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ABSTRACT:

Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often
more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a
common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine
registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point
clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then
voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are
constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are
obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed
to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step.
This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the
point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6mm and 9.5mm
respectively, which are adequate for fine registration.

1 INTRODUCTION

The use of laser scanners for obtaining surface information of ob-
jects is increasing. Laser scanners provide dense 3D point clouds
with high accuracy and versatile information about objects (Wehr
and Lohr, 1999, Burtch, 2002, Large and Heritage, 2009, Vossel-
man and Maas, 2010). In general, different partially overlapping
scans are acquired to fully cover a scene. To transform different
scans into a common coordinate system, registration is a compul-
sory step in point cloud processing (Sharp et al., 2002, Bae and
Lichti, 2004, Wang, 2013).

There is plenty of literature on solving the registration problem
for 3D point clouds. The solutions can roughly be categorized
into three main methods. First, manual registration, which uses
common points from different scans (Zhao et al., 2005). How-
ever, when there are many scans it is labor intensive to manually
conduct registration. Second, semi-automatic alignment, which
is mainly performed by placing signalized targets within the scan-
ner field of view. Those targets are tie-points between different
scans (Vosselman and Maas, 2010). In most cases the targets can
be identified from the point cloud data, however, in some situa-
tions human interaction is required to identify the targets (Zhang,
2015). Finally, fully automatic registration, when point clouds
are transformed to the same coordinate system in a fully auto-
matic way (Makadia et al., 2006, Bae and Lichti, 2008, Nüchter
et al., 2010). The ICP algorithm is often employed to acquire fine
registration (Chen and Medioni, 1991, Besl and McKay, 1992,
Zhang, 1994). However, a prior coarse registration is needed to
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initiate the ICP algorithm in order to ensure it converges to its
global minimum (Sharp et al., 2002, Du et al., 2010).

A plethora of papers have provided different solutions to the prob-
lem of coarse transformation determination (Gressin et al., 2013).
Most methodologies identify either feature based or keypoint based
correspondences. The features include geometric primitives, higher
level shape descriptors and special patterns. For example in (Beis
and Lowe, 1999, Huber and Hebert, 2003), segments and curves
are employed, while in (Dold and Brenner, 2006, Frome et al.,
2004), local planes, spheres and cylinders are used as correspon-
dence candidates. Another strategy is to represent 3D point clouds
as meshes, and then conduct the alignment on the resulting mod-
els (Szeliski and Lavallée, 1996, Allen et al., 2003). The method
proposed in this paper applies an existing shape descriptor on
shapes derived by clustering voxels based on their dimensional-
ity.

After features are extracted, the next steps are to match corre-
spondences, reject false correspondences, minimize the model
function to estimate the transformation coefficients and apply the
transformation to the point clouds. While finding correspondences,
false matches may occur as outliers. Those outliers have to be re-
moved in order to achieve a valid coarse registration. Given the
mathematical model of the transformation, the coefficients of the
transformation can be determined by minimizing the distance be-
tween the matches. The most commonly used algorithm for out-
lier removal is RANSAC (Zuliani, 2008, Raguram et al., 2008).
Another method is to estimate the transformation parameters in
a least-squares procedure (Gruen and Akca, 2005, Grant et al.,
2012). Once a coarse registration is achieved, fine registration is
performed to obtain final results.
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This paper is organized as follows. In Section 2, the overall
methodology of the proposed method is presented. Consecutively
in Section 3 the testing results of the method are given. Conclu-
sions and discussions are in Section 4.

2 METHODOLOGY

The method proposed in this study is shown in Figure 1. The
processing workflow starts with two input point clouds, Source
and Target. Then four consecutive procedures are conducted on
those point clouds, which are voxelization, dimension analysis,
clustering similar voxel cells and constructing EGI features for
all clusters. Voxelization is a procedure that re-samples point

Figure 1: Overall methodology of the proposed coarse registra-
tion

clouds into voxel cells. Points inside each cell are analyzed and
their dimension is obtained through PCA. Consecutively, cells
that have the same dimension are clustered. Then the significant
eigenvectors from those clustered cells are utilized to determine
an EGI descriptor of each cluster. The similarity in the result-
ing EGI descriptor of the clusters from the two point clouds are
compared to find correspondences. False correspondences are
removed by RANSAC and coarse registration is achieved. The
following step is fine registration employing the ICP algorithm.
The final step is the quality evaluation of the registration results,
which is conducted by computing the point-to-point distances be-
tween the two registered point clouds. The details of the method
are given in the following sections.

2.1 Voxelization

The imported point clouds are re-sampled as voxel cells. As
a Pixel is a 2D representation, a Voxel is a cube with a prede-
fined edge length in 3D. The edge length also defines the resolu-
tion of the representation. Figure 2 is an illustration of a voxel
cell in 3D. In this figure, Pmin and Pmax are the lower-left-front

Figure 2: Voxel cell in 3D

and upper-right-back points respectively, which also defines the
spatial extent of the voxel. The coordinate system used here is
right-handed Cartesian.

The voxelization starts with obtaining the bounding boxes from
the input point clouds. Then with a predefined voxel cell size,
these bounding boxes are divided into voxels. Consecutively the
points from the imported point cloud are assigned to the cells they
fall in. To save memory costs, the data structure designed for a
voxel cell consists of three entities: (i) a 3D index of the cell; (ii)
a container storing the indices of the points that are within the
cell; and (iii), coordinates of the 3D center of gravity of all the
points inside this cell.

2.2 Voxel dimensionality analysis

The dimension of each voxel cell is determined by PCA as fol-
lows: Suppose pi = (xi yi zi)

T are the coordinates of point
pi of point cloud Ps inside the voxel cell, then the center of grav-
ity of all the points inside the cell is determined by Formula 1.

p =
1

n

n∑
i=1

pi (1)

Here p is the center of gravity and n is the number of points
inside the voxel cell. Then the 3D structure tensor is defined by
Formula 2.

R =
1

n
QTQ (2)

Here R is the 3D tensor and Q = (p1 − p, p2 − p, ..., pn − p)T .
R is a symmetric matrix that is decomposed as: R = MIMT .
Here M is a rotation matrix and I is a diagonal positive definite
matrix. The elements of I are the eigenvalues of matrix R, and
the column vectors of matrix M are the eigenvectors of matrix
R. The eigenvalues are positive and are denoted by λ1, λ2, λ3,
and the corresponding eigenvectors are v1, v2, v3. Suppose that
λ1>λ2>λ3. If λ1>>λ2, then this voxel cell is defined as a lin-
ear, or 1D cell, and eigenvector v1 is the main direction of the
distribution of the points inside the cell. In this case, eigenvector
v1 is the significant eigenvector. if λ2>>λ3, then the voxel cell
is defined as a planar, or 2D cell. In this case eigenvector v3,
the normal vector of the plane, is the significant eigenvector; if
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λ1 ≈ λ2 ≈ λ3, then this cell is defined as a spherical, or 3D cell,
and the cell has no dominant direction. Here >> means much
larger, and is implemented by a preset threshold. In this study,
the linearity is examined first and then planarity. The thresholds
are set to 10 and 20 respectively. After this procedure, all voxel
cells have a geometric flag denoting its dimensionality and three
eigenvalues and eigenvectors respectively as its properties.

2.3 Clustering voxel cells of the same dimension

In this step, face-connected voxel cells having the same dimen-
sion are clustered. In this work a modified 3D seed filling al-
gorithm is employed to fulfill the processing. The workflow is
shown in Figure 3. First voxel cells are traversed to if each voxel

Figure 3: Modified 3D seed filling clustering of voxel cells

cells is visited, visited, if not, then its 26 neighbor cells are searched.
Then for all the non-visited neighbors, if it has the same dimen-
sion as the current cell, then the index of this cell is pushed into a
cluster stack and this cell is labeled as visited. This same process-
ing is performed for all the cells until all voxel cells are visited.

2.4 The EGI descriptor of a voxel cluster

In this work the Extended Gaussian Image (Horn, 1984) feature is
modified to identify correspondences among clustered voxel cells
from both imported scans. The significant eigenvectors are used
as identified in the dimensionality analysis in Section 2.2. Spher-
ical cells do not have a dominant direction, therefore only linear
and planar cells are considered in this work. Approximate sphere
used to assign significant eigenvectors to is defined the Eigen-
Sphere of a cluster. A full sphere is approximated by an icosahe-
dron, as illustrated in Figure 4.

This is a uniform icosahedron, as the distances of its vertices to
the origin O are all equal to 1. An icosahedron can be further
tessellated by subdivision of each triangular surface into four tri-
angles by connecting the center points of each edge.

Figure 4: Standard icosahedron used to construct a modified EGI
descriptor of a cluster

The next step of the procedure is to assign the significant eigen-
vectors of each voxel in the cluster to the triangles on the bound-
ary of the icosahedron. In Figure 5, v1, v2, v3 are the three ver-

Figure 5: Assigning eigenvectors onto a triangular surface of an
icosahedron

tices of a triangle on the boundary of the icosahedron, and vector
p is intersecting this triangle. If vector

→
p is intersecting with the

triangle, then the coefficients k1, k2, k3 in the linear combination
in Equation 3 must be all positive (Preparata and Shamos, 1985).

→
x= k1v1 + k2v2 + k3v3 (3)

Therefore Equation 3 can be decomposed to determine the coef-
ficients by Equation 4.

 k1
k2
k3

 =
(
v1 v2 v3

)−1 ·

 x
y
z

 (4)

Here v1 = (x1 x2 x3)T are the coordinates of vertex v1 and
x, y, z are the coordinates of vector

→
p . The Eigen-Sphere fea-

ture is constructed for each cluster by assigning the significant
eigenvectors of all voxels in the cluster to its Eigen-Sphere by de-
termining for each eigenvector which triangle of the icosahedron
it intersects using Equation 4. That is, for a linear cluster, only the
voxel eigenvectors corresponding to the biggest eigenvalues are
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assigned and for a planar cluster the normal vectors of its voxels
are assigned.

Note that the vectors obtained by PCA are not direction definite,
for example, vector v0 and its antipodal vector −v0 are both ap-
plicable. In this work, for the purpose of symmetrical concern,
both the vector and its antipodal vector are assigned to the Eigen-
Sphere.

An icosahedron has a total of 60 symmetry transformations (Con-
way et al., 2008). In this work, both a significant PCA vector
and its opposite vector are assigned to the icosahedron surfaces,
therefore only 30 symmetries have to be considered in practice.
Similarity is only determined between clusters containing voxels
of the same dimension, i.e. linear clusters with linear clusters and
planar clusters with planar clusters respectively. The similarity
between a pair of Eigen-Sphere descriptors, named as source and
target, is defined by Equation 5.

Ss,tk =

20∑
i=1

(Ns
i −Nit)2 (5)

Here Ss,tk is the similarity between source and target for the k-
th symmetry. Ns

i and Nit are the number of assigned signif-
icant eigenvectors intersecting on the i-th triangular face of the
icosahedron. Note that there are 20 faces on an icosahedron,
i = 1, 2, ..., 20. There are 30 symmetry transformations in to-
tal, so k = 1, 2, ..., 30.

The symmetry transformation that minimizes similarity among
the total of 30 cases is defined as the cluster pair similarity be-
tween two clusters from two scans both containing voxels of the
same dimension (linearity or planarity). For all linear clusters in
the source scan, the similarity of the cluster is determined to all
linear clusters in the target scan. The pair with optimal cluster-
pair similarity is considered a cluster match. Similarly, cluster
matches between planar clusters are determined.

2.5 Remove outliers and Coarse registration

To deal with false correspondences in the list of cluster matches,
RANSAC is employed. In (Besl and McKay, 1992), a Least
Squares solution of 3D rigid registration of point sets is provided.
The goal of the rigid registration between two 3D point sets is
to find an optimal transformation consisting of a rotation and a
translation. Equation 6 defines the model of 3D rigid registra-
tion.

(R, t) = argmin
R,t

E(R,
→
t )

= argmin
R,t

N∑
i=1

[(R · Csi+
→
t )− Cti ]

2

(6)

Here E(R,
→
t ) is an error function, R is the rotation matrix and

→
t is the translation vector. N is the number of correspondences,
Csi and Cti are the obtained i-th pair of correspondences, (R, t)
are the determined transformation parameters.

False correspondences result in a larger error function in Equa-
tion 6. Before possible outliers can be removed with RANSAC,
first the number of iterations and the threshold of tolerance have
to be set according to the data properties. Moreover, to generate a
more accurate coarse registration, the transformation parameters
from the best k pairs of correspondences are averaged as the final
parameters.

2.6 Fine registration and results evaluation

Taking the coarse registration from Section 2.5 as initial result,
the ICP algorithm is applied to perform fine registration of the
point clouds. The ICP algorithm has three steps: (i) from Source
P s point cloud, searching the closest point in Target point cloud
P t, and then compute the transformation parameters (Rm,

→
t m);

(ii) apply the transformation and obtain a new iteration of point
P tm+1 = Rm · P tm+

→
t m; and (iii) terminate the iterations when

the change in mean-square error is smaller than a preset thresh-
old or the iterations exceed a predefined number of runs. Mean-
while the new transformation is applied to the point cloud. The
evaluation of the registration results is performed by computing
the point-to-point distance between the Source and Target point
clouds.

3 RESULTS AND VALIDATION

The proposed method is evaluated on two data sets. The first pair
of scans is created by applying a transformation on one scan. The
second data set consists of two scans obtained from different po-
sitions. Both point cloud data sets used in this work were scanned
by a Leica C10 TLS scanner.

3.1 Data description

The first data set samples an indoor scenario and the original point
cloud is shown in Figure 6.

Figure 6: The original point cloud obtained with a Leica C10 TLS
scanner.

The data set has 314,929 points and the average point density is
around 50,000 points per square meters. In the scene, there is a
table, a ball, a traffic cone and a cylindrical bin. The original point
cloud is first rotated by 23 degrees about its z axis and translated
by 50cm in all three Cartesian directions to generate a new point
cloud for pair-wise registration. The original and the newly gen-
erated point cloud are regarded as Source and Target point clouds
respectively in the following sections.

3.2 Voxelization results

The voxelization of the point cloud is illustrated in Figure 7. In
this voxelization, the voxel cell size used is 15cm. Smaller voxel
size will result in finer cluster results but will also increase com-
putation time.

3.3 PCA geometry analysis

The dimensionality of the cells is illustrated in Figure 8. In the
figure, the point cloud is in gray, while the red and green cells
represent linear and planar cells respectively. The cells in blue are
spherical cells. In this work, linearity of a cell is first determined.
A cell is regarded as a linear cell if the largest eigenvalue is at
least 10 times larger than the second eigenvalue, that is when
λ1
λ2

> 10. If a cell is not a linear cell, then the planarity is tested.
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Figure 7: Voxelization of the point cloud with 15 cm voxels

A cell is considered as a planar cell if the smallest eigenvalue is
20 times smaller then the second largest eigenvalue, i.e. when
λ2
λ3

> 20. If a cell does not meet the above two criteria, then it
will be considered as a spherical cell.

Figure 8: Geometric features of the voxel cells

3.4 Clustering voxel cells

After obtaining the properties in Section 3.3, connected cells hav-
ing the same geometric properties are clustered to form voxel cell
clusters. Figure 9 shows the clustering results.

Figure 9: Clustering connected cells of the same dimensionality

In the figure, random colors are designated to different clusters.
However, there are also clusters consisting of only a few vox-
els. In the so-called majority step, clusters consisting of 1,2, or 3
voxels are merged to the biggest neighboring cluster that have the
same dimensionality. The refined clustering results are illustrated
in Figure 10. Compared with Figure 9, all one-cell clusters are
merged to adjacent bigger clusters.

3.5 Construct Eigen-Sphere descriptor

The Eigen-Sphere descriptor of each cluster is constructed and
stored in its data structure. For example, the Eigen-Sphere de-
scriptor of the table surface and the sphere in Figure 6 are shown
in Figure 11. The colors of the triangles denote the number of the
vectors that intersect the triangle.

In the figure, the radial line segments denote the significant eigen-
vectors of each cell in a cluster and the surfaces are colorized by

Figure 10: Refined clustering results of connected cells of the
same geometric dimensionality

Figure 11: The Eigen-Sphere features of the table surface and the
sphere

the number of significant eigenvectors that intersect each trian-
gle. For the EGI descriptor of a planar surface, as depicted by
Figure 11 (a), most of the significant eigenvectors point in the
direction of the normal of that plane. For a spherical surface,
in Figure 11 (b), the eigenvectors are distributed uniformly on
the Eigen-Sphere surface, as different voxels correspond to dif-
ferent planar like patches at different sites of the sphere.

In this test, only planar clusters that have more than 20 cells were
considered for correspondence matching. There were 7 pairs of
matching clusters found as correspondences. Outliers in those
matches were removed by the RANSAC algorithm with the iter-
ation number and distance threshold set to 20 and 3cm respec-
tively. Finally 4 true matches were found as illustrated in Fig-
ure 12.

Figure 12: True matches from cluster-based EGI feature

3.6 Coarse registration

The result of the coarse registration is illustrated in Figure 13.
The point to point distance of the registration is given in Fig-
ure 14, in which the points are colorized by the distance towards
the other point cloud. The mean of the point to point distances
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is 7.6mm, the std.dev. is 5.3mm and the median is 6.5mm re-
spectively.

Figure 13: Coarse registration results of the pair of point clouds

Figure 14: Distances between the scans after coarse registration

3.7 Fine registration

Taking the coarse registration in Section 3.6 as starting point of
the ICP algorithm, the fine registration is conducted on the two
point clouds. The fine registration results are given in Figure 15.
The mean of the point to point distances of the source and target

Figure 15: Distances after the fine registration

is 0.57 mm, the std.dev. is 0.18 mm and the median is 0.26 mm
respectively. This results demonstrated that the coarse registra-
tion is good enough to ensure a fine registration.

3.8 Testing on another data set

To further verify the capability of the proposed coarse registra-
tion method, it is also tested on point clouds captured at different
positions and of varying local point density. In this scenario, a
wall was scanned by a Leica C10 TLS scanner from two differ-
ent positions. The two point clouds contain 884,923 and 873,603
points respectively. In this test, the cell size was set to 10cm
and similar processing was conducted on those point clouds. The
dimension thresholds were set to 15 and 20 for linearity and pla-
narity respectively. In total 8 true matches were found from 12
candidates using RANSAC with 20 iterations and 3.5cm thresh-
old. The coarse registration result is illustrated in Figure 16. The
mean and the std.dev. of the point to point distances of the two

Figure 16: Point to point distance of the coarse registration

Figure 17: Point to point distance of the fine registration

coarsely registered point clouds are 9.5mm and 6.7mm respec-
tively.

The result of the fine registration of the point clouds is illustrated
in Figure 17. The mean and std.dev. are 2.8mm and 1.7mm
respectively. As can be distinguished in Figure 16 and Figure 17,
the points that have bigger point to point distances correspond to
actual differences between the two input point clouds. The two
point clouds are obtained from two different stations and some
parts of the facade are occluded. The histogram given right of
the color bar in Figure 17 shows that the majority of the points in
blue have small cloud to cloud distances.

In this test, the two point clouds were manually cropped and only
the overlapping area was considered. This ensures the quality and
efficiency of the method. The points in the non-overlapping area
would introduce extra computation time and even errors. In addi-
tion, noise and outliers are removed by using an local neighbor-
hood filtering algorithm (Rusu and Cousins, 2011). The results
in this paper are presented as a proof of concept. To make this
method work in an automated way on arbitrary input scans with
only partial overlap is currently still considered challenging by
the authors.

4 CONCLUSIONS

This paper presents a pair-wise coarse registration method for
point clouds based on voxel cell clusters. First the input point
clouds are voxelized and the dimension of each voxels is deter-
mined. Then voxel cells of the same dimensionality are clus-
tered and EGI descriptors were constructed to obtain correspon-
dences. The RANSAC algorithm was employed to remove out-
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liers in the correspondences. The feasibility of the presented au-
tomatic coarse registration method is proven on two pairs of point
clouds sampling indoor scenarios. The quality of the registration
results are evaluated by the point to point distances of the regis-
tered point clouds. Some of the weaknesses are discussed in the
results section. More data sets still need to be tested to verify the
robustness of the presented method.
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