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ABSTRACT:

This paper address the problem of rotation matrix sampling used for multidimensional probability distribution transfer. The distri-
bution transfer has many applications in remote sensing and image processing such as color adjustment for image mosaicing, image
classification, and change detection. The sampling begins with generating a set of random orthogonal matrix samples by Householder
transformation technique. The advantage of using the Householder transformation for generating the set of orthogonal matrices is the
uniform distribution of the orthogonal matrix samples. The obtained orthogonal matrices are then converted to proper rotation matrices.
The performance of using the proposed rotation matrix sampling scheme was tested against the uniform rotation angle sampling. The
applications of the proposed method were also demonstrated using two applications i.e., image to image probability distribution transfer
and data Gaussianization.

1. INTRODUCTION

In remote sensing, the analysis of multi-temporal data is widely
used in many applications such as urban expansion monitoring,
deforestation, change detection, and agriculture monitoring. One
of the difficulties when dealing with multi-temporal images is the
difference in image statistics because the images were acquired
at different times.

In image classification context, it is possible that the image used
for training the system can have statistics different from the image
we want to classify. Moreover, images from different areas or
times are combined to develop efficient classification system. To
obtain a reliable classification result, the probability distributions
of the training data and the data we want to classify should be
similar.

In (Inamdar et al., 2008), it was pointed out that their are three ap-
proaches for relieving the problem of different statistics between
images. The first approach is to use the atmospheric model to
reduce the interference from atmosphere. The second is to use
ground data to calibrate the images. The last one is to transform
the image data such that its probability distribution of spectral in-
formation is similar to that of the reference or target image. The
first two approaches are not possible, especially when the physi-
cal information of the atmosphere or ground data is not available.

In the last approach, digital numbers of pixels in a mutlispectral
image are treated as multidimensional random variable. Its goal is
to transfer statistical properties by reshaping the probability dis-
tribution of the source image such that its shape is matched with
that of a reference one. In literature, The probability distribution
transfer is also known as the histogram specification or histogram
matching.

Pitié and Kokaram (Pitié and Kokaram, 2007) presented a linear
approach for probability distribution transfer. The method uses
Monge-Kantorovich theory of mass transportation to transform
the shape of the probability distribution. Namely, the principle
∗Corresponding author.

is based on the Monge’s transport problem which is to find mini-
mal displacement for mass transportation. The solution from this
linear approach can be used as initial solution for non-linear prob-
ability distribution transfer methods.

Similarly, in (Rabin et al., 2014), Rabin et al. also used the opti-
mal transport technique to address the problem of statistical prop-
erty transfer. Especially, the relaxed and regularized discrete op-
timal transport method was utilized. Moreover, the spatial dis-
tribution is also taken into account in the convex minimization
process in order to deal with the spatial distortion introduced by
the mapping.

In (Reinhard et al., 2001), a method for transfer color between im-
age was proposed. By rotating the color from RGB color space
to Lab color space in order to decorrelate the information be-
tween color channels, the statistical properties transfer between
each channel of two images can be performed independently. Par-
ticularly, the color in the rotated space is translated and scaled to
transfer the statistical properties. The major drawback of this ap-
proach is that it is limited to only RGB color space.

In stead of rotating the original data to a specific color space as
presented in (Reinhard et al., 2001), Xiao and Ma (Xiao and Ma,
2006) computed the rotation using the axes defined by the prin-
cipal components of each image. The transfer function is then
formulated as a series of affine matrix transformation.

In (Pitié et al., 2007), an iterative method for transforming the
probability distribution of an RGB image was proposed. The
concept of this approach is to rotate data space using a random
rotation matrix and perform 1D distribution transfer on each axe
of the new coordinate system. The process iterates with differ-
ent random rotations and stops when there is no change in the
probability distribution of the modified image.

Inamdar et al. (Inamdar et al., 2008) applied the method proposed
in (Pitié et al., 2007) to use with multidimensional data i.e., mul-
tispectral satellite images. Particularly, the N-D rotation matrix
was used for transfer the multidimensional density function. The
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applicability of the proposed method was tested in three scenar-
ios including 1.) supervised classification 2.) semi-supervised
classification and 3.) change detection.

The probability distribution transfer is also used transform data
such that the shape of its probability distribution is matched with
a parametric probablity distribution such as uniform, or normal
distribution. For example, Laparra et al. (Laparra et al., 2011)
proposed a method for data Gaussianization of which the aim is
to make the transformed data distributed with a unit-covariance
normal distribution.

In this paper, we adopted the iterative approach presented in (Pitié
et al., 2007). Its disadvantage is that it was originally proposed
for 3D probability distribution transfer using 3D rotation matrix.
In order to deal with multidimensional rotation matrix, we pro-
posed to use the sampling technique proposed by Stewart (Stew-
art, 1980) to generate a set of random orthogonal matrices. This
sampling scheme uses Householder transformation converting nor-
mally distributed random variables to a random orthogonal ma-
trix. This result in the uniform sampling of the orthogonal matrix.
The obtained orthogonal matrices are then converted to proper ro-
tation matrices. The iterative approach presented in (Pitié et al.,
2007) can then be generalized to multidimensional case.

The rest of this paper is organized as follow. The concept of prob-
ability distribution transfer is briefly presented in Section 2.. In
Section 3., the proposed random rotation matrix sampling scheme
will be presented. The performance of the proposed method will
be demonstrated in Section 4.. The conclusion will be discussed
in Section 5..

2. PROBABILITY DISTRIBUTION TRANSFER

2.1 The one-dimensional case

In order to explain the distribution transfer which is also known
as histogram specification, lets use the one dimensional data as
an example because its formulation is very simple. Let cs and
ct are the probability distribution of the source and target data,
respectively. The goal of the distribution transfer is to transform
the source data such that the transformed data has probability dis-
tribution similar to the target’s one.

According to the change of variable formula, one obtains the fol-
lowing constraint:

cs(us)dus = ct(ut)dut, (1)

where us and ut are respectively 1D random variables i.e., the
digital number of a gray value image. Let the source data is trans-
formed by a transformation T i.e., T (us) = ut. By integrating
both side of (1), we come up with:∫ us

cs(us)dus =

∫ T (us)

ct(ut)dut (2)

The transformation T can then be expressed in terms of the cu-
mulative distributions of the source and target data:

Cs(us) = Ct(T (us))→ T (us) = C−1
t ◦ Cs(us) (3)

where Cs and Ct are the cumulative distributions of the source
and target data, respectively. Since the 1-D cumulative distribu-
tion function is non-decreasing function, the mapping can then be
easily implemented using look-up table.

Algorithm 1: Multi-dimensional probability distribution transfer
Input : Xs : source data and Xt : target data
Output: Transformed source data

1 while Not converge do
2 Choose an N ×N rotation matrix R;
3 At each iteration k, rotate the data using the rotation matrix

R i.e., Xr
s(k)← RXs(k − 1) and Xr

t ← RXt;
4 Perform 1-D histogram matching on each of the axis in the

rotated space;
5 Transform the adjusted source data back to the original

space: Xs(k)← R−1Xr
s(k);

6 end

2.2 N-dimensional case

To transform the multidimensional probability distribution, this
paper adopted the method proposed in (Pitié et al., 2007). The
concept is similar to the Radon transformation such that the data
is projected onto the principal axes of rotated space. The one-
dimensional distribution transform is then performed indepen-
dently on each principal axis. Therefore, the probability distri-
bution is iteratively transformed to the target one using rotation
matrix sequences.

The work flow of the multidimensional probability distribution
transfer is illustrated in Algorithm 1. The proposed rotation ma-
trix sampling scheme is presented in the next Section.

3. RANDOM SAMPLING OF ROTATION MATRIX

The proposed random rotation matrix sampling begins with the
random sampling of orthogonal matrix. The obtained orthogonal
matrices are then converted to proper rotation matrices. A matrix
Q is orthogonal if and only if det(Q) = ±1 and QQ> = I. The
set of N ×N orthogonal matrices is denoted by O(N) which is
so called orthogonal group. The rotation matrix is a special case
of the orthogonal group because the determinant of the rotation
matrix is 1. Therefore, the set of rotation matrices is so called
special orthogonal group which is denoted by SO(N) where N
is the dimension of the rotation matrix.

3.1 Uniformity of orthogonal matrix distribution

Unlike uniform sampling of real number, the sampling of orthog-
onal, or rotation matrices needs special care in order to avoid un-
intentionally bias. For example, uniform Euler angle sampling
does not yield uniformly distributed rotation matrices. Particu-
larly, it results in a set of rotation matrix that is heavily distributed
in polar region (Kuffner, 2004).

In (Mitchell, 2008), it is pointed out that a scheme can uniformly
sample orthogonal matrix Q ∈ O(N), if these conditions satisfy:

µ(Ω1) = µ(Ω2)
P (Q ∈ Ω1) = P (Q ∈ Ω2)

, (4)

where µ is the Haar measure assigning orthogonal transformation
invariant volume to subset1 Ω1,Ω2 ∈ O(N). This means that,
when the set Ω1 and Ω2 have the same “volume”, the sampling is
uniform, if the chances of choosing a orthogonal matrix Q from
Ω1, or Ω2 are equal. This constraint is also used for the uniform
sampling of rotation matrices.

1A measure can be intuitively interpreted as size, or volume of a set
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3.2 Uniform orthogonal matrix sampling

To sample orthogonal matrices, the method proposed by Stewart
(Stewart, 1980) is adopted because of uniform sampling. The ob-
tained orthogonal matrices are then converted to proper rotation
matrices. The orthogonal matrix sampling method is based on the
use of Householder transformation to decompose a square matrix
into orthogonal and upper triangular matrices i.e., QR decompo-
sition.

Given a vector a, there exists a Householder transformation H
such that:

Ha = re, (5)

where e = [1, 0, . . . , 0]> and r = ±‖a‖22. The Householder
transformation is defined as:

H = I− 2
uu>

‖u‖22
, (6)

where u is a non-zero vector. It is trivial to prove that the House-
holder transformation H is symmetric orthogonal. The geometri-
cal meaning of the Householder transformation is the reflection
of a vector a across the hyperplane orthogonal to u which is so
called reflector. The reflector u can be computed by:

u = sign(a1)‖a‖2e + a, (7)

where a1 is the first element of the vector a.

A series of Householder transformation can then be utilized to
perform orthogonal triangularization on an N × N matrix A.
That is, there exists a sequence of Householder transformation
H2, H3, . . . , HN satisfying:

H2H3 . . . HNA = U, (8)

where U is upper triangular. By setting

Q = HN . . . H3H2, (9)

we may write
A = QU, (10)

which is known as QR decomposition2.

To sampling orthogonal matrices, the method proposed in (Stew-
art, 1980) is based on the decomposition of randomN×N matrix
A whose elements are independently sampled from normal distri-
bution with zero mean and a common variance. It was proved that
the QR decomposition of the random matrix such that the diago-
nal elements of the upper triangular matrix are positive results in
the uniform distribution of orthogonal matrix Q according to Haar
measure.

3.3 Optimal rotation matrix

The obtained orthogonal matrix can be an improper rotation ma-
trix i.e., |Q| 6= 1. In this paper, the method proposed by Kanatani
(Kanatani, 1994) is adopted to project the obtained orthogonal
matrix onto the SO(N) manifold. Therefore, the projected or-
thogonal matrix is a rotation matrix.

Given an orthogonal matrix Q, the goal is then to find the rota-
tion matrix maximizing trace(R>Q). Let the Singular Value De-
composition (SVD) of the matrix Q be Q = WDV>. The optimal

2In literature, this upper triangular matrix is usually denoted by R ac-
cording to the name of this factorization i.e., QR factorization.

Algorithm 2: Random rotation matrix sampling
Input : N :size of the N ×N rotation matrix; σ :standard

deviation of the normal distribution
Output: A sampled rotation matrix R

1 for i← N to 2 do
2 Sampling ai ∈ Ri from normal distribution N (0i, σ

2Ii);
3 Compute Householder transformation Ĥi reducing ai to rie;

4 Hi ← diag
(
IN−i, Ĥi

)
;

5 end
6 D← diag(sign(rN ), sign(rN−1), . . . , sign(r2));
7 Q← DHNHN−1 . . . H2;
8 WDV> ← SVD(Q);
9 R← W diag(1, 1, . . . , 1, det(WV>))V>;

rotation matrix can then be computed as follow:

R = W


1

1
. . .

det(WV>)

 V> (11)

It can be easily proved that this projection provides proper rota-
tion matrix i.e., |R| = (|W||V>|)2 = 1 because |W| = |V| = ±1

By combining the orthogonal matrix sampling with projection
onto SO(N) manifold, we obtain the scheme for sampling the
rotation matrix which is illustrated in Algorithm 2. The multi-
dimensional rotation matrix can then be randomly sampled and
used in the probability distribution transfer.

4. EXPERIMENTAL RESULTS

4.1 Image to image probability distribution transfer

In this experiment, we demonstrate the effectiveness of the mul-
tidimensional probability distribution transfer. The performance
of the proposed method was evaluated in terms of quality and
quantity.

In order to show the evolution of the distribution transfer, we
used the two benchmark images from stereo dataset i.e., cones
and teddy images3 because of their color variations. In Figure
1, the evolution of the bivariate distribution of the red and green
bands is illustrated. The Figure shows the contour plots of color
distribution functions at some iterations, which were estimated
by kernel density function technique, particularly Epanechnikov
kernel. It can be observed that the distribution transfer can trans-
form the shape of the source distribution function to match with
that of target one.

The proposed method was compared with the method using uni-
form angle sampling (Inamdar et al., 2008) e.g., uniform Eu-
ler angle distribution in 3D case. The performance indicator is
the similarity between the transformed probability distribution
and the target one. A popular similarity metric called Kullback-
Leibler (KL) divergence is utilized which is defined as follows:

DKL(cs‖ct) =

∫
u

cs(u) log

(
cs(u)

ct(u)

)
du. (12)

3http://vision.middlebury.edu/stereo/data/

scenes2003/
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(a) Source (b) 1st iteration

(c) 10th iteration (d) 20th iteration

(e) 50th iteration (f) Target

Figure 1: The evolution of source probability distribution function. The bivariate probability distribution of the red and green bands of
the source data is shown in Figure 1a. The target probability distribution function is presented in Figure 1f.

It can be noticed that the KL divergence is not symmetric i.e.,
DKL(cs, ct) 6= DKL(ct, cs). In order to make the metric sym-
metric, the average of the KL divergence is used:

Davg =
DKL(cs‖ct) +DKL(ct‖cs)

2
. (13)

The images used in this comparison are Landsat 8 imageries, see
Figure 2. The simulation was repeated 100 times and the aver-
aged log Kullback-Leibler divergence at each iteration is shown
in Figure 3. It can be observed that the proposed rotation sam-
pling scheme yields better convergence than that of rotation angle
sampling. The reason is that the rotation angle sampling can have

unintentionally bias in the rotation matrix samples.

The proposed method was also compared with the band-by-band
distribution transfer. In this experiment, the performance was
evaluated using Kolmogorov-Smirnov test which is a non-parametric
test for determining whether two samples are drawn from the
same distribution. If the Kolmogorov-Smirnov statistics is small,
we therefore cannot reject the null-hypothesis that those two sam-
ples were drawn from the same distribution. The Kolmogorov-
Smirnov statistics from the experiment are tabulated in Table 1.
It can be observed that the multidimensional distribution transfer
yields lowest Kolmogorov-Smirnov statistics.
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(a)

(b)

Figure 2: Landsat 8 imageries used for comparing the perfor-
mance of the proposed rotation sampling method and uniform
rotation angle sampling.

Figure 3: The averaged log Kullback-Leibler divergence from
100 simulations.

The performance is also analyzed visually using Q-Q plot, where
Q stands for quantile. If two sampled are drawn from the same
distribution, they are expected to line up on the line of identity. In
Figure 4, the Q-Q plots of the red band with and without distri-
bution transfer are illustrated. It can be concluded that the source

(a) Without distribution transfer

(b) With distribution transfer

Figure 4: The Q-Q plot of the red band of images illustrated in
Figure 2.

Original 1D ND
source data transformation transformation

Band 2 0.145 0.015 0.005
Band 3 0.040 0.003 0.002
Band 4 0.179 0.009 0.001
Band 5 0.214 0.003 0.0005
Band 6 0.151 0.005 0.0007
Band 7 0.095 0.008 0.0008
Band 8 1 0.046 0.210

Table 1: Kolmogorov-Smirnov statistics

and target data are not drawn from the same probability distribu-
tion function. After distribution transfer, the distribution of the
transformed source data is similar to that of target data.

4.2 Data Gaussianization

In some applications, the data distribution has to be transformed
into a parametric distribution function, particularly, the Gaussian
or normal distribution. A popular approach is to use the power
transformation e.g., Box-Cox transformation (Osborne, 2010),
which is a parametric transformation. In this experiment, the
distribution transfer was applied to transform the shape of the
distribution function to that of normal distribution.

To transform the source images probability distribution function,
the mean (µ) and the covariance matrix (Σ) of the source data
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(a)

(b)

Figure 5: The MODIS imagery before and after data Gaussian-
ization.

were computed. The target data was then drawn from the normal
distributionN (µ,Σ). The source data was then iteratively trans-
formed to be distributed with the normal distribution N (µ,Σ).
The source data used in this experiment was the true-color MODIS4

image of the semi-arid Tibetan Plateau, illustrated in Figure 5a.
The image after distribution function transformation is shown in
Figure 5b.

To quantitatively test the normality of the transformed source
data, the kurtosis and skew were used (Ghasemi and Zahediasl,
2012). The kurtosis was used for measure the peakedness of the
probability distribution function. The asymmetry of the distribu-
tion function was measured by skew. The shape of a distribution
function is similar to that of normal distribution function, if the
kurtosis is close to 3 and skew is negative. To pass the normality
test with 95% confidence, the p-value must be greater than 0.05.
Namely, by not reject the hypothesis of normality, no significant
departure from normality is found. The statistics for normality
test are tabulated in Table 2. It can be concluded that the multi-
dimensional distribution transfer can transform the source data to
be normally distributed.

The normality of the data can also be visually inspected using
pairwise bivariate distribution plot shown in Figure 6. Particu-
larly, the univariate distributions on each variable (color band) are
shown on diagonal axis; the bivariate distributions between two
variables are shown in off-diagonal elements. It can be observed
that distribution transfer can change the shape of the non-normal
distribution function to that of normal one.

It is also possible to check that the desired parameters of normal
distribution function are obtained using the Kullback-Leibler di-
vergence for multivariate normal distributions. Let the desired

4http://modis.gsfc.nasa.gov/

normal distribution be N (µ,Σ), and the obtained normal distri-
bution N̂ (µ̂, Σ̂). Therefore, (12) can be simply modified:

DKL(N̂ ‖N ) =
1

2

(
trace(Σ−1Σ̂) + ln

(
|Σ|
|Σ̂|

)
− k

+(µ− µ̂)>Σ−1(µ− µ̂)
)
,

(14)
The desired and obtained means are as following:

µ = [0.2935 0.3244 0.2181]>

µ̂ = [0.2938 0.3248 0.2183]>,
, (15)

and the desired and obtained covariance matrices:

Σ =

 0.0445 0.0365 0.0387
0.0365 0.0316 0.0329
.03870 0.0329 0.0365



Σ̂ =

 0.0447 0.0366 0.03889
0.0366 0.0318 0.03311
0.0389 0.0331 0.03665

 .
(16)

By using the average ofDKL(N̂ ‖N ) andDKL(N‖N̂ ), the sim-
ilarity score is then 7.32× 10−6.

5. CONCLUSIONS

In this paper, a rotation matrix sampling scheme for distribution
function transfer was presented. We proposed to use the House-
holder transformation to uniformly sampling the orthogonal ma-
trices first and then transform the orthogonal matrices to rotation
matrices. Using he advantage of Householder transformation for
sampling orthogonal matrix, the rotation matrix can be sampling
more efficient than using the rotation angle sampling. This ef-
ficiency was demonstrated in the experimental evaluation. The
performance of the distribution transfer was tested with two ap-
plications i.e., image to image distribution transfer and data Gaus-
sianization. It was demonstrated that the use multidimensional
distribution transfer yield better results that that of 1D distribu-
tion transfer.
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(a) Before transformation

(b) After data Gaussianization

Figure 6: Visualization of the pairwise relationships between two variables.
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