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ABSTRACT: 

 

Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images 

is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their 

changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In 

this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to 

overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of 

actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. 

Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian 

processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced 

substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 

remote sensing images demonstrate the effectiveness and efficiency of our proposed method. 
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1. ITRODUCTION 

The change detection technique for multi-temporal high 

resolution remote sensing images plays an important role in 

many applications, such as monitoring land cover transitions, 

nature disasters (e.g. earthquake, tsunami), land desertification 

and urbanization. There are many algorithms of change 

detection in literature which can be roughly divided into two 

categories: unsupervised and supervised. Among unsupervised 

methods, the land cover transitions are often detected from 

spectral reflectance properties of high resolution remote sensing 

images, and the difficulty lies in choosing an appropriate 

threshold. Among supervised methods, from the labelled 

training samples, we can use the classification results from 

different temporal remote sensing images to detect the land 

cover transitions. In general, unsupervised methods can provide 

binary maps which only present “change” or “no change” 

information. Supervised methods can provide the land cover 

transitions with knowing the land cover categories in each 

temporal additionally. The unsupervised techniques are usually 

affected by certain objective factors like the atmosphere 

conditions, sensor calibration, etc. On the other hand, the 

supervised techniques need lots of manual intervention and will 

increase the cumulative errors in the process of comparing 

classification results. From the previous experience, the user 

should choose an appropriate change detection algorithm for the 

specific requirement in practice.  

 

Another difficulty for classification and change detection of 

remote sensing images is the acquisition of actual land cover 

category data since it is difficult and expensive. We need 

comprehensive surveys over the area of interest, and the 

labelling task must be performed by experts in related fields. In 

literature, there have been some supervised methods with active 

learning to promote the efficiency of classification and change 

detection, because active learning is helpful to overcome the 

lack of labelled samples. Begüm et al proposed an active 

learning technique developed in the framework of the Bayes’ 

rule for compound classification (Begüm D., 2012). It selected 

the unlabelled pixels that were classified with the maximum 

uncertainty which was assessed by joint entropy. This algorithm 

tried to use statistical methods to classify the land cover 

categories in remote sensing images under certain conditions. 

Furlani et al used the support vector data description to identify 

the most relevant training samples in classification, and selected 

unlabelled samples by adopting diversity criterion with the 

support vector data description classifier (Furlani M., 2012). 

However, the effectiveness of support vector data description 

highly depended on the quantity and quality labelled samples 

used to define the enclosing hypersphere. So diversity criterion 

were needed to select candidate training pixels. This kind of 

method was not adequate for large scale problems, since the 

computation complexity of support vector machine was very 

high. Jefersson et al proposed an interactive classification of 

remote sensing images considering multiscale segmentation 

(Jefersson, 2013). They used a boosting-based active learning 

strategy to select regions at the most appropriate scales of 

representation and found that the combination of scales 

produces better results than isolated scales in a relevance 

feedback process. Moumita et al presented a change detection 

technique (Moumita, 2014) using neural networks in active 

learning, and the network was iteratively trained with labelled 

patterns, using the query functions: uncertainty sampling and 

query-by-committee. However, the optimal parameters are hard 

to find but play important roles in neural network. Kiran et al 

presented a cohesive algorithm for image classification and 
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change detection based on active learning which tackled the 

lack of actual land cover category data to detect deforestation 

(Kiran, 2014). They used Expectation Maximization algorithm 

as a pre-clustering, an active learning classification based on 

maximum likelihood estimation, and an automatic threshold of 

pair-wise PCA as post-classification comparison. Xiao et al 

used the structural feature description combined with both local 

and global information and query expansion for object detection 

(Xiao B., 2014). They converted the detection task to a ranking 

query task by using a ranking support vector machine for the 

object detection in very high resolution remote sensing images. 

In literature, only few approaches for detecting land cover 

category transitions by supervised techniques with active 

learning have been presented. Active learning is a sample 

selection strategy which can be used in many kinds of 

classification algorithms. The difference between them is the 

classification algorithm, and what we need to do is designing an 

appropriate criterion for them respectively. 

 

In this study, we presented an interactive change detection 

method for high resolution remote sensing images under the 

framework of Alexander’s method (Alexander F., 2012), which 

used active learning to overcome the shortages of existing 

remote sensing image change detection techniques. There is no 

need for any annotation of actual land cover category at the 

beginning in our method. First, we use unsupervised way to find 

a certain number of the most representative objects in the first 

iteration and label them with “change” or “no change” by user 

as the initial training set. Then, we can detect the change areas 

from multi-temporal high resolution remote sensing images by 

active learning with Gaussian processes in an interactive way 

gradually until the detection result doesn’t change notably. 

Specifically, select the most representative sample in each 

iteration, label it with “change” and “no change”, add this 

labelled sample into training set, and delete it from the testing 

set. Repeat this process until the result meets the requirement. 

In our method, the manual annotation can be reduced 

substantially, and a desirable detection result can be obtained in 

a few iterations. 

 

This paper is organized as follows. Section 2 presents the 

interactive change detection algorithm based on active learning 

in detail, and gives a specific interpretation for every step in the 

proposed method.  Some representative experimental results are 

exhibited in section 3. Finally, Section 4 draws the conclusion 

of this work. 

 

2. INTERACTIVE CHANGE DETECTION BASED ON 

ACTIVE LEARNING 

This work of interactive change detection use active learning to 

construct an efficient training set in order to make full use of 

various information in high resolution remote sensing images. 

We use the original images without any annotation to select the 

most representative samples, and obtain the results meeting the 

requirements gradually by adding those representative samples 

into training set after labelling them manually. Repeat this 

process until reach a satisfactory detection result. The whole 

framework flow chart is shown in Figure 1. And each step of 

this interactive change detection for high resolution remote 

sensing images based on active learning will be introduced in 

the following parts.  
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Figure 1. The flow chart of the whole interactive change 

detection system 

 

2.1 Superpixel Segmentation 

Superpixel segmentation algorithms can be roughly divided into 

two categories: algorithms based on graph theory and 

algorithms based on gradient descent. We choose Simple Linear 

Iteration Clustering (SLIC) segmentation algorithm (Achanta R., 

2012) by comparing the segmentation speed and results of some 

segmentation algorithms. Furthermore, this method can produce 

consistent superpixels with similar size and shape, and it can 

keep image boundary at the same time. 

 

In this step, the remote sensing image with complex boundaries 

is segmented into several superpixels, and then the superpixel 

segmentation boundary is applied to other temporal remote 

sensing images, so that the superpixels in different multi-

temporal remote sensing images can stay the same with each 

other. The region size of superpixels can be set in experiments 

manually. 

 

2.2 Feature Extraction 

Represent all superpixels with their features. Specifically, take 

the external rectangular range of each superpixel in different 

temporal remote sensing images, calculate color and structure 

features of each rectangular region, concatenate various features 

of the same region as the descriptor of that superpixel, and all 

descriptors of the same temporal remote sensing image 

constitute the feature set of that temporal. We first calculate the 

discriminate color descriptor (Rahat K., 2013) and sift 

descriptor (Lazebnik S., 2006) to represent color and structure 

information for each superpixel, and then concatenate them to 

represent the superpixel after normalization.  

 

Discriminate color descriptor represents color feature based on 

an information theoretic approach. Cluster color values together 

based on their discriminative power in a classification problem, 

so that each cluster has the explicit objective to minimize the 

decline of mutual information of the final representation. 

Besides, this kind of color description can automatically 

maintain photometric invariance to some extent. Thus, we use a 
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universal color representation, which is learned from other data 

sets, to describe our superpixels in multi-temporal high 

resolution remote sensing images. The specific theory and 

calculation process of discriminate color descriptor can be 

found in (Rahat K., 2013). 

 

On the other hand, we use sift descriptor of each superpixel to 

represent its structure information. We extract a 32 dimension 

sift descriptor from each superpixel. The feature extraction 

program is proposed by (Lazebnik S., 2006). 
 

Calculate color and structure descriptor at the center of each 

superpixel, and normalize all feature descriptors according to 

their categories. The last procedure is concatenating the 

normalized color and sift descriptors to constitute descriptor 

sets for all temporal remote sensing images. 

 

2.3 Similarity Calculation 

Calculate the histogram intersection kernel of feature descriptor 

for superpixel pairs at the same location in different temporal 

remote sensing images as the similarity metric. We use the 

histogram intersection kernel proposed in (Kristen G., 2005), 

the concrete definition is as formula (1). 

 

     ' ', min ,HIK

d dK x xx x     (1) 

 

where  x, x’ = superpixels’ feature vectors of different  

 temporal remote sensing images 

 xd, xd’ = the d-th dimension of superpixels’ feature  

vectors for different temporal remote sensing images 

 KHIK = Histogram Intersection Kernel of feature  

 vectors extracted in superpixel pairs 

 

Thus, the similarity metric for each pair of superpixels in 

different temporal remote sensing images has the same 

dimension with descriptors for the original superpixels. 

 

2.4 Initial Sample Selection 

Choose initial sample from all superpixel pairs without any 

annotation, which means selecting the most representative 

samples from the original remote sensing image superpixel pairs 

using certain selection strategy. Thus, we propose three 

selection strategies to find the target pairs in this part. 

 

2.4.1 Random Selection: For there is no prior knowledge of 

the actual land cover change, we can select certain samples from 

the original data set randomly as the initial samples. 

 

2.4.2 EM Algorithm: As far as we know, any signals 

affected by additive noises can be fitted by Gaussian Mixture 

Distribution model. Thus, we use Expectation Maximum 

algorithm fitting all similarity vectors with Gaussian mixture 

distribution and choose the most marginal ones as the initial 

samples.  

 

2.4.3 K-means Clustering: There are two categories: 

“change” and “no change” in the task of change detection for 

high resolution remote sensing images. Thus, we choose certain 

superpixel pairs that are nearest to the clustering centers found 

by k-means cluster algorithm as the initial samples.  

 

All selected initial samples will be annotated by technician with 

expert knowledge, which is simulated by actual change type in 

the following experiments. In each experiment, we can only 

choose one initial selection strategy and set the amount of initial 

samples manually in all above three selection strategies. 

Although there are several choices, we decided to choose the K-

means cluster algorithm as the initial sample selection method 

in our experiments. 

 

2.5 Interactive Change Detection based on Active Learning 

In this interactive change detection framework, we believe that 

supervised classification based on active learning can 

accomplish the task of detecting changes in high resolution 

remote sensing images. Since high resolution remote sensing 

images with high dimension are huge, and the process of them 

is very complex, so we use the rapid uncertainty computation 

with Gaussian processes (Alexander F., 2012) to implement the 

interactive change detection. The specific components of active 

learning with Gaussian process is shown in Figure 2.Using 

Gaussian processes has a prominent advantage, which means we 

can directly estimate classification uncertainties in a Bayesian 

manner. 
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Figure. 2 Active Learning with Gaussian Process 

 

The result for the classification problem of two categories in 

Gaussian process is obvious, because the symbol of predictive 

mean directly reflects the classified category. However, the 

computation complexity of Gaussian process is O(n), which 

means it is not suitable for large scale classification problems. 

Until Alexander F. et al proposed a series of optimization, the 

computation complexity of Gaussian process was significantly 

reduced, which made it possible to use Gaussian process in 

large scale classification tasks. The specific optimization for 

rapid computation of Gaussian processes has been presented in 

(Erik R., 2012), and the sample selection strategies based on 

rapid uncertainty computation with Gaussian processes is 

specified in the following part (Alexander F., 2012). 

 

We use the Gaussian process model to simulate the fundamental 

classification framework. Given training data {xi, yi}, we would 

like to estimate the underlying latent function f, which maps 

inputs x to outputs y. We assume that outputs y are disturbed by 

Gaussian noise 2~ (0, )nN  , 
n  is the standard deviation of 

white noise, i.e.  ( )i

iy f  x , 
iy  is the predictive value for 

testing sample and the symbol of 
i

y  reflects the category of that 

sample, ( )i
x  is the descriptor vector for that sample. Assume that 

f is sampled from a Gaussian process with zero mean and 

covariance (kernel) function K. Thus, the predictive distribution 

of the output y* for a new test input x* is shown as follows: 
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1
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 K I     (2) 

     
1

2 * 2 2

* ** * *

T

n nx k k k  


   K I           (3) 

 

where  x* = descriptor vector for new test input 

 y = vector containing the output values of the  

 training set 

 
*k , 

**k , K = the kernel values of the test input,  

 between training set and test input, and of the  

 training set itself, respectively 

 I = unit matrix 

 
*  = predictive mean 

 2
*

 = predictive variance 

 

In this task of change detection, we have discrete outputs (labels)  

{1, 1}y   for “change” and “no change”. And the symbol of 

predicted mean 
*
 is the label of testing inputs.  

 

We will mainly specify the active learning with Gaussian 

process. In our interactive change detection, there is a small set 

1 1{( , ),..., ( , )}n nL x y x y  consisting of labelled data which 

will grow in quantity gradually and an arbitrary large set 

1{ ,...,ˆ ˆ }mU x x  of unlabelled examples. The query strategies in 

active learning scenario can be roughly divided into two groups: 

exploitative methods and explorative methods. The exploitative 

methods utilize examples of L including the labels and rely on 

scores derived from outputs of the involved classifier, whereas 

the explorative methods neglect the label information and query 

new examples only based on the distribution of the current 

examples. 

 

For active learning with Gaussian processes, there are several 

possible query strategies (Alexander F., 2012, Freytag A., 2013): 

 

2.5.1 The Random Selection (Alexander F., 2012):  

 

Without thinking of exploitative method or explorative method, 

the random selection strategy just select certain samples 

randomly. However, the change detection results are not stable, 

for the selection of initial samples will influence the change 

detection results significantly. 

 

2.5.2 The Predictive mean (Alexander F., 2012): 

 

     
( )*

( )

*
ˆ

arg m n ˆi
i

i

x U
xU 


                   (4) 

 

Select samples close to the current decision boundary, which 

belongs to exploitative methods. 

 

2.5.3 The Predictive variance (Alexander F., 2012): 
 

     2
( )*

2 (

ˆ

)

*
arg m ˆax

i

i

x U

xU





                    (5) 

 

Select samples with highest classification uncertainty regarding 

to the training examples, which belongs to explorative methods. 

 

2.5.4 The Uncertainty (Alexander F., 2012): 

 

   
 

 
( )

( )

*
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2 ( )
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ˆ
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                (6) 

 
Select the most representative samples by making trade-offs 

between exploitative and explorative methods.  

 

2.5.5 New Example Weight (Freytag A., 2013): 

 

  
 

 ( )( )

( ) ( )

*

2 *
{ 1,1}ˆ

*
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              (7) 

 
Consider the resulting weight for new example, which means 

we choose the most pessimistic estimate of model change based 

on the available information currently, without knowing the 

ground-truth label of y*. 

 

2.5.6 Impact on the Overall Model Change (Freytag A., 

2013): 
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K I
       (8) 

 
Choose the samples that will affect the current model heavily 

even with the most plausible label. 

 

The meanings for all parameters appeared in above formulations 

have been illuminated in previous parts, thus there is no specific 

interpretation for them in this part. 

 

In experiments, we can choose any query strategies listed above. 

All those chosen representative samples will be added into 

training set after labelling  them “change” or “no change” 

manually, which is simulated with actual land cover change 

truth. Repeat this process until reach the maximum iteration 

limitation. 

 

3. EXPERIMENTS AND DISSCUSIONS 

In this section, we test the proposed interactive change 

detection method based on active learning with Gaussian 

processes on remote sensing images from different satellites in 

MATLAB. The resolution of panchromatic image is relatively 

higher than multispectral data, and we can add the color 

information into the image without losing its spatial resolution 

by pansharping. 

 

3.1 Experiment A 

We test the proposed interactive change detection method on 

two Geo-Eye1 high resolution remote sensing images of Beijing 

on November 21, 2009 and June 23, 2010, with size of 600*600 

pixels and resolution of 0.5 meters in this part. High resolution 

remote sensing images and the land cover category change truth 

are shown in Figure 3. 
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Before After Change truth 

Figure 3. High resolution remote sensing images and the ground 

truth of land cover changes. 

Before: on November 21, 2009 After: on June 23, 2010 

 

First, we segment the more complex temporal remote sensing 

image with SLIC superpixel segmentation method setting the 

superpixel size to 20*20 pixels, and process the other temporal 

remote sensing image with previous segmentation boundary. 

Then, calculate discriminate color descriptor and sift descriptor, 

and concatenate them after normalization. Calculate the 

histogram intersection kernel of feature descriptors for 

superpixel pairs at the same location in different temporal 

remote sensing images as the similarity metric. The next step is 

the interactive change detection based on active learning with 

Gaussian processes which can achieve rapid uncertainty 

computation. The last is repeating this process until reach the 

maximum iteration limitation. In this experiment, we set the 

number of iteration to 40. In the whole process, about 5% of 

total samples are labelled with user. 

 

Now, we compare the influence of different descriptors: 1) sift 

descriptor, 2) discriminate color descriptor, 3) sift descriptor 

and discriminate color descriptor, in contrast experiments using 

the same query strategy, such as “the predictive mean”, and the 

change detection results are shown in Figure 4 and Table 1. We 

use Kappa coefficient to measure the consistency between the 

detected results and the reference value. Pc and Pu represent the 

detection accuracy for change and no change pixels respectively, 

OA is the overall accuracy. 

 

   
SIFT DCD SIFT+DCD 

Figure 4. The change detection results of “the predictive mean” 

for different superpixel descriptors. 

 

 Pc Pu OA Kappa 

SIFT 0.3803 0.9906 0.8654 0.4734 

DCD 0.6896 0.9559 0.9013 0.6807 

SIFT+DCD 0.8416 0.9363 0.9169 0.7532 

Table 1. The comparison of change detection results generated 

by “the predictive mean” for different superpixel descriptors. 

 

From the change detection results of several experiments, we 

could find the concatenation of discriminative color descriptor 

and sift descriptor is efficient. So in the following experiments, 

we will show the difference between these query strategies with 

concatenated descriptor. And there is a set of representative 

experiments in Figure 5 and Table 2, the calculation time 

needed for each strategy is shown in Figure 6. 

 

   
Random Mean Variation 

   
Uncertainty Weight Impact 

Figure 5. The change detection results for different query 

strategies with active learning. 

 

 Pc Pu OA Kappa 

Random 0.8166 0.8941 0.8782 0.6555 

Mean 0.8416 0.9363 0.9169 0.7532 

Variation 0.0045 1.0000 0.7958 0.0071 

Uncertainty 0.8163 0.9459 0.9193 0.7550 

Weight 0.8481 0.8362 0.8386 0.5804 

Impact 0.8512 0.8477 0.8484 0.6006 

Table 2. The comparison of change detection results for 

different query strategies with active learning. 

 

 
Figure 6. The calculation time needed for active learning with 

Gaussian process 

 

In this set of experiments, we found that “the predictive mean”, 

“the uncertainty” are relatively better query strategies for the 

change detection of high resolution remote sensing images.  

 

3.2 Experiment B 

We test the proposed method on two World View high 

resolution remote sensing images of Inner Mongolia on 

September 18, 2013 and September 12, 2015, with size of 

1000*1000 pixels and resolution of 0.5 meters in this part. High 

resolution remote sensing images and the land cover category 

change truth are shown in Figure 7. The size of superpixels sets 

to 20*20 pixels, and the number of iteration set to 50. The 

change detection results are shown in Figure 8 and Table 3, the 

calculation time for each strategy is shown in Figure 9. 
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Before After Ground Truth 

Figure 7. High resolution remote sensing images and the ground 

truth of land cover changes. 

Before: on September 18, 2013 After: on September 12, 2015 

 

   
Random Mean Variation 

   
Uncertainty Weight Impact 

Figure 8. The change detection results for different query 

strategies with active learning. 

 

 Pc Pu OA Kappa 

Random 0.7577 0.8503 0.8165 0.6055 

Mean 0.7378 0.9549 0.8759 0.7210 

Variation 0.1008 0.9092 0.6148 0.0119 

Uncertainty 0.7793 0.9385 0.8805 0.7356 

Weight 0.7909 0.7946 0.7933 0.5674 

Impact 0.7639 0.8742 0.8341 0.6404 

Table 3. The comparison of change detection results for 

different query strategies with active learning. 

 

 
Figure 9. The calculation time needed for active learning with 

Gaussian process 

 

In this set of experiments, we found that “the predictive mean”, 

“the uncertainty”, and “impact on overall model change” are 

three relatively better query strategies for the change detection 

of high resolution remote sensing images, while the results of 

“the random selection” varied intensely. 

 

4. CONCLUSION 

In this change detection framework, we have addressed an 

interactive change detection method based on active learning 

with Gaussian processes. First, we demonstrated the effective-

ness of the feature combination in classification problem for 

high resolution remote sensing images. Then, we proposed an 

interactive change detection framework based on active learning 

with Gaussian processes for which there are various sample 

selection strategies, and the user can choose the most 

appropriate sample selection strategy by comparison in practice. 

Finally, from the experimental results, we found that “the 

predictive mean”, “the uncertainty” and “impact on overall 

model change” are three relatively better and more stable query 

strategies for the change detection of high resolution remote 

sensing images. In future work, we intend to find more 

representative sample selection strategies for active learning and 

explore new ways in eliminating the artefacts near the class 

borders and sparse erroneously classified superpixels in the 

change detection results. 
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