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ABSTRACT: 
 
This research describes the methods involved in the mapping of different high value crops in Agusan del Norte Philippines using 
LiDAR. This project is part of the Phil-LiDAR 2 Program which aims to conduct a nationwide resource assessment using LiDAR.  
Because of the high resolution data involved, the methodology described here utilizes object-based image analysis and the use of 
optimal features from LiDAR data and Orthophoto. Object-based classification was primarily done by developing rule-sets in 
eCognition. Several features from the LiDAR data and Orthophotos were used in the development of rule-sets for classification. 
Generally, classes of objects can't be separated by simple thresholds from different features making it difficult to develop a rule-set. 
To resolve this problem, the image-objects were subjected to Support Vector Machine learning. SVMs have gained popularity 
because of their ability to generalize well given a limited number of training samples. However, SVMs also suffer from parameter 
assignment issues that can significantly affect the classification results. More specifically, the regularization parameter C in linear 
SVM has to be optimized through cross validation to increase the overall accuracy. After performing the segmentation in eCognition, 
the optimization procedure as well as the extraction of the equations of the hyper-planes was done in Matlab. The learned hyper-
planes separating one class from another in the multi-dimensional feature-space can be thought of as super-features which were then 
used in developing the classifier rule set in eCognition. In this study, we report an overall classification accuracy of greater than 90% 
in different areas. 
 
 

 

1. INTRODUCTION 

1.1 LiDAR Mapping 
 
Land cover has a significant impact on the earth’s climate and 
environment. Because of this, land cover mapping is very 
important for authorities and scientists to gain better 
understanding and monitor environmental changes. According 
to the Climate Research Committee of the United States 
National Research Council, land cover distribution has an 
evident influence on the earth’s radiation balance, because 
changes in the land cover will have a large effect in the 
evaporation, and other heat fluxes on the earth’s surface (US 
National Research Council, 2005). One example of an 
environmental effect of a land cover type is the reduction of 
land surface temperature through the absorption of solar 
radiation by a large area of trees. Another instance would be the 
effect of an impervious land cover to the natural infiltration of 
groundwater which can be a potential cause for flooding.  
 
Accurate understanding and precise monitoring of land cover is 
essential for decision makers for management of the earth’s 
resources. Passive aerial/satellite remote sensing techniques 
reach certain limits in producing a land cover analysis and 
classifications at finer scale; therefore, one of the advancements 
to consider in the future is to divert the research from 
algorithmic development into multi-sensor data fusion 
(Benediktsson, Chanussot, & Fauvel, 2007). That need for 
multi-sensor data fusion has thus motivated researchers to probe 
the use of topographic airborne LiDAR data for land cover 
classification. Airborne LiDAR is a laser profiling and scanning 
system, which emerged commercially in mid-1990s, mostly  
 
 

used for bathymetric and topographic applications. Using direct 
geo-referencing, the laser scanning apparatus installed in the 
aircraft collects a 3D point cloud of the surveyed area. Unlike 
conventional 2D satellite data, the LiDAR point cloud describes 
the 3D topographic profile of the scanned surface. Several 
advantages of airborne LiDAR include penetration of tree 
canopy, insensitivity to lighting conditions and there are no 
effects of relief displacement. Due to these advantages, airborne 
LiDAR has been effectively used for generating digital terrain 
model (DTM), topographic mapping, construction of digital 3D 
city model, natural hazard (Wai Yeun Yan, 2014). 
 
1.2 Use of LiDAR in vegetation analysis 
 
Due to the primary data on height obtained through airborne 
LiDAR scanning, the utility of airborne LiDAR for land cover 
classification and object recognition has increased. The height 
value (z value) from LiDAR gives very significant information 
for feature extraction. Users of LiDAR data usually interpolate 
the 3D LiDAR data to produce the digital surface model 
(DSM). From this DSM layer, several other features can be 
derived to increase the separability between different classes in 
the feature space. Several feature extraction studies using 
LiDAR can be found in the literature such as Priestnall, G., 
Jaafar, J., & Duncan, A. (2000). Several accuracy improvements 
have been reported by fusion of LiDAR and multi-spectral data 
(Hartfield, Landau, & Van Leeuwen, 2011). The DSM can be 
transformed into a normalized digital surface model (nDSM) by 
subtracting the DSM with the digital terrain model (DTM). The 
nDSM represents the above-ground feature only. Numerous 
studies such as (Charaniya et al., 2004) and (Huang et al., 2013) 
have presented that height features derived from LiDAR data 
can significantly differentiate high from low vegetation. The 
addition of high resolution aerial orthophotos and LiDAR data 
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in the aforementioned studies addresses the problem of 
classification confusion caused by spectral mixing in areas with 
heterogeneous classes. However, in high spatial resolution 
images, the problem of within-class spectral difference, and 
between-class spectral similarities would reduce the separability 
among different land cover/land class types. Because of this 
problem, object-based classification techniques have been 
proposed to replace pixel-based classification as is described in 
(Blascke, 2010). It has been pointed out in the literature that 
pixel-based analysis and classification is acceptable only if the 
spatial resolution of the imagery is coarse (Hay et al., 2001). 
The pixel-based approach is reasonable if the objects of interest 
to be classified are smaller than the spatial resolution. In 
imagery where the spatial resolution is finer than the objects to 
be classified, important spatial patterns like texture emerge and 
is not addressed by the conventional pixel-based approach. Yet 
still, the structural parameters of the image like texture, shape, 
and context could only be understood by human interpreters. In 
OBIA, image-objects represent meaningful entities that are 
distinguishable in a high resolution image. This new paradigm 
in image analysis incorporates segmentation, which is the vital 
step before classification. 
 
1.3 Segmentation  
 
In object-based image analysis, segmentation is the partitioning 
of an array pixels on the basis of homogeneity. Segmentation 
splits the raster image into spatially continuous, disjoint and 
homogeneous regions called ‘segments’ or objects. This process 
may include a processing chain of segmentation steps to 
ultimately delineate the target or desired objects in the image 
(Blaschke et al. 2004). The resulting heterogeneity of an object 
or segment within itself is less than the heterogeneity with 
respect to its neighbors. Early development in image 
segmentation was made during the 1970s and 1980s (Haralick 
and Shapiro, 1985). Segmentation methods are commonly 
divided into three main approaches: (i) pixel-, (ii) edge and (iii) 
region-based segmentation methods. These approaches can be 
combined as was presented in (Baatz and Schäpe, 2000). 
Different types of segmentation algorithms can be used 
interchangeably in preliminary stages and in later stages in 
order to capture the target objects. Different segmentation 
algorithms are defined by different parameters and a good 
control of these parameters are essential for a good 
segmentation result. The end results of a segmentation process 
are image-objects that are left to be classified. OBIA software 
like eCognition allows the user to emulate the human mind’s 
cognitive powers. The developers of this software devised a 
way to render knowledge in a semantic network. This relatively 
new software examines pixels not in isolation, but in context. 
eCognition allows the user to develop rule-based classification 
grounded on expert knowledge.  
 
1.4 Classification 
 
Object-based classification can be done through user-defined 
rule-sets. However, different classes of objects aren’t separable 
by direct thresholding one feature at a time. Hence, samples 
from different classes of objects need to be classified using 
machine learning algorithms. Among the machine learning 
algorithms, Support Vector Machine has recently received a lot 
of attention and the number of works utilizing this technique has 
increased exponentially. Support Vector Machines can 
generalize well given a limited number of training samples. The 
most important characteristic is SVM’s ability to generalize 
well from a limited amount and/or quality of training data. 
Compared to other methods like artificial neural networks, 

SVMs can yield comparable accuracy using a much smaller 
training sample size. This is due to the ‘‘support vector’’ 
concept that relies only on a few data points to define the hyper-
plane that best separates the classes (Mountrakis et.al, 2010). 
An added advantage is that there is no need for repeating 
classifier training using different random initializations or 
architectures. Furthermore, being non-parametric, SVMs do not 
assume a known statistical distribution of the data to be 
classified. This is very useful because the data acquired from 
remotely sensed imagery usually have unknown distributions. 
This allows SVMs to outperform techniques based on 
maximum likelihood classification because normality does not 
always give a correct assumption of the actual pixels 
distribution in each class (Su et al., 2009). The method is 
presented with a set of labelled data instances (the sample 
objects) and the SVM training algorithm finds a hyper-plane 
that separates the dataset into a discrete predefined number of 
classes that is consistent with the training samples (Vapnik, 
1979). The term “hyper-plane” is used to refer to the decision 
boundary that minimizes misclassifications, obtained in the 
training step. Learning is the iterative process of finding a 
classifier with optimal decision boundary to separate the 
training patterns (Zhu and Blumberg, 2002).  

 
Figure 1. SVM hyper-plane dividing the Sample instances 
(objects). Adapted from (Burges, 1998) 

 
The implementation of a linear SVM assumes that the 
multispectral feature data are linearly separable in the feature 
space. In real data measurements, distributions of vectors of 
different classes overlap one another. This property of real data 
makes linear separability difficult. No hard linear decision 
boundaries can be found to sufficiently to classify patterns with 
high accuracy. Succeeding techniques and workarounds such as 
the soft margin method (Cortes and Vapnik, 1995) and the 
kernel trick are used to solve the inseparability problem by 
introducing additional variables (called slack variables) in SVM 
optimization and mapping the nonlinear correlations into a 
higher dimensional space. The one-against-one formulation of 
the SVM constructs k(k-1)/2 classifiers (k is the total number of 
classes) where each one is trained on data from two classes. For 
training data from the ith and the jth classes, we solve the 
following binary classification problem: 

 
𝑚𝑖𝑛  1

2
�𝑤𝑖𝑗�𝑇𝑤𝑖𝑗 + 𝐶 ∑ 𝜉𝑖𝑗𝑡                            (1) 

 
�𝑤𝑖𝑗�𝑇𝜙(𝑥𝑡) + 𝑏𝑖𝑗 ≥ 1 −  𝜉𝑖𝑗 , 𝑖𝑓 𝑦𝑡 = 𝑖         (2) 

 
�𝑤𝑖𝑗�𝑇𝜙(𝑥𝑡) + 𝑏𝑖𝑗 ≤ −1 + 𝜉𝑖𝑗 , 𝑖𝑓 𝑦𝑡 = 𝑗      (3) 

 
                               𝜉𝑖𝑗 ≥ 0                               (4) 

 
Minimizing 1

2
wTw means that we would like to maximize 2

‖𝑤‖
, 

the margin between each groups of data. When data are not 
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linear separable, there is a penalty term 𝐶 ∑ 𝜉𝑙
𝑗=1  which can 

reduce the number of training errors. The basic concept behind 
SVM is to search for a balance between the regularization term 
and the training errors (Chih-Jen Lin, 2001). After the 
classifiers have been constructed, an instance would be 
classified based on its sign with respect to the hyper-plane. For 
example if sign((wij)Txi + bij) >0 then xi is in the ith class. 
Choice of the parameter value (usually denoted by C), which 
controls the trade-off between maximizing the margin and 
minimizing the training error, is also an important consideration 
in SVM application. There exist no established heuristics for 
selection of these SVM parameters which frequently leads to a 
trial-and-error approach. However, an optimization procedure 
can be done to search for the regularization parameter C that 
gives the highest accuracy for classification. The equations of 
the learned hyper-planes can serve as “Super-Features” which 
can then be used to build a rule-based classifier in eCognition 

 

2. METHODOLOGY 

2.1 Study Area 

Our study area is the province of Agusan del Norte having 
LiDAR datasets where for the purpose of this discussion contain 
the different classes that we aim to classify. The study area is 
shown in Figure 2. 
 

 
Figure 2. LiDAR footprint of the study area. 

 
 
2.2 Overall Workflow 

The overall workflow for the object-based image analysis is 
shown in Figure 3. LiDAR derivatives and the Orthophotos are 
first segmented in eCognition. Due to the memory contraints of 
the very large 0.5m LiDAR/Orthophoto dataset (1,015 sq. km 
LiDAR footprint) segmentation is done in different 
blocks/scenes in eCognition. Samples from each class from 
different eCognition scenes are then taken and are subject to 
SVM optimization in Matlab. The advantage of doing this is 
that an optimized SVM model is developed that works with 
good accuracy for all the blocks/scenes. By plotting the samples 
in different 3D configurations in the feature space, the best 
features that separate the different classes are then used for the 
supervised SVM optimization. Specifically, the optimization 
procedure is a search for the best regularization parameter C in 
the linear SVM. The hyper-plane equations learned in the 
optimization are then used as rule-sets back in eCognition that 
work for all the blocks/scenes with high accuracy. 

 
 
Figure 3. Overall workflow for the Object-Based Image 
Analysis 
 
2.3 Pre-segmentation and Pre-classification 

Five image layers are used in the object-based image analysis. 
These five layers are the following; Normalized digital surface 
model (nDSM) from LiDAR DSM and DTM, LiDAR Intensity, 
Red (from RGB orthophoto), Green (from RGB orthophoto), 
Blue (from RGB orthophoto). 
 
 

 
 

Figure 4. The different LiDAR derivatives and Orthophoto 
used. 

 
These layers are loaded into eCognition for pre-segmentation 
and pre-classification. The first segmentation performed is a 
quadtree segmentation with a scale parameter of 2.0 and 
weighted only based on the LiDAR nDSM layer (no weights are 
placed for the other layers). After the quadtree segmentation, a 
spectral-difference segmentation with a maximum spectral 
difference of 2.0 is then run on the current image-object level. A 
pre-classification is then made by assigning all objects with an 
nDSM value greater than 2.0 meters to the class HE (High 
Elevation Objects/Tall Group) using the assign class algorithm. 
Unclassified objects in the image-object level with an nDSM 
value that is less than or equal to 2.0 meters and greater than or 
equal to 0.25 meters are classified as class ME (Medium 
Elevation Objects/ Medium Group). All the other remaining 
unclassified objects (< 0.25 meters) are then assigned to the LE 
(Low elevation Objects/ Groundlevel Group) class. The purpose 
of pre-classifying the segmented objects into the three major 
classes is to develop separate SVMs for each of the HE, ME, 

eCognition 
Rules based on Hyperplane Classification 

Matlab 
SVM Optimization Hyperplane Extraction 

eCognition 
Segmentation Feature Extraction 
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and LE major classes. Separate SVMs are developed because 
each major class would require different sets of features. For 
instance subclasses within the HE major class can be well 
separated and classified using mainly geometric features while 
subclasses within the LE major class can be classified well 
using LiDAR Intensity and RGB transformation features.  A 
sample end result for this pre-segmentation and pre-
classification stage is shown in Figure 5. 
 
 
 

 
Figure 5. Sample end result of the pre-segmentation and pre-

classification stage. 
 
 
 

3. RESULTS AND DISCUSSION 

 
3.1 Segmentation 

3.1.1 High Elevation (Tall) Group: After the initial pre-
classifications, the next step is re-segmentation to capture the 
target subclasses and to select subclass samples from each of the 
super-classes. Samples were collected for building an optimized 
support vector machine. In the HE super-class, the current 
subclasses are the following; Buildings, Coconut, Mango, and 
Other Tall Trees. Contained within the “Other Tall Trees” class 
are other tall tree species and other crops taller than 2.0 meters 
like banana, rubber and other tall species found in forest lands. 
Methods to classify banana and rubber are still being developed 
by the team. For now, these classes are still kept as “Other Tall 
Trees” class. The HE class objects are re-segmented using the 
multi-resolution segmentation algorithm in eCognition with a 
scale parameter of 17, shape of 0.3, and compactness of 0.5.  
The image layer weight is placed only on the nDSM layer. A 
sample end result of this segmentation setting is shown in 
Figure 6 and 7. 
 

 
 
 
 

 

 
Figure 6. Segmentation result for the HE subclasses 

 
 
 

 
Figure 7. Segmentation result for the HE subclasses 

 
 
 
 
3.1.2 Medium Elevation Group: After pre-classifying objects 
with a mean height greater than 2.0 m to the super-class HE 
(high elevation/tall objects), unclassified objects are re-
segmented with a scale parameter of 50, shape of 0.2 and 
compactness of 0.5.  This is the segmentation setting for both 
the ME and LE superclass.  For this segmentation, image layer 
weights are placed only on the RGB layers. Unclassified objects 
with a mean height in the range [0.25, 2] meters are then pre-
classified as ME (medium elevation superclass). In the ME 
super-class, the current level-3 subclasses are the classes Corn, 
and Shrub. Contained within the “Shrub” class are other 
vegetation species and crops that fall in the height range of 
[0.25, 2] meters. Methods to classify other crops that fall in this 
height range are still being developed by the team. A sample 
end result in the segmentation of the ME class is shown in 
Figure 8 and 9. 
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Figure 8. Segmentation result for the ME subclasses 

 

 
Figure 9. Segmentation result for the ME subclasses 

 
3.1.3 Low Elevation Group: The segmentation settings for the 
subclasses under the LE group are the same as the settings for 
the previously described ME class. In the LE superclass, the 
subclasses are the classes Grassland, Rice field, Fallow 
(uncultivated), Road, and Shadow. However, the shadow 
subclass is not an actual land-class and is reclassified 
contextually using the relative neighbor feature. In the 
development of the SVM for the LE superclass we include the 
class shadow because objects that fall in this class have a 
distinct property in the feature space. A sample end result in the 
segmentation of the LE class is shown in Figure 10. 
 

 
Figure 10. Segmentation result for the LE subclasses 

3.2 Feature Selection 

3.2.1 High Elevation (Tall) Group: Samples from the four 
different subclasses of the HE group are collected and the 
distributions of the samples in different configurations of the 3D 
feature-space were inspected to find the best features. These 
features are namely; Roundness, Compactness, Area, Height, 
Height standard deviation, Asymmetry. The features used for 
the subclasses of the HE group are structural features primarily 
based on the LiDAR derivatives. Detailed derivations and 
mathematical formulation of these features are described in the 
eCognition reference book. Shown in the following figures are 
the 3D plots of the samples in the best feature-space 
configurations that separate each class. 
 

 
Figure 11.  Roundness, Compactness and Height Std.dev 

 

 
Figure 12. Height Std. Dev, Roundness, and Assymetry 

 
3.2.2 Medium Elevation Group: Much of the features used for 
SVM classification for the ME as well as the LE super-class are 
based from color science and color image processing concepts. 
LiDAR intensity was used as well. Findings of this study 
identified nine (9) features including LiDAR intensity for 
classifying the ME and LE subclasses. Eight of the nine features 
come from color science concepts. To understand color 
measurement and color management, it is necessary to consider 
human color vision. There are three things that affect the way a 
color is perceived by humans. There are characteristics of the 
illumination and the object. Also, there is the interpretation of 
this information in the eye/brain system of the observer. CIE 
metrics incorporate these three quantities, correlating them well 
with human perception. The additional features used  for the 
ME and LE are: Red Ratio (CIE xy Chromaticity), Green Ratio 
(CIE xy Chromaticity), Blue Ratio (CIE xy Chromaticity), First 
Coordinate (1-Dimensional Scalar Constancy), Second 
Coordinate (1-Dimensional Scalar Constancy), RGB Intensity 
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(HSI), a* (CIE Lab), b* (CIE Lab). Shown in Figure 13 and 14 
are some of the 3D plots of the samples in the best feature-space 
configurations that separate the classes corn and shrub. 

 

 
Figure 13. 1st coordinate, 2nd coordinate, and a* 

 

 
Figure 14. a*, b*, and LiDAR Intensity 

 
3.2.3 Low Elevation Group: The features used for the LE 
superclass are the same features used in developing the model 
for the ME superclass. Shown in Figure 15 and 16 are the 3D 
plots of the samples in the best feature-space configurations that 
separate the different subclasses in the LE superclass. In the 
plots, the class “uncultivated” corresponds to the class fallow. 

 
Figure 15. a*,b*, and 2nd Coordinate 

 
3.3 SVM Optimization 

Using the scaled features for the different classes, an 
optimization procedure for the SVM learning is then carried out 
in Matlab. The optimization is a search for the best 
regularization parameter C that gives the highest cross 
validation accuracy. Three-fold cross validation is performed 
for each 1v1 SVM implementation. The LIBSVM package was 
interfaced in Matlab to extract the equations of the hyper-planes 
of the best SVM model found. A linear kernel SVM was used 
because an RBF kernel could not be reconstructed back to 
eCognition. A sample color plot of the search for the optimal 

value for the regularization parameter C is shown in the Figure 
16 below. 

 
Figure 16. Sample color plot in the optimal C search 

 
3.4 Classification in eCognition 
 

Using the equations of the hyper-planes that separate the 
different classes in the six-dimension feature space, a rule-set is 
then built in eCognition. It should be noted that the equation of 
each hyper-plane is of the form wTx +b = 0, where w is the 
normal vector to the hyper-plane and x is the feature vector. For 
a 4-class problem (HE Class) with a one-against-one 
implementation in SVM, we have 6 hyper-planes namely (w12 

)Tx +b12 = 0, (w13 )Tx +b13 = 0, (w14)Tx +b14 = 0, (w23 )Tx +b23 = 
0, (w24 )Tx +b24 = 0, (w34 )Tx +b34 = 0. We have Class 1 = 
Buildings; Class 2 = Coconut; Class 3 = Mango; Class 4 = 
Other Tall Vegetation. An object (a feature vector x) would be 
classified according to its sign with respect to the hyper-planes 
it is involved with. For example, for an object to be classified as 
a Building (Class 1) it should satisfy: (w12)Tx +b12 > 0 and (w13 

)Tx +b13 > 0 and (w14 )Tx +b14 > 0. The learned hyper-planes 
serve as “Super-Features” which is then used to build a 
thresholding rule set in eCognition for the classification of the 
scene. 

 
Buildings (Class 1) 

W12>0 
W13>0 
W14>0 

 
Coconut (Class 2) 

W12<0 
W23>0 
W24>0 

 
Mango (Class 3) 

W13<0 
W23<0 
W34>0 

 
Other Tall Vegetation (Class 4) 

W14<0 
W24<0 
W34<0 

Table 1. Rules based on hyperplane for the HE subclasses. 
 

 
Figure 18. Snapshot of the Class Description for the classifier 
algorithm in eCognition using the hyperplane equations as 
thresholding superfeatures. 
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3.5 Accuracy of the Developed SVM Models 
 
The developed SVM rule-set showed a high overall accuracy 
when applied to different scenes/areas. The following tables 
show the error matrix and the accuracy of one block/scene in 
Agusan del Norte. 
 

 
Table 2. Accuracy of the HE subclasses in a sample block/scene 
 
 

 
Table 3. Accuracy of the ME subclasses in a sample 

block/scene 
 
 

 
Table 4. Accuracy of the LE subclasses in a sample block/scene 
 
 
 
 
 

3.6 Sample Classification Results 
 
The resulting classification maps can be accessed through the 
web as a Web Map (lidar2.carsu.edu.ph:9080)  
 

 
Figure 19. Snippet of the High Value Crops Web Map 

 

 
Figure 20. High Value Crops Map (Mango trees are shown in 

cyan and Coconut Trees are shown in green) 
 

4. CONCLUSION 
 
We have demonstrated an object-based classification of high-
value crops using an optimized SVM model using LiDAR data 
and Orthophoto. There are three major parts of the presented 
workflow. The first part involves the segmentation algorithms 
for feature extraction. The second part is the SVM optimization 
through cross validation in order to extract the equations of the 
hyper-planes that best separate each class. Finally, the learned 
hyper-planes are used to create the rule-sets for classification in 
eCognition. Segmentation and rule-based classification was 
done using eCognition. The optimization of the SVM as well as 
hyper-plane extraction was done using LIBSVM through 
Matlab. Overall accuracies greater than 90% were achieved 
with the optimized model. An optimized model can yield better 
accuracy: however, like all optimization procedures, it may just 
cause the model to over-fit. To check if the model is over-fitted 
to the scene where it has learned the parameters, the model 
should be tested against different scenes. We have shown that 
even when the optimized SVM model was tested against 
different scenes within Agusan del Norte, the obtained overall 
accuracies were greater than 90%. 

User Class \ Sample Buildings Mango Coconut Tall Trees Sum
Confusion Matrix
Buildings 220 0 0 2 222
Mango 0 224 5 9 238
Coconut 0 2 420 3 425
Tall Trees 3 20 18 399 440
unclassified 0 0 0 0 0
Sum 223 246 443 413
Accuracy
Producer 0.9865471 0.9105691 0.948 0.9661017
User 0.991 0.9411765 0.9882353 0.9068182
Hellden 0.988764 0.9256198 0.9677419 0.9355217
Short 0.977778 0.8615385 0.9375 0.8788546
KIA Per Class 0.9838394 0.891 0.9235641 0.9492483
Totals
Overall Accuracy 0.9532075
KIA 0.9356985

User Class \ Sample Shrub Corn Sum
Confusion Matrix
Shrub 98 0 98
Corn 1 25 26
unclassified 10 3 13
Sum 109 28
Accuracy
Producer 0.899 0.8928571
User 1 0.9615385
Hellden 0.9468599 0.926
Short 0.899 0.862
KIA Per Class 0.6454952 0.8677606
Totals
Overall Accuracy 0.8978102
KIA 0.7393668

User Class \ Sample Grassland Rice field Fallow Road Shadow Sum
Confusion Matrix
Grassland 169 1 1 0 5 176
Rice field 0 115 1 0 1 117
Fallow 10 13 101 4 20 148
Road 0 0 20 212 0 232
Shadow 3 2 0 2 361 368
unclassified 3 8 1 3 15 30
Sum 185 139 124 221 402 0
Accuracy
Producer 0.9135135 0.8273381 0.814516 0.959276 0.898
User 0.9602273 0.983 0.682432 0.913793 0.981
Hellden 0.9362881 0.8984375 0.742647 0.936 0.937662
Short 0.8802083 0.8156028 0.590643 0.879668 0.882641
KIA Per Class 0.8965061 0.8061626 0.784774 0.948 0.844621
Totals
Overall Accuracy 0.8944911
KIA 0.8625766
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