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ABSTRACT: 
 
There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution 
and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated 
to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In 
addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series 
data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface 
Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In 
the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change 
consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR 
satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.  
 
 

1. INTRODUCTION 

Remote sensing data are playing a key role for tracking land 
cover changes. Along with the improved image data quality and 
the increased amount of available satellite data in recent years, 
the details and accuracy of the obtainable information are 
assumed to be enhanced. 
 
Recent studies have proved the advantages of change analysis 
based on satellite image time series data (SITS) (Yang and Lo, 
2002; Bontemps et al., 2008). However, most of them focus on 
monitoring changes at a large scale (low resolution) based on 
stable features, such as vegetation index (Verbesselt et al., 2010; 
de Jong et al., 2011; Fensholt and Pround, 2012; Chen et al., 
2014), to monitor and predict the vegetation evolution. In this 
work, the increase of spatial resolution and multi-view data 
capability of satellite sensors are exploited to use SITS for 
building monitoring at small scales. 
 
To the best of our knowledge, building extraction methods are 
still under research and there is currently no operationally 
robust method available. Digital Surface Models (DSMs) have 
been proved to be very helpful in improving building extraction 
and change detection accuracy (Tian et al., 2014; Qin and Fang, 
2014), as variations in height represent a robust feature to 
evaluate building changes. However, the quality of the DSMs 
from satellite stereo imagery depends strongly on the image 
matching result. If the unmatched region is too large, then it is 
difficult to interpolate accurate height by using the height 
information from its neighbourhood. Therefore, building 
changes may not be detected correctly if they are located within 
such regions. On the other hand, a direct comparison of multi-
sensor stereo imagery introduces many false positive /negatives. 
Therefore, time-series data could be helpful to improve the 
quality of each single dataset, as they provide redundant 
information. 

 
Moreover, comparing images from two dates that are too far 
apart can not provide detailed information on the progressive 
construction procedure.  
 
This paper examines the problems and advantages of employing 
very high resolution (VHR) SITS data for the described 
purposes. A two-step procedure has been developed: firstly, the 
quality of single images is improved by using spatial and 
temporal information. Subsequently, the improved time-series 
building probability maps are analysed to highlight building 
changes and identify the type of change which took place at a 
given building site. 
 

2. DATA DESCRIPTION 

2.1 Data description and preprocessing 

The data used for this study is a stereo SITS data, acquired near 
Dong-an in North Korea. We have in total six datasets of the 
same area, most of which are IKONOS images. All the images 
in the time-series are oriented using a large number of 
corresponding points (Lowe, 2004), optimized by least squares 
point matching to achieve geo-referencing with sub-pixel 
accuracy. Each stereo pair is processed with the well-known 
Semi Global Matching (SGM) algorithm (Hirschmüller, 2008). 
1-m resolution DSMs (digital surface models) are then 
generated, and orthophotos are corrected with pixel-wise 
overlay on the DSM. Finally, the orthophotos are pansharpened, 
so that for each pixel in the resulting map grid, both 
multispectral and height information are available. Table 1 
shows some basic information about the stereo SITS data. 
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   Table 1. Data Description 
 

No. Satellite Capture date Resolution (m) 

PAN MS 
1 IKONOS 23/02/2006 1 4 
2 GeoEye-1 20/12/2009 0.5 2 
3 IKONOS 12/01/2010 1 4 
4 IKONOS 13/05/2010 1 4 
5 IKONOS 07/01/2011 1 4 
6 IKONOS 02/05/2011 1 4 

 
These 6 datasets are acquired in different seasons of the year, 
where the illumination differences and seasonal variations are 
the major issues for time series change analysis. To eliminate 
the potential disturbances from these factors, we adopted the 
approach proposed in Qin et al (2015) to combine the 
multispectral and height information for extracting the 
probability of each pixel belonging to buildings. 
 
2.2 Building probability map extraction 

Due to the heterogeneity of the images and the influence of the 
environmental conditions on the spectrum, it is difficult to find 
a unique index to indicate pixels belonging to buildings across 
all the available images in the SITS. A feasible way is to use 
supervised methods to characterize the buildings using a few 
training samples. Hence Random Forest (RF) (Breiman, 2001) 
classifier is adopted due to its low computation complexity and 
good capability of handling large volumes of data. RF provides 
a probability as the confidence for a given test sample of 
belonging to a particular class. Following the classic supervised 
classification paradigm, the probability map extraction is mainly 
composed of two steps: (1) training sample selection; (2) feature 
extraction and classification. 
 
2.2.1. Training sample generation 
 
Although the training samples of all the six “DSM+Orthophoto” 
should be selected separately to ensure correctness, this is a 
time consuming and tedious process. Rather than extracting a 
set of samples for each date, we extract then only one sample 
dataset, and adopt a decision-based method to derive the 
remaining training samples as shown in Figure 1.  
 

Extracted training 
samples of date A

If MSI (B) – MSI (A) < 
5 × Stddev (MSI(A))

NDVI(B) > T3 & 
nDSM(B) > T2

If nDSM(B) - 
nDSM(A) < T1

If nDSM(B) - 
nDSM(A) < T1

keep delete

If nDSMD(B) > T2

Building Ground & Road Shadow Trees

building ground road shadow

add keep delete keep delete

Generated training 
samples of date B

 
Figure 1. Flow chart for the generation of training samples. 

As shown, the training sample extraction is built on a coarse 
index-checking procedure. Although we mentioned it is difficult 
to find indices for urban objects given the varying conditions of 
the scenes within the time-series, some common indicators can 
still be used for a coarse estimation. In this procedure, the 
nDSM (normalized DSM) derived with morphological filtering 
is used to represent off-terrain objects. MSI (morphological 
shadow index) and NDVI (normalized difference vegetation 
index) are used to indicate shadows and vegetation. Although 
our target is building change detection, multi-class information 
can be useful to construct distinctive representation of the 
building class. Moreover, time series change detection can be 
also applied to classes other than buildings. It should be noted 
that we only update the samples when there is a large difference 
between these indicators in the time-series. In figure 1, these 
differencing threshold in our experiments are taken as T1=1.5, 
T2 = 3, and T3 = 0.2. 
 
2.2.2. Feature extraction and classification 
 
There are works proving that combining the spectral and height 
information for classification can increase the accuracy to a 
notable level (Huang et al., 2011; Qin et al., 2015). As our 
intention is to derive the building probability values, pixel-wise 
classification is used. The following features are extracted for 
our classification task: 
1) Four components after a PCA (Principal Component 
Analysis) transformation of the multispectral bands; 
2) DMP (Differential Morphological Profile) of the 
panchromatic images; 
3) MTHR (Morphological Top-Hat by Reconstruction) of the 
DSM. 
 
PCA (Jolliffe, 2005) is applied on the multispectral image to 
capture the spectral information of the feature vector. DMP 
(Benediktsson et al., 2003) is applied due to its good 
performance at detecting the spatial structure of images. MTHR 
is particularly effective to separate off-terrain objects from the 
ground layer (Qin and Fang, 2014). All the components in the 
feature vectors are normalized to ensure their equivalent 
contribution to the classifier. The RF assigns a class label for 
each pixel, and at the same time gives a confidence value to that 
pixel, proportional to the probability of that pixel to belong to a 
particular class. 
 
2.2.3. Refinement of the probability 
 
We define a building probability map (BPM) as the probability 
of each pixel belonging to the building class. The BPMs across 
all the dates might not be consistent due to various factors such 
as the errors in training samples, or classification error due to 
the highly similar spectral information of different classes,  e.g. 
in the case of heavy snow. Therefore, we perform a consistency 
refinement on all the BPMs using a bilateral-weighted 
approach, considering the smoothness of the spatial domain and 
height discontinuity in the temporal domain: 
 
𝑃𝑃𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 1

∑𝑤𝑤(𝑥𝑥,𝑦𝑦,𝑡𝑡)
∑ ∑ ∑ 𝑤𝑤(𝑚𝑚, 𝑛𝑛, 𝑘𝑘)𝑃𝑃(𝑚𝑚, 𝑛𝑛, 𝑡𝑡)ℎ

𝑘𝑘=1𝑛𝑛𝑚𝑚        (1) 
 
where 𝑃𝑃(𝑚𝑚, 𝑛𝑛, 𝑡𝑡) is the initial BPM at time t, 𝑃𝑃𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) 
represents the filtered results, and 𝑤𝑤(𝑚𝑚, 𝑛𝑛, 𝑘𝑘) is an adaptive 
weighting function which computes the aggregated weight in 
both the spatial and temporal direction: 
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𝑤𝑤(𝑚𝑚, 𝑛𝑛, 𝑘𝑘) =

𝑒𝑒
−|�𝑀𝑀𝑀𝑀(𝑥𝑥,𝑦𝑦,𝑡𝑡)−𝑀𝑀𝑀𝑀(𝑚𝑚,𝑛𝑛,𝑡𝑡)�||2

2𝜎𝜎1
2 +−||[𝑥𝑥,𝑦𝑦]−[𝑚𝑚,𝑛𝑛]|2

2𝜎𝜎2
2 +−||𝑑𝑑𝑑𝑑𝑑𝑑(𝑚𝑚,𝑛𝑛,𝑡𝑡)−𝑑𝑑𝑑𝑑𝑑𝑑(𝑚𝑚,𝑛𝑛,𝑘𝑘)||2

2𝜎𝜎3
2            (2) 

 
 
The weight 𝑤𝑤 acts as 3D bilateral-filter that removes the noise 
on both the spatial directions of each BPM, at the same time 
being sensitive to height differences. In the refined results, the 
BPMs with similar height are merged, while BPMs whose 
heights are significantly different are assigned a small 
contribution. This is a reasonable consideration, since changes 
in buildings often bring height differences, in which the BPMs 
should not be merged. Figure 2 shows a comparison before and 
after the refinement. The refined BPM shows that buildings are 
better separated and there are less salt- and pepper noise effects.  
 

 
Figure 2. BPMs before (a) and after (b) the refinement. 

 
2.3 Building change reference data 

The refined BPMs of different dates will be used in our 
subsequent change detection analysis over the SITS. For the 
validation purpose, we have manually extracted the per-year 
building change (YBC) reference map over the test region as 
shown in Figure 3, where significant building changes occur 
mainly in 2009, and at the beginning and in the middle of 2011. 
We sort the single scenes in the SITS according to their 
acquisition dates. Changes happened in the second date (year 
2009) are shown with blue colour. In this test region, no visible 
building changes occurred from 2009 until the middle of 2010. 
Orange objects in Figure 3 represent new buildings constructed 
before January 2011. Changes which took place shortly before 
May 2011 are marked in dark red. 
 

 
Figure 3. Per-year building changes (YBC) reference map: 
(Blue: built before 2009; Orange: built before January 2011; 
Red: built before May 2011). 
 

 
3. CHANGE EXTRACTION 

Based on the obtained BPM, a systematic change analysis 
procedure is proposed. As mentioned in section 2.1, the SITS 
datasets have been co-registered with sub-pixel accuracy. All 
resulting probability maps are normalized with values ranging 
from 0 to 1. As a higher value indicates for a pixel a higher 
probability of belonging to buildings, no radiometric co-
registration is required for the change analysis.  
 
3.1 The 1st derivative based change extraction  

Each pixel (𝑖𝑖, 𝑗𝑗) in the SITS is assigned six probability values, 
denoted as 𝑃𝑃 (𝑖𝑖, 𝑗𝑗, 𝑘𝑘), 𝑘𝑘 = 1, … , 6. In order to show how and 
whether the probability value is increasing or decreasing, the 
first derivative (FD) of each pixel is calculated. The first 
derivative of a time series probability set is the slope of each 
time point, and can be described as 
 
𝐹𝐹𝐹𝐹 (𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) − 𝑃𝑃(𝑖𝑖, 𝑗𝑗, 𝑘𝑘 − 1), 𝑘𝑘 = 2, … ,6.                (3) 
 
The left column of Figure 4 reports the typical evolution in time 
of BPM values for a newly built building, a demolished 
building, unchanged ground, and a rebuilt building. The 
corresponding FDs are shown in the right column. 

 
Figure 4. Evolution in time for the probability of a pixel to 

belong to a building: (a) newly built building; (b) FD of (a); (c)  
demolished building; (d) FD of (b); (e) unchanged ground; (f) 

FD of (e); (g) rebuilt building; (h) FD of (g). 

 
Afterwards, the maximum FD is calculated for each set. The 
location with the maximal value is recorded as the year of 
change. If it is larger than a predefined threshold value T, 
represented by a red line in Figures 4(b), 4(d), 4(f) and 4(g), 
changed regions are classified according to the year in which 
the change occurred (Blue: building probably series values; 
Green: FD; Red: Threshold line)..  
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3.2 Object based YBC map generation 

As illustrated in Tian et al. (2013), a main drawback of the 
DSM extracted from stereo imagery is the occurrence of 
imprecise height values in building boundary region and some 
texture-less surfaces. If a satisfactory segmentation can be 
performed, object-based methods work better than pixel-based 
ones for building change detection at high/ very-high resolution. 
We therefore segment the pansharpened image of the last date 
using the mean-shift approach (Comaniciu and Meer, 2002; 
Tian et al., 2013). The improvement of the BPM can be 
observed in Figure 5. We refer to the object-based regularized 
BPM as OBPM. 
 

 
Figure 5. Comparison between BPM (a) and OBPM (b). 

 
Theoretically the mean BPM value of each segment can be used 
to characterise the building probability at object level. However, 
influenced by the DSM quality, the accuracy of BPM in 
building boundary regions is lower than in other parts of the 
image. Thus, a pixel-object consistence check is proposed in 
this paper.  
 
As shown in Figure 6 the 1st derivative based change check has 
been processed at both pixel and object level. A consistence 
check is designed by comparing the YBC maps generated from 
time series BPM and time series OBPM. The pixels which are 
not consistent between the two representations are marked as 
outliers and removed. Afterwards, the mean building probability 
of each object is recalculated by using the remaining pixels in 
the BPMs. We refer the refined OBPM as OBPMR.  

Time series BPMs

YBC map - pixel based

Objects map

Time series 
OBPMs

YBC map - region basedConsistence 
check

Time series 
OBPMR

YBC map

Figure 6. Workflow of the object-based change class map 
generation. 
 

4. RESULT AND EVALUATION 

The performance of the proposed approach has been evaluated 
by comparing the results to the YBC reference map shown in 
section 2.3. Automatic building change detection aims at giving 
correct information about the location of the changed buildings 
and the year when the change happened. Therefore, in this part, 
two steps of evaluation are used. Firstly, the detected change 
mask is evaluated by comparing to the reference change mask 

and pre-/ post-events data comparison results. In the second 
step, the obtained YBC map is compared to the reference YBC 
map described in section 2.3. 
 
4.1 Time series BPMs  

BPMs for all SITS are generated based on the method explained 
in section 2. The values in each BPMs ranging from 0 to 1 
represent the probability for each pixel of belonging to 
buildings. As shown in Figure 7, the generated BPMs describe 
clearly the distributions of the buildings, and most of the 
buildings are well separated from others.  

 
Figure 7. Generated time series BPMs 

 
4.2 Change mask evaluation 

As described in section 3.1, the determination of a threshold 𝑇𝑇  
is required to obtain an YBC map from the FD feature of the 
BPM. In this experimental section, a low threshold 𝑇𝑇 = 0.2 is 
given to preserve more changes in the pixel-object YBC check 
procedure. The generated outlier mask is shown in Figure 8 (b).  
 

(a)   (b)  
Figure 8. Generated change mask evaluation result (a) (Green: 
true detected; red: false positive; blue: false negative; black: 

true negative), and detected outliers (b). 
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As illustrated, most of the outlier pixels, represented in white, 
are located in the building boundary region. Some of these 
pixels might be parts of the building segments. Figure 8(a) 
shows the result by giving a threshold value 𝑇𝑇 = 0.3 to 
OBPMR. The detected change mask is overlaid to the truncated 
YBC reference map. That implies that only change and non-
change areas are of interest in this evaluation procedure. In 
Figure 8 (a) the correctly detected changes are marked in green, 
red represent false positives, and blue represent false negatives.  
 
However, the accuracy of the change mask depends strongly on 
the given threshold values. Therefore, the change detection 
results obtained using time series BPMs, OBPMs, and OBPMRs 
are compared by plotting the Kappa Accuracy (KA) obtained 
with 100 threshold values ranging from 0.01 to 1 𝑇𝑇𝑖𝑖 ( 𝑇𝑇𝑖𝑖 =
0.01, 0.02, 0.03, … , 1). 
 
Figure 9 shows the KA curves. As expected, the OBPMR (black 
line) is more robust and less dependent on the given threshold 
values. The obtained KAs are generally higher than 0.6 when 
the threshold values are ranging from 0.1 to 0.6. The results for 
OBPM (green line) are generally not as good as for OBPMR, 
but they outperform the ones derived from the original BPMs 
(red line). An accuracy decrease can be observed for OBPM 
(green line), as OBPM takes the average value for each object, 
some changed objects may be shown as false negative when a 
higher T is given.  However, the accuracy is improved after the 
consistence check (black line).  
 

 
Figure 9. KA comparisons for change masks. 

 
In addition, the change map for a single data pair (pre- and post-
event) is generated and evaluated. We generate a difference map 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐵𝐵𝐵𝐵𝐵𝐵6 − 𝐵𝐵𝐵𝐵𝐵𝐵1), using the BPMs from the 
earliest and the latest dates (BPM1 and BPM6, respectively). The 
pixel values in BPMs range from 0 to 1, thus the accuracy of 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 can be plotted on the same chart by using the same 𝑇𝑇𝑖𝑖 set. 
The blue line shows the derived KA curve. The BPM yields a 
satisfactory performance, as both special and temporal 
information are exploited in its generation. Nevertheless, the 
highest accuracies are obtained for values of T between 0.1 and 
0.7, and in this range OBPMR outperforms BPM. 
 
The advantages of the time series are well proved for some 
special buildings. The yellow box in Figure 8 locates some 
correctly detected changed buildings. However, three of these 
are not properly highlighted in the BPM6, as shown in Figure 10 
(a). Thus, a direct subtraction of the two BPMs as reported in 
Figure 10 (b) is not able to correctly detect these changed 
buildings.  
 

 
Figure 10. BPM6 (a) and DIFF (b) of the sub-region marked in 

Figure 8 (a). 
 
4.3 YBC map evaluation 

With the same threshold value (𝑇𝑇 = 0.3), a YBC map is 
generated and displayed in Figure 11. It shows that most of the 
blue buildings match well with the YBC reference map (Figure 
3). The evaluation has been performed as in the change mask 
evaluation procedure. A series of 
𝑇𝑇𝑖𝑖 ( 𝑇𝑇𝑖𝑖 = 0.01, 0.02, 0.03, … , 1) are used to plot the KA curve. 
In Figure 12, the black line describes the accuracy of OBPMR 
generated with 𝑇𝑇𝑖𝑖. As a comparison, YBC maps are also derived 
from BPMs and OBPMs. The KA values are plotted with red 
and green lines in Figure 12. Since the DIFF map is not able to 
retrieve as detailed YBC information as the series maps, this is 
not included in this comparison procedure.  
 

 
Figure 11. Detected change class map (Blue: built before 2009; 
Yellow: built before May 2010; Orange: built before January 

2011; Dark red: built before May. 2011). 
 
In Figure 12, the performances of OBPMR, BPM and OBPM in 
generating the YBC map exhibit the same pattern as those in 
change mask generation (as shown in Figure 9). Some missing 
matches between Figure 11 and Figure 3 can be explained by 
the low accuracy of single BPMs. As in this paper only positive 
building changes are of interest, and the maximal FD is used to 
highlight the changes, if a building was detected as a change for 
more than one date the year with highest probability derivative 
is recorded as the changed year.  
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Figure 12. KA comparisons for YBC maps. 

 
Some errors are detected if the building probability values in 
one date are wrong. In Figure 11, some buildings changed in 
year 2009 are wrongly labelled. The building probability series 
values of the building marked with a black circle are shown in 
Figure 13 (a). As it can be seen, this building is actually built 
before 2009. However, in the fifth dataset (Jan. 2011), this 
building has a very low value in the BPM map. Thus, it was 
detect as newly built building in the year 2011. The FD in the 
sixth date, however, is higher than the FD in the second date. 
Removing this kind of false alarm is not an easy task: such 
rapid variations may be justified in some cases, as in some 
rapidly growing developing cities some buildings could be 
rebuilt twice within ten years.  
 

 
Figure 13. Building with incorrect change class (Blue: building 

probably series values; Green: FD; Red: Threshold line). 
 
 

5. DISCUSSION AND CONCLUSIONS 

Detecting single building changes from satellite images is 
becoming possible with the growing availability of VHR 
satellite imagery, such as IKONOS and WorldView-2. This 
study demonstrated that SITS stereo data can be used to 
generate a detailed and robust building change detection task. 
 
As buildings are off-terrain objects, height has been proved to 
be a direct and reliable feature for extracting building changes. 
Compared to LiDAR data, satellite stereo data are advanced in 
two aspects: the large swath and the availability of intensity 
(panchromatic) and colour (multispectral) information. 
Unfortunately, the DSMs generated from stereo data are not yet 
as accurate as the ones derived from LiDAR datasets, and some 
buildings might have incorrect information if the matching fails 
to capture the height of the roof pixels. Some change detection 
methods based on stereo images may reduce some errors for 
small-size buildings. Approaches in Tian et al. (2015) are 
helpful to remove some false positives, but it is very 
challenging to avoid false negatives. A new building cannot be 
included in the final change mask, if it is not displayed as an 
off-terrain object in the post-event DSM. 
 
This paper has presented a robust approach for detecting and 
characterizing building changes in SITS. The adopted building 
probability map generation approach and further developed 
time-series data analysis method are robust and can be easily 
applied to any multi-sensor and multi-seasonal SITS dataset. 

Furthermore, only a few threshold values are required, and the 
final results are not very sensitive to them. As further work, the 
time series analysis algorithm can be improved by including 
temporal resolution and sizes of the objects as weights in the 
frame of an adaptive process.  
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