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ABSTRACT: 

This paper presents a novel segmentation method for automatically determining the number of classes in Synthetic Aperture Radar 
(SAR) images by combining Voronoi tessellation and Reversible Jump Markov Chain Monte Carlo (RJMCMC) strategy. Instead of 
giving the number of classes a priori, it is considered as a random variable and subject to a Poisson distribution. Based on Voronoi 
tessellation, the image is divided into homogeneous polygons. By Bayesian paradigm, a posterior distribution which  characterizes 
the segmentation and model parameters conditional on a given SAR image can be obtained up to a normalizing constant; Then, a 
Revisable Jump Markov Chain Monte Carlo(RJMCMC) algorithm involving six move types is designed to simulate the posterior 
distribution, the move types including: splitting or merging real classes, updating parameter vector, updating label field, moving 
positions of generating points, birth or death of generating points and birth or death of an empty class. Experimental results with real 
and simulated SAR images demonstrate that the proposed method can determine the number of classes automatically and segment 
homogeneous regions well. 

1. INTRODUCTION

In interpreting and understanding field of Synthetic Aperture 
Radar (SAR) image, image segmentation plays a very 
important role(Ma, 2011). Image segmentation involves two 
tasks: determining the number of classes and segmenting 
homogeneous regions. Most of image segmentation algorithms 
mainly segment the homogeneous regions based on a giving 
number of classes a priori (Ayed,2005; Touzi,1988; Won,1992; 
Jain,1992). In general, these algorithms can be categorized into 
threshold methods (Alkasassbeh, 2012), clustering methods 
(Pham, 2001; Zhang, 2008), statistic based methods (Cao,205; 
Schmitt, 2014) and so on. Statistical based algorithms applied 
broadly in SAR image segmentation because they can depicts 
and model images with speckle noise well. 

Li, 2010 proposed an image segmentation algorithm based 
on Voronoi tessellation and RJMCMC strategy. Although the 
proposed approach can segment SAR intensity images well, it 
couldn’t determine the number for classes automatically. The 
issue is extremely important for remote sensing data processing 
since the ground truth is not always known a prior. Wang, 2015 
adopts regular tessellation and RJMCMC to segment high 
resolution SAR images with unknown number of classes, it can 
determine the right number of classes automatically, but 
because it adopt regular tessellation technique, the edges of 
different regions are always ambiguous, thus after segmentation, 
the post-processing must be done to obtain the accurate 
boundaries. 
  In order to determine the number of classes automatically 
and segment homogeneous regions accurately simultaneously, 
the paper presents a segmentation algorithm combining 
Voronoi tessellation and RJMCMC strategy. First of all, the 
number of classes is considered as a random variable and 
subject to a Poisson distribution, following the Bayesian 
paradigm, the posterior distribution is obtained. Then, a 

RJMCMC algorithm is designed to simulate from the posterior 
distribution to determine the number of homogeneous regions 
and to segment the image simultaneously. In this paper, the 
emphasis focuses on the designing of RJMCMC scheme. The 
moves in the designed RJMCMC scheme include splitting or 
merging real classes, updating parameter vector, updating label 
field, moving position of generating points, birth or death of 
generating points and birth or death of an empty class. These 
moves overcome the instability problem of segmentation 
optimization effectively and determine the number of classes 
precisely. 

2. DESCRIPTION OF THE PROPOSED ALGORITHM

2.1 Image Segmentation Model 

Let Y = {Yi, i =1, …, N } be a SAR intensity image in an 
image domain D, where i is pixel index arranged on D, N is the 
number of sampling points (pixels), Yi is the random variable 
sample of Y representing i.  

In this paper, D = {Pj, j = 1, …, J} is partitioned into J 
Voronoi polygons by using Voronoi tessellation, where J is 
considered as a random variable following a Poisson 
distribution with the probability density function (pdf) p(J) 
(Li,2010). Given a set of generating points G = {vj  D, j = 
1, …, J}, vj is composed of the points nearest to vj than to other 
generating points in G, and vj is associated with jth Voronoi 
polygon Pj.   

Let C = {Cj, j = 1, …, J} be the label random field, where Cj 

{1, …, L} is Pj
s label random variable and the pixels in  Pj

are assumed to belong to the same class, L is the number of 
classes. In order to automatically determine the number of 
classes, L is viewed as a random variable with a prior 
distribution p(L). To model the correlation of labels under the 
framework of the Voronoi tessellation, a Markov Random Field 
(MRF) model (Besag, 1986; Strauss,1975) on C is defined by 
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extending stationary Potts model into neighbour Voronoi 
polygons. As a result, the joint pdf of the label field C, p(C | G, 
L, J), can be written as, 
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where constant  can control the neighborhood dependences 
between a pair of neighbor polygons. (Cj, Cj) = 1, if Cj  Cj, 
otherwise (Cj, Cj) = 0; NPj ={ Pj, Pj  Pj} be the set of Pj’s 
neighbor polygons, j {1, …, J}, j  {1, …, J} and j  j, Pj  
Pj are neighbors if and only if they have a mutual boundary. 
It can be seen that the segmentation of Y can be fully 
determined by the label field C. 

Let Yi  Y satisfy independent Gamma distribution conditional 

on its label and the corresponding parameter vector for Gamma 

distribution  = {,  = 1, …, L} = (,  ) ={1, 

,L, 1, , L}, where the shape  and scale parameters 
 are assumed to satisfy identical and independent Gaussian 
distributions with mean  and , standard deviations  and 
, respectively (Yang, 2006), then the joint pdf  p(Y | C, , G, 
L, J) can be defined as follows. 
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For a generating point vj, j = 1, …, J, uniformly distributed 
on D, and assume that all the generating points are 
independently drawn from S and the joint pdf p(G | J)of G can 
be defined as 
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The number of classes L is subjected to a Poisson 
distribution with mean L (Green, 1995) and truncated to L  
{Lmin, …, Lmax}, Lmin (Lmax) is the allowed minimum (maximum) 
number of classes. Its prior distribution can be expressed as 
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Using Bayesian paradigm (Dryden, 2003), the posterior 

distribution of C, , G, L and J on Y can be defined according 
to prior probabilities and image model defined in Eq.(1)-(4) as 
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2.2 Simulation 

In order to segment an SAR intensity image, it is necessary 
to simulate from the posterior distribution in Eq. (5) and to 
estimate its parameters. Let  = (C, , G, L, J).be parameter 
vectors. It is worthy to note that when m is variable the 
dimension of parameter vector  is varied. In this paper, a 
useful tool to simulate from the posterior distribution defined in 
Eq. (5) is the RJMCMC algorithm(Green, 1995). In each 
iteration, a new candidate * in a higher dimension for  is 
drawn from a proposal measure q(, *). The transition from (, 
u) to * is implemented by drawing a random vector u, that is,
|| + |u| = |*|. The acceptance probability from * to  can be 
computed as (Green, 1995),  
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where r() and r(*) are the probabilities of choosing a move 
type when in the states  and *, respectively and q(u) is the 
density function of u. The Jacobian | ∂(*) /∂(, u)| derives 
from the transformation from (, u) to *. In the proposed 
algorithm, it is not necessary for all L classes to be used to label 
Voronoi polygons. The classes that are used to label the 
Voronoi polygons are called real classes and others empty 
classes, denoted as Lr and Le, respectively. The move types are 
designed as follow. 

2.2.1 Splitting or Merging Real Classes: The Splitting or 
merging moves are designed in tandem (Green, 1995). Given 
the current number of classes L, Let  = (C, , G, L, J), fL or 
mL+1 is the probabilities of proposing a split or merge operation, 
we consider fL  = 1- mL+1 = 0.5.  A splitting involves 
randomly selecting a real class in the current real classes 
collection which has a set of Voronoi polygons; then a new 
empty class L+1 is proposed and the corresponding parameter 
vector L+1 is sampled from the prior distribution; The class of 
each Voronoi polygon of selected class changed to L+1 with 
probability of 0.5. So *= (C*, *, G, L+1, J), where * = {

*, 
 = 1, …, L, L+1}. It is evident that the splitting move does not 
affect G and m. The acceptance probability of the splitting 
move can be written as 

 
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where 
Lfr = fL /{Lr (2

B-2)}, 
1Lmr = 2mL+1/{ Lr ( Lr+1) }, B is 
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the number of Voronoi polygons with label l. Let * = (, u), 
and u = {k+1, k+1}. As  and u are conditional independent, 
p(*) = p()q(u), consequently the Jacobian term in Eq. (6) is 
equal to 1. 

A merging involves selecting two real classes and then 
merge the corresponding two classes into one selected class 
from the two randomly, the unwanted class is killed off, and the 
number of class decreases to L-1. The acceptance probability of 
the merge move can be generalized as 

 
rr sm R/1  ,1min),( *         (9) 

2.2.2 Updating Parameter Vector: The parameter vector  
= {,  = 1, …, L}is updated sequentially and change to . 
If  is a real class, the acceptance probability of updating  
can be written as 
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If  is an empty class, the acceptance probability can be 
simplified as 
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2.2.3 Updating Label Field: To update the label, select a 
Voronoi polygon randomly from J polygons, say Pj, proposing 
a new real label Cj

* ≠ Cj in the current real classes collection. 
The acceptance probability from Cj to Cj

* can be written as 
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2.2.4 Moving Position of Generating Point: For a 
generating point vj, the new generating point vj

* is uniformly 
sampled from its corresponding polygon Pj. vj

* leads to the 
local changes of Pj and its neighbor polygons NPj ={ Pj, Pj  
Pj} to Pj

* and NPj
* ={ Pj

*, Pj
*  Pj

*}. The acceptance 
probability of the operation can be expressed as 
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2.2.5 Birth or Death of Generating Points: Birth of 
generating point involves increasing the number of generating 
points by one, the new generating point vJ+1 is sampled from D 
uniformly. Let the polygon induced by generating point vJ+1 be 
PJ+1 and its label J+1 is uniformly drawn from {1, ..., Lr}. The 
set of labels of PJ+1’s neighbor polygons is NPJ+1 = {Pj, Pj 

PJ+1}. S = {P1, …, Pj’,…, PJ } is modified to S* = { P1, …, 
P*

j’,…, PJ, PJ+1 }, Pj NPJ+1. As the operation does not affect 
parameter  and L, let * = (C*, , G*, L, J+1), where G* = 
(v1, ..., vJ, vJ+1), and C*= (C1, ..., CJ, CJ+1). The acceptance 
probability turns out to be 

 
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Given the current number of Voronoi polygons J, 
1Jdr = dJ+1 /

(J+1), 
Jbr = bJ, where bJ (dJ+1) is the probability of choosing a

birth (death) operation, and the Jacobian term in Eq. (15) is 
equal to 1.  

2.2.6 Birth or Death of Empty Class: Given the current 
number of classes is L, let the probabilities of proposing a birth 
or death of empty class move be bL and dL+1, respectively. A 
birth move involves proposing a new empty class L +1 and a 
proposed set L+1

* = (L+1
*, L+1

*) sampled from the identical 
and independent prior distribution. It is evident that the birth 
move does not affect the number of the Voronoi polygons J and 
the set of generating points G, let *= (C*,*, G, L+1, J), where 
* = {,  = 1, …, L, L +1}. The acceptance probability for a 
birth move can be obtained by Eq. (6), that is, 
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Let
1Ldr = dL+1 / (Le+1), 

Lbr = bL, where Le is the number of

empty classes. Let * = (, u), and u = {k+1, k+1}. As  and u 
are conditional independent, p(*) = p()q(u), the Jacobian 
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term in Eq. (17) is equal to 1. 
As death of empty class is designed in tandem with birth of 

empty class (Green, 1995), the acceptance probability can be 
expressed as 

 
ee bd RA /1 ,1min),( *        (18) 

3. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we present experimental results to illustrate 
the feasibility and effectiveness of the proposed approach. 

3.1 Simulated SAR Image 

Figure1 shows a simulated SAR image, where Figure1 (a) is 
an image template for simulation, Figure 1(b) is simulated 
based on template of Figure 1(a). Table 1 lists the values of  
and  for simulation in different homogeneous regions which 
are indicated by I-V in Figure 1(a). 

Region   

I 11.6453 10.774

II 8.1005 28.6417

III 4.2078 13.9025

IV 1.1297 61.5406

V 3.8019 6.0523

Table 1. Parameters of GAMMA distribution 

Figure 2 shows the changes of kr before 200 iterations. 
Experiment results demonstrate that (1) before kr attains to its 
stable value, it jumps among [2, kmax]. It can be seen from 
figure 2 that kr attains to its stable value after about 60 
iterations, for the simulated image, kr’s stable value is 5; (2) 
during the jumping steps, no class remains unchanged with 15 
consecutive iterations. Hence, during 30 consecutive iterations, 
if kr remains unchanged, it is thought to be the number of the 
real class. 

  Figure 3 shows visual evaluation of the segmentation result 
of simulated SAR image shown in Figure 1(a). Figure 3(a)-(b) 
present the Voronoi tessellation and the corresponding 
segmentation result, respectively. To qualitatively evaluate the 
proposed approach, the outlines are extracted and overlaid on 
the original image, see Figure 3(c). Visually, the outlines match 
the edges of homogeneous regions well. From Figure 2 and 3, it 
can be found that the proposed approach can not only 
determine the number of classes but also segment 
homogeneous regions precisely. 

In Table 2, we list some computed common precision 
measures to quantitatively assess the accuracy of the 
segmentation result shown in Figure 3(b). From Table 2, it can 
be seen that all the accuracies indexes are at least 99.3%. The 
Kappa coefficient is up to 0.997. It can be illustrate that the 
proposed approach is feasible and effective. 

Class I II III IV V 
Producer’s 
accuracy 
(%) 

I 
337
3 

0 0 0 1 100 

II 0 
331
0 

0 0 0 100 

III 5 0 3311 0 5 99.7 

IV 0 2 0 
337
1 

16 99.5 

V 1 3 3 5 
297
8 

99.6 

User’s 
accuracy 
(%) 

99.8 99.9 99.9 99.9 99.3 

Kappa 
coefficient 

0.997 Overall accuracy (%) 99.8 

Table 2.  Confusion matrix, statistical measures and kappa 
coefficient for simulated SAR images. 

Figure 3. Visual evaluation of simulated SAR images, 
(a) Voronoi tessellation and (b) segmentation results 
(c) overlaying the extracted outlines on the original 
images. 

(a) (b) (c)

Figure 1. Simulated images, (a) template for 
simulation, (b) simulated image. 

(a) 

III II

I IV 

V 

(b) 

Figure 2. Changes of kr during 200 
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3.2 Real SAR Image 

To demonstrate the efficiency of the proposed approach 
further, experiment on real SAR images are carried out. Three 
real SAR images of RADARSAT-I/II with sizes of 128128 
shown in Figure 4 are tested. Figure 5 shows the corresponding 
visual evaluation, where Figure 5(a1)-(c1) and Figure 5(a2)-(c2) 
show the Voronoi tessellations of image domain, the 
segmentation results, respectively. The extracted outlines are 
overlaid on the original images, see Figure 5(a3)-(c3). From 
Figure 5, it can be seen that the proposed approach can not only 
determine the number of classes of real SAR images, but also 
segment the homogenous regions precisely. So it can be 
demonstrate that the proposed approach is suitable to the real 
SAR images segmentation. 

4. CONCLUSION

This paper presents a region-based approach of SAR image 
segmentation, which combines Voronoi tessellation and 
RJMCMC scheme. This proposed approach can not only 
determine the number of homogeneous regions but also 
segment them accurately. In order to determine the correct 
number of class, the proposed approach design 6 operations 
which are time-consuming, in the further work, parallel 

algorithm should be studies to accelerate the proposed 
approach based image segmentation.    
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