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ABSTRACT: 
 
In remote sensing images, the common existing stripe noise always severely affects the imaging quality and limits the related 
subsequent application, especially when it is with high density. To well process the dense striped data and ensure a reliable solution, 
we construct a statistical property based constraint in our proposed model and use it to control the whole destriping process. The 
alternating direction method of multipliers (ADMM) is applied in this work to solve and accelerate the model optimization. 
Experimental results on real data with different kinds of dense stripe noise demonstrate the effectiveness of the proposed method in 
terms of both qualitative and quantitative perspectives. 
 
 

1.  INTRODUCTION 
 
Mainly because of inconsistent response and imperfect 
calibration of each detector (Chen, et al., 2003), striping effects 
are common phenomena in spaceborne and airborne multi-
detector remote sensing imaging systems, such as Landsat 
Thematic Mapper (TM) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS). These stripe noise can not only 
greatly reduce the data accuracy but also seriously influence the 
further applications. Therefore, it is necessary and crucial to 
remove the stripes and improve the data quality before image 
interpretation. 
 
As an important pre-processing step, destriping has attracted a lot 
of research attention in the past decades. Generally speaking, 
there are three major groups in destriping methods. The first 
family, including moment matching (Gadallah, et al., 2000; Shen, 
et al., 2014) and histogram matching (Horn and Woodham, 1979; 
Wegener, 1990), consist of statistical-based matching approaches 
and holds the assumption that the distribution properties of the 
target detector are similar to the reference one. Although with 
high computational efficiency, the distortion in destriping results 
is often inevitable when stripes are non-linear or irregular (Shen, 
et al., 2014). Another class of destriping methods is filtering-
based technique (Torres and Infante, 2001; Chen, et al., 2003; 
Münch, et al., 2009). By well utilizing the transform, the 
scattered stripe-related information in spatial domain may 
become concentrated in a particular transform domain, hence the 
destriping procedure would naturally change into a much simpler 
way as the truncation of the stripe-related frequency. 
Unfortunately, the decision of a suited transform or an accurate 
truncation in this class of approaches is not an easy problem. 
Until recently, the fast developed optimization-based methods 
compose the last destriping category (Shen and Zhang, 2009; 
Bouali and Ladjal, 2011). This kind of technique can make use of 
striping characteristics or the neighboring pixels’ information as 
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prior knowledge to estimate the true image. Since the prior 
modeling selection is relatively flexible, the optimization-based 
methods are undoubtedly promising. 
 
Conventionally, according to the common requirement in noise 
removal area, the maintenance of original healthy information 
should never be ignored in destriping process. However, in 
special cases of dense stripes, it is always extremely hard to 
distinguish the non-striping lines from the whole image. So 
instead of finding out the uncertain healthy pixels and keeping 
them intact, a more feasible way is to estimate some local 
statistical features of latent clean image and then use them to 
constrain the destriping process.  
 
Inspired from the analysis above, a new destriping method for 
remote sensing data has been proposed in this work. Unlike the 
other destriping model, our key idea is to introduce the statistical 
property constraint in the variational optimization and then use it 
to ensure a reliable estimation of the true image. To put it more 
specifically, a rough estimation of statistical along-stripe mean 
value will be first obtained through a one-dimensional filter, and 
then constructed in the variational destriping model for a finer 
solution. An ADMM algorithm (Boyd, et al., 2011) is adopted to 
solve the minimization problem in this work. MODIS images and 
Hyperspectral Digital Imagery Collection Experiment (HYDICE) 
image are both tested in the experiments to validate our proposed 
approach. The next section of this paper describes the 
mathematical formulation of the destriping algorithm and is 
followed by experimental results, conclusion and future work. 
 
 

2.  DESTRIPING MODEL 
 
2.1  Problem Formulation 
 
In remote sensing images, the striping effect can be considered 
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as additive noise (Bouali and Ladjal, 2011), so the degradation 
process can be described as: 
 

 f u s   (1) 
 
where u  is the clean true image, f  is the observed image, and 
s  denotes different kinds of stripe noise and minor random noise. 
It’s worth noting that the destriping task in this work is to recover 
u  from the given f  with the presence of s . So in order to 
solve this typical ill-posed inverse problem, the key becomes to 
explore and construct appropriate prior terms to suppress the 
stripe noise but avoid over-smoothing effects. 
 
2.2  Statistical Property Based Constraint 
 
Thanks to the special structural property of stripe noise, the 
along-stripe statistics of one striped data can always reflect the 
distinct features between striping lines and non-striping lines, and 
the mean cross-track profile (Gadallah, et al., 2000; Chen, et al., 
2003) is just one typical one-dimensional mean statistics among 
these along-stripe statistics. Since the profiles before and after 
destriping hold similar tendencies and the corresponding 
estimation of the latent clean data can be done by filtering the 
profile of the observations, this statistical feature is very suitable 
to build the constraint term in our model. Considering the facts 
that the one-dimensional profile before destriping is consecutive 
noisy signal which exactly meets the condition of being 
processed by Savitzky–Golay (SG) filter (Press, et al., 1992), and 
that the SG filter itself is also a simple but effective method to 
alleviate the disturbances in the consecutive data, we finally 
choose the SG filter to smooth the noisy mean profile as:  
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where M  and M̂  are the noisy and filtered mean cross-track 
profile separately, j  is the running index of Savitzky–Golay 
smoothing, and iC  denotes the weight for thi  mean value in 
the smoothing window with the radius of r . 
 

After obtaining the filtered profile M̂ , the next step is to 
construct the statistical feature in our model. Assuming that a 
m n  u  holds m  along-stripe lines with n  pixels for each 
line, and the stripes are extending horizontally, the statistical 
property based constraint can then be defined as: 
 

 2
1 2

ˆ( ) || ||u M u AR     (3) 

 
where A  represents a special column vector whose n  
elements are equal to 1 n , and designs to calculate the mean 
cross-track profile in the desired image. Therefore, the 1( )uR  is 
in fact a prior term working to keep the similarity between the 
recovered feature and the estimated feature, and further 
functioning to control the whole destriping process for a reliable 
output. 
 
2.3  Anisotropic Destriping 
 
Due to the desirable property as effective preservation of edge 
information, the TV-based techniques have become a widely used 
group of models in noise removal area. Although it was first 
proposed to smooth random noise without particular structure 
(Radin, et al., 1992), the unsymmetrical version of TV 
regularization has also been proved to be valid in destriping 

problem (Bouali and Ladjal, 2011) with the following expression:  
 
 2 1 1 2 1( ) || || || ||u u f  ux x yR        (4) 

 
where x  and y  respectively stands for the along-stripe and 

across-stripe partial differential operator, 1  and 2  denote 

the regularization parameters. In 2 ( )uR , 1|| ||uy  works to 

smooth the stripe noise by minimizing the across-stripe gradients 
in u , while 1|| ||u fx x   aims at maintaining the stripe-

unaffected gradients from the observed image to the final solution. 
Owing to this special design, 2 ( )uR  can treat the along-stripe 

and across-stripe gradients in different ways, which exactly 
meets the unidirectional property of stripe noise. 
 
2.4  A Joint Destriping Model 
 
In order to solve a smooth but reliable image from a dense striped 
data, a joint destriping model combining the statistical feature 
based constraint 1( )uR  and the anisotropic regularization 

2 ( )uR  has been proposed in this work, and expressed as follows: 

 
 ˆ arg m in ( )u= uE  (5) 
 
where 
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Since the estimation of statistical feature in desired image can be 
easily attained through noisy profile filtering, and the 
unsymmetrical TV regularization can well describe the 
anisotropic property of stripes, the proposed model in (6) is 
expected to be robust and effective to the dense striped images. 
 

(a) (b) 

(c) (d) 
Fig 1. Experimental images: (a) HYDICE band 103; (b) Terra 

MODIS band 30; (c) Terra MODIS band 27; and (d) Terra 
MODIS band 9. 
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The difficulties of solving the proposed model (6) mainly lie in 
the non-differentiability and inseparability 1 -norm terms. To 
tackle this problem, we adopt ADMM approach (Boyd, et al., 
2011) as the ADMM iteration is an efficient tool to solve 1 -
minimization and TV-minimization. Some detailed examples of 
ADMM implementation can be found in the recent related works 
(Tracey, et al., 2014; Liu, et al., 2016). 
 
 

3.  EXPERIMENTS AND DISCUSSION 
 
To verify the effectiveness of the proposed optimization-based 
destriping method, we choose two types of remote sensing data 

including the pushbroom-scanning HYDICE data and the 
whiskbroom-scanning Terra MODIS data. Specifically, one 
200×200 HYDICE subimage and three 400×400 MODIS 
subimages with different kinds of dense stripes were extracted 
from their original versions as experimental images. They are 
shown in Fig 1. It can be seen that Figs 1(a) and 1(b) are highly 
contaminated by irregular random stripes, while the stripes in 
Figs 1(c) and 1(d) are much more regular with apparent periodic 
properties. In addition, the striping level in Fig 1(c) is the highest 
among the four experimental images. As the comparisons, the 
statistical-based moment matching (MM) (Gadallah, et al., 2000), 
 

 

(a) (b) 

(c) (d) 
Fig 2. Destriping results of HYDICE band 103: (a) MM;  

(b) WAFT; (c) UTV; and (d) the proposed method. 
 

(a) (b) 

(c) (d) 
Fig 3. Destriping results of Terra MODIS band 30: (a) MM;  

(b) WAFT; (c) UTV; and (d) the proposed method. 

 

(a) (b) 

(c) (d) 
Fig 4. Destriping results of Terra MODIS band 27: (a) MM;  

(b) WAFT; (c) UTV; and (d) the proposed method. 
 

(a) (b) 

(c) (d) 
Fig 5. Destriping results of Terra MODIS band 9: (a) MM;  

(b) WAFT; (c) UTV; and (d) the proposed method 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-6, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-6-57-2016

 
59



the filtering-based combined wavelet-Fourier filtering (WAFT) 
(Münch, et al., 2009), and the optimization-based unidirectional 
total variational model (UTV) (Bouali and Ladjal, 2011) were 
tested in our experiments. For the convenience of quantitative 
evaluation, test images were normalized between [0, 1]. Besides, 
all the experiments were conducted in MATLAB. 
 
Figs 2–5 display the experimental results of four test images. 
According to the solutions of MM, its performance is unstable. 
Although the destriping results of the first two test data seem 
comparable to other methods, the residual artifacts and 

distortions are non-neglectable in Fig 4(a). WAFT can well 
remove the stripe noise, but the radiance fluctuations may still be 
obvious in some homogeneous area of the resulting image. The 
typical examples have been shown in magnified yellow 
rectangles in Fig 4(b) and Fig 5(b). As for UTV and the proposed 
method, both of them can provide much more robust destriping 
results. However without an appropriate constraint to control the 
processing procedure, UTV is easy to causes over-smoothing 
phenomenon, e.g., the brightness distortion in Fig 4(c), while our 
approach is able to conquer this problem due to the design of 
statistical property based constraint.

 

(a) (b) 

(c) (d) 

  

 (e)  
Fig 6. Mean cross-track profiles of HYDICE band 103:  

(a) noisy image; (b) MM; (c) WAFT; (d) UTV;  
and (e) the proposed method. 

 

 

(a) (b) 

(c) (d) 

  

 (e)  
Fig 7. Mean cross-track profiles of Terra MODIS band 27:  

(a) noisy image; (b) MM; (c) WAFT; (d) UTV;  
and (e) the proposed method.

Figs 6–7 respectively display the mean cross-track profiles of 
HYDICE band 103 and Terra MODIS band 27. Although the 
striping types of these two images are different, good destriping 
results would output similar profiles which hold same curve trend 
in the before and after profiles except the sudden disturbances. It 
is clear that MM can basically keep a right curve trend in its 
cross-track profiles but cannot well alleviate the disturbances, 
while UTV just dose the opposite and the over-smoothing effects 
are significant such as in Fig 7(d). Moreover, the profile of WAFT 
in Fig 7(c) is satisfying, however the results in Fig 6(c) reveals 
the unavoidable distortion problem of this method. Unlike the 
other three techniques, our model both keeps a right curve trend 
and reduces the corresponding fluctuations, which means our 
estimations of the true images are good and reliable. 
 
Since all the test images in our experiments are real data with 
dense stripe noise, only the quantitative measurement related to 
destriping ability is given in this work. As a non-reference index, 
the inverse coefficient of variation (ICV) calculated in 10×10 
homogeneous region is used to reflect the level of residual stripe 
noise (Nichol and Vohora, 2004). Additionally, the higher ICV 
value means the less remaining noise, and indicates a better 
destriping result. To decrease the influence of accidental factors, 

we choose three different samples from every experimental data, 
and the evaluation is list in Table 1. According to the results, 
UTV and the proposed destriping model always obtain the best 
results, which suggests these two methods have comparative 
destriping abilities. And this quantitative assessment is in 
accordance with above visual evaluations.  
 

Image Area Original MM WAFT UTV Proposed

HYDICE 
band 103

Sample 1 12.36 15.03 17.90 16.24 18.53
Sample 2 11.67 14.75 18.65 22.09 20.08
Sample 3 10.42 14.79 14.32 13.99 16.00

Terra 
band 30

Sample 1 7.07 12.26 13.88 11.74 14.38
Sample 2 4.65 7.95 7.65 6.63 8.48 
Sample 3 11.63 15.51 13.99 11.76 16.62

Terra 
band 27

Sample 1 4.21 17.92 22.22 24.50 22.41
Sample 2 3.63 9.08 19.82 30.88 32.48
Sample 3 4.50 20.96 33.15 38.65 34.84

Terra 
band 9

Sample 1 9.56 16.64 18.47 16.58 18.86
Sample 2 7.36 15.38 15.25 15.84 17.18
Sample 3 4.80 13.40 16.45 17.40 16.40

Table 1. Quantitative evaluation results using ICV index 
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However, when combining with the visual analyses and 
considering the ability of maintaining the similar statistical 
property from the original noisy data, i.e., the overall assessment 
for the reliability of the solved images, our method can 
doubtlessly outperform UTV method. 
 
 

4.  CONCLUSION 
 
In this work, we have proposed a new destriping method for 
dense striped remote sensing images. The proposed model can 
not only effectively remove the heavy stripes but also control the 
whole destriping process to ensure a reliable estimation. Several 
real data sets were tested in our experiments. Both the qualitative 
and quantitative assessments proved that the proposed model can 
produce better destriping results than the other three techniques 
including MM, WAFT, and UTV. Besides, the proposed 
approach is quite robust to different types of dense stripes 
according to the test. In the future, we will try to modify our 
model to speed up the calculation for the large scale data 
processing. 
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