial visible from 1.5m.  
 
After this step, the terrestrial laser scanner is registered to the 
image data and the mounting frame of the cameras through an 
initial rigid body transformation (Arun et al., 1987) and a 
subsequent more precise least-square fit (Grammatikopoulos et 
al., 2015) with the help of the chessboard. The subsequent stereo-
matching and 3D reconstruction processes are executed on the 
rectified epipolar images. 
 
4.1. Real-time 3D extraction for robot guidance 

The recognition algorithms and 3D information extraction 
algorithm are combined as a real-time system, which performs an 
accurate calculation of the crack position world coordinates and 
pass this information to the robotic platform; this is necessary in 
order to place the ultrasonic sensor on the actual tunnel crack and 
take the appropriate stereo-images for modelling of full and high 
fidelity. The thickest part of a crack is identified and an area 
around it is reconstructed. The area is reconstructed in order to 
evaluate the correctness of the extracted crack position, based on 
the average depth of the smooth tunnel surface Figure 8. 
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Figure 8. Detection and 3D extrapolation of a crack (3mm 
wide). 1st and 2nd images are the stereo-pair; 3rd image: the 

estimated disparity map of the left image with the centre area 
stretched in order to visualize the crack. 

 
4.2. 3D Reconstruction for Visual Inspection by an Expert 

User 

High fidelity 3D models are also produced and served to the 
expert decision support system (DSS) that is responsible for the 
risk assessment of the tunnel condition. It is also available to the 
tunnel maintenance inspectors for quality visual observation 
through the human DSS interface. For this purpose, three stereo-
images of the detected crack are grabbed from pre-defined 
positions to ensure the completeness of the reconstructed model. 
The 3D models are reconstructed offline with high accuracy 
(~1mm) and resolution (<1mm).  
 
The reconstruction pipeline is based on a fusion of an adaptive 
local matching algorithm (Stentoumis et al., 2014) and semi-
global matching (Hirschmüller, 2008). The image data taken in 
tunnels require special treatment, with respect to the cost function 
formulation, due to the severe radiometric differences in the 
stereo-pair. These radiometric differences (in exposure and the 
lighting source position) are caused by the artificial lighting and 
their amelioration in the matching function is achieved with the 
use of a modified census transformation on gradients (Stentoumis 
et al., 2015). In Figure 9 two details of such models are presented. 
 
 

  
Figure 9. High fidelity 3D models of detected cracks. 

 
5. LASER SCANNING 

As can be concluded by the laser scanner accuracy values, the 
laser scanner is unsuitable for the detection of small-sized cracks. 
However, features that exceed the minimum value of 2 mm can 
be detected, e.g. thick cracks, or displacements of the tunnel 
surface. Moreover, the laser scanner datasets are exploited to 

extract geometrical features of the tunnel cross-section, which is 
critical in the detection of possible deformations.  
 
The geometrical shape of a tunnel intrados usually has a quadratic 
form, e.g. circle, parabola, or an assembly of circular shaped arcs. 
A nonlinear least-squares algorithm, and particularly the trust-
region-reflective method (Coleman and Li, 1996; Coleman and 
Li, 1994), is utilized to calculate a total number of eight 
parameters: the parameters α and β of the ellipsis; the three 
rotation parameters; and the three translation parameters. An 
initial parameter calculation is performed to locate and eliminate 
outliers, i.e. the points whose distance from the calculated surface 
exceeds a user defined threshold. The procedure is repeated once 
again, in order to determine the final surface from the corrected 
point dataset. Temporal and spatial changes in the tunnel intrados 
could provide critical information regarding the location and 
extend of possible deformations.  
 
A small-sized tunnel is used for field measurements. The test 
tunnel is approximately 60 m long and 10 m wide. A number of 
scans is performed with different combinations of resolution and 
quality. It should be noted than two independent scans are 
required to collect data for a complete tunnel cross section. 
Figure 10 illustrates an aspect of the tunnel, as well as a rough 
result of the modelled tunnel intrados. The discrepancies between 
the measured data (purple colour) and the calculated surface 
(multi-colour surface) are higher at the tunnel base. The use of 
different geometrical surface, or the assembly of several surfaces 
will be considered in future research for a more accurate 
representation of the tunnel inner surface.  
 
 

 

 
 

Figure 10: Tested methodology for deformation estimation. 
Above: the measured data are presented with the purple colour, 

while the fitting results are illustrated with the multi-colour 
surface; below: snapshot of the 3d point cloud of the test tunnel. 
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6. CONCLUSIONS 

In this work, a working prototype for visual inspection of tunnels 
is presented. A variety of sensors are used in order to automate 
the procedure. State-of-the art algorithms in computer vision are 
exploited in order to detect defects and fully record them in 3D. 
This will allow the creation of an “inspection base” an archive 
where the spatio-temporal analysis of the tunnel infrastructure 
can take place. A lot of work needs to be done in the future before 
the industry trusts and incorporates such new technologies in the 
inspection workflow, but the results presented here are promising 
and automation in inspection is clearly a very active research 
field.  
 

ACKNOWLEDGEMENTS 

The research leading to these results has received funding from 
the EC FP7 project ROBO-SPECT (Contract N.611145). 
Authors wish to thank all partners within the ROBO-SPECT 
consortium. The writers would like to especially thank M.Sc. 
Ioannis Damigos from ICCS NTUA team for his dedicated work 
on the efficient system software implementation. 
 

REFERENCES 

Abdel-Qader, I., Abudayyeh, O., Kelly, M.E., 2003. Analysis of 
edge-detection techniques for crack identification in bridges. J. 
Comput. Civ. Eng. 17, pp. 255–263. 

Arun, K.S., Huang, T.S., Blostein, S.D., 1987. Least-Squares 
Fitting of Two 3-D Point Sets. IEEE Trans. Pattern Anal. Mach. 
Intell. PAMI-9, pp. 698–700.  

Coleman, T. F., and Li, Y., 1994. On the convergence of interior-
reflective Newton methods for nonlinear minimization subject to 
bounds. Mathematical programming, 67(1-3), pp. 189-224. 

Coleman, T. F., and Li, Y., 1996. An interior trust region 
approach for nonlinear minimization subject to bounds. SIAM 
Journal on optimization, 6(2), pp. 418-445. 

Douskos, V., Grammatikopoulos, L., Kalisperakis, I., Karras, G., 
Petsa, E., 2009. FAUCCAL : An open source toolbox for fully 
automatic camera calibration, in: Proc. XXII CIPA Symposium 
on Digital Documentation, Interpretation & Presentation of 
Cultural Heritage. 

Fekete, S., Diederichs, M., Lato, M., 2010. Geotechnical and 
operational applications for 3-dimensional laser scanning in drill 
and blast tunnels. Tunn. Undergr. Sp. Technol. 25, pp. 614–628. 

Grammatikopoulos, L., Kalisperakis, I., Petsa, E., Stentoumis, 
C., 2015. 3D city models completion by fusing lidar and image 
data, in: Proc. SPIE Videometrics. Munich. 

Halfawy, M.R., Hengmeechai, J., 2014. Automated defect 
detection in sewer closed circuit television images using 
histograms of oriented gradients and support vector machine. 
Autom. Constr. 38, pp. 1–13. 

Hinton, G., Dayan, P., Frey, B., Neal, R., 1995. The “wake-sleep” 
algorithm for unsupervised neural networks. Science (80), pp. 
1158–1161. 

Hirschmüller, H., 2008. Stereo processing by semiglobal 
matching and mutual information. IEEE Trans. Pattern Anal. 
Mach. Intell. 30, pp. 328–341. 

Jahanshahi, M.R., Masri, S.F., Padgett, C.W., Sukhatme, G.S., 
2013. An innovative methodology for detection and 
quantification of cracks through incorporation of depth 
perception. Mach. Vis. Appl. 24, pp. 227–241. 

Krisada, C., 2014. Damage detection and monitoring for tunnel 
inspection based on computer vision. University of Cambridge. 

Lee, S.Y., Lee, S.H., Shin, D.I., Son, Y.K., Han, C.S., 2007. 
Development of an inspection system for cracks in a concrete 
tunnel lining. Can. J. Civ. Eng. 34, pp. 966–975. 

Liu, Z., Suandi, S.A., Ohashi, T., Ejima, T., 2002. Tunnel crack 
detection and classification system based on image processing, 
in: Electronic Imaging 2002. International Society for Optics and 
Photonics, pp. 145–152. 

Makantasis, K., Protopapadakis, E., Doulamis, A.D., Doulamis, 
N.D., Loupos, C., 2015. Deep Convolutional Neural Networks 
for Efficient Vision Based Tunnel Inspection. Cluj-Napoca, 
Romania. 

Paar, G., Caballo-Perucha, M. d. P., Kontrus, H., Sidla, O., 2006. 
Optical crack following on tunnel surfaces. Proc. SPIE. 

Prokos, A., Karras, G., Grammatikopoulos, L., 2009. Design and 
evaluation of a photogrammetric 3d surface scanner, in: XXII 
CIPA Symposium on Digital Documentation, Interpretation & 
Presentation of Cultural Heritage. Kyoto, pp. 1–6. 

Protopapadakis, E., Doulamis, N., 2015. Image Based 
Approaches for Tunnels’ Defects Recognition via Robotic 
Inspectors, in: 11th International Symposium on Visual 
Computing. To be published, Las Vegas. 

Sandrone, F., 2013. Tunnel conditions assessment based on 
image analysis: A new inspection procedure for railway tunnels, 
in: Underground - The Way to the Future: Proceedings of the 
World Tunnel Congress, WTC 2013. pp. 459–465. 

Sandrone, F., Labiouse, V., 2011. Identification and analysis of 
Swiss National Road tunnels pathologies. Tunn. Undergr. Sp. 
Technol. 26, pp. 374–390. 

Sinha, S.K., Fieguth, P.W., 2006. Automated detection of cracks 
in buried concrete pipe images. Autom. Constr. 15, pp. 58–72. 

Son, H., Kim, C., Kim, C., 2012. Automated Color Model–Based 
Concrete Detection in Construction-Site Images by Using 
Machine Learning Algorithms. J. Comput. Civ. Eng. 26, pp. 421–
433.  

Metta, G., Fitzpatrick, P., Natale, L., 2006. YARP: Yet Another 
Robot Platform. International Journal on Advanced Robotics 
Systems. 

Stent, S., Gherardi, R., Bjοrn Stenger, Soga, K., Cipolla, R., 
2013. An image-based system for change detection on tunnel 
linings, in: IAPR International Conference on Machine Vision 
Applications. 

Stentoumis, C., Grammatikopoulos, L., Kalisperakis, I., Karras, 
G., 2014. On accurate dense stereo-matching using a local 
adaptive multi-cost approach. ISPRS J. Photogramm. Remote 
Sens. 91, pp. 29–49.  

Stentoumis, C., Karras, G., Amditis, A., 2015. Census-based cost 
on gradients for matching under illumination differences, in: 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-5-167-2016

 
173



 

IEEE International Conference on 3D Vision. Lyon, pp. 224–
231. 

Victores, J.G., Martínez, S., Jardón, Balaguer, C., 2011. Robot-
aided tunnel inspection and maintenance system by vision and 
proximity sensor integration. Autom. Constr. 20, pp. 629–636. 

Yoon, J.-S., Sagong, M., Lee, J.S., Lee, K., 2009. Feature 
extraction of a concrete tunnel liner from 3D laser scanning data. 
NDT E Int. 42, pp. 97–105. 

Yu, S.-N., Jang, J.-H., Han, C.-S., 2007. Auto inspection system 
using a mobile robot for detecting concrete cracks in a tunnel. 
Autom. Constr. 16, pp. 255–261.  

Yuan, Y., Bai, Y., Liu, J., 2012. Assessment service state of 
tunnel structure. Tunn. Undergr. Sp. Technol. 27, pp. 72–85. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-5-167-2016

 
174




