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ABSTRACT: 
 
Virtual Dimensionality (VD) is a concept developed to estimate the number of distinct spectral signatures in hyperspectral imagery. 
Intuitively, detecting the number of spectrally distinct signatures depends on determining the number of distinct bands of the data. 
Considering this idea, the current paper aims at estimating the VD based on finding independent bands in the image partition space. 
Eventually, the number of independent selected bands is accepted as the VD estimate. The proposed method is automatic and 
distribution-free. In addition, no tuning parameters and noise estimation processes are needed. This method is compared with three 
well-known VD estimation methods using synthetic and real datasets. Experimental results show high speed and reliability in the 
performance of the proposed method. 
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1. INTRODUCTION 

Hyperspectral data are collected simultaneously in hundreds of 
narrow adjacent spectral bands for each pixel, which can be 
represented in a high-dimensional space (i.e., feature space). 
Hence, “a hyperspectral imaging sensor can now uncover many 
material substances which cannot be identified by prior 
knowledge or by visual inspection. Therefore, it is very 
challenging and difficult to determine how many signal sources 
are present in a hyperspectral image” (Xiong, 2011). In order to 
address this issue, the concept of Virtual Dimensionality (VD) 
was developed in (Harsanyi et.al, 1993) and (Chang and Du, 
2004a) to estimate the number of signal sources (spectrally 
distinct signatures) in hyperspectral imagery. Several 
applications such as unsupervised feature selection/extraction 
(Ghamary Asl et.al, 2014b), (Persello C. and Bruzzone L., 
2016a), (Jimenez-Rodriguez et.al, 2007a) and (Romero et.al, 
2016a), spectral unmixing (Nascimento, 2006), image 
clustering (Theodoridis and Koutroumbas, 2009), endmember 
extraction (Winter, 1999), target detection (Kraut, et.al, 2005a) 
and (Zhang, Le., et.al, 2014b), etc. exploit the VD; a fact which 
emphasizes the importance of this concept. 
 
Methods proposed so far for determining signal subspace or the 
VD in hyperspectral imagery are just a few and mainly involve 
complicated statistical and matrix computations. Minimum 
Description Length (MDL) (Schwarz, 1978a), (Rissanen, 
1978b), Akaike’s Information Criterion (AIC) (Akaike, 1974b) 
and Bayesian Information Criterion (BIC) (Schwarz, 1978a), 
(Graham and Miller, 2006a) are information theoretic criteria-
based methods for estimating data dimensionality. The 
Harsanyi-Farrand-Chang (HFC) (Harsanyi et.al, 1993) and 
(Chang and Du, 2004a) is another method for VD estimation, 

which uses correlation and covariance matrices of hyperspectral 
data. This method is based on the Neyman-Pearson detection 
theory and attempts to identify the signal subspace with the 
assumption that the noise is white and the signal sources present 
in the image are nonrandom and have unknown positive values. 
One problem with this method is the white noise assumption. 
Therefore, the Noise-Whitened HFC (NWHFC) (Chang and 
Du, 2004a) was proposed to solve this problem. However, both 
methods need to be tuned by a given false alarm rate parameter. 
Besides the mentioned statistical methods, another method 
called Hyperspectral Signal Subspace Identification by 
Minimum Error (HySime) was proposed in (Bioucas-Dias and 
Nascimento, 2008b). This method is based on the Signal 
Subspace Estimate (SSE) (Bioucas-Dias and Nascimento, 2005) 
and attempts to improve it. HySime “first estimates the signal 
and noise correlation matrices and then selects the subset of 
eigenvalues that best represents the signal subspace in the least 
squared error sense” (Bioucas-Dias and Nascimento, 2008b). In 
addition, a method based on the Orthogonal Subspace 
Projection (OSP) technique was developed in (Chang, 2010b). 
The main idea is based on the linear spectral mixture of 
endmembers in an image. 
 
The concept of VD refers to a signal or image subspace that is 
able to represent the phenomena/signal sources existing in an 
image without loss of information (Chang and Du, 2004a). 
Hence, the concept of VD and signal subspace dimensionality 
can be considered equivalent. Therefore, detecting the number 
of spectrally distinct signatures depends on determining the 
number of distinct bands of the data. In this paper, a new VD 
estimation method called Unsupervised Feature Selection-based 
Virtual Dimensionality (UFSVD) is proposed. It is developed 
based on the maximum angle discrimination, which is used for 
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unsupervised feature selection (Ghamary Asl et.al, 2014b). In 
this regard, the number of selected features is accepted as the 
VD. The UFSVD method is automatic, distribution-free and 
completely geometric. In addition, no tuning parameters and 
noise estimation processes are needed. 
 
The rest of this paper is organized as follows. Section II 
presents the proposed algorithm in detail. Experiments and 
results are provided in Section III. Finally, section IV is 
dedicated to overall conclusions. 
 

2. VIRTUAL DIMENSIONALITY ESTIMATION 

Evidently, if the spectral similarity between the signatures of 
two phenomena is very high (i.e. reaching 100%), then, no 
independent bands can be intrinsically found in the spectra. In 
other words, the full correlation between bands over the whole 
spectral region indicates the coincidence of the signatures; 
whereas ideally, the separation of two spectra in at least one 
band can be a hint to the presence of two distinct phenomena in 
the image scene (Figure 1; refer to the signatures 1 and 2). In a 
similar way, if another signal source appears in the image 
scene, then at least a new distinct band or a spectral region 
(containing highly correlated bands) will appear on the 
spectrum (Figure 1; refer to the signatures 1 and 3). In other 
words, such bands are exclusively revealed due to the presence 
of a different signal source. These bands are used to distinguish 
the signal source from other materials present in an image 
scene. Hence, the identification of independent bands (i.e., 
features) can lead us to detect independent signal sources. 
Stated otherwise, in practice, there is a close relationship 
between the number of independent bands and the VD. 
According to the above-mentioned descriptions, distinguishing 
the optimal features (independent bands) can be an acceptable 
reference for determining the VD. 

 
Figure 1. Spectral space: Distinct signatures revealed due to the 
appearance of a band (e.g., band 8) or a highly correlated 
spectral region (e.g., bands 25~31). Signature 2 is revealed by 
band 8 and signature 3 is diagnosed by the spectral region 
containing bands 25 ~ 31. 

Considering no a priori information about the number of 
signatures present in an image, the first parameter which can 
simply describe the image is the mean of all spectra. On the 
other hand, provided that the image is simply constructed by 
one phenomenon/class, dividing it (the image) into two sub-
images/partitions, no independent band (new dimension) will 
appear. In other words, comparing the overall mean signatures 
of each partition, we find full matching between them (i.e., two 
coincident spectra). Nevertheless, if the partitions are 
constructed by mixing two slightly different classes, an 
enhanced different behavior can be observed in at least one 
band or a highly correlated spectral region, comparing the 
signatures (Figure 1). These highly correlated bands indicate 

the presence of a new signature / dimension in the data. In other 
words, these bands do not demonstrate more than one 
dimension/signature in data. Meanwhile, the more classes the 
image contains, the more distinct bands appear. For better 
understanding, Figure 1 illustrates that signature 2 is revealed 
by band 8 and spectral region containing the bands 25 ~ 31 
diagnoses signature 3. 
 
The proposed method, UFSVD, uses two geometric criteria to 
select optimal features in an unsupervised fashion. These 
criteria are applied in the partition space (PS) which is 
constructed by a given number of representative signatures 
obtained through simple image partitioning. These 
representative signatures are achieved by the average of each 
partition (Figure 2.a). The implementation stages of the UFSVD 
method are as follows: 
 
Step 1) PS construction: As illustrated in Figure 2, the 
construction of the partition space (i.e. PS in this paper) is 
similar to that of the prototype space. A full description of the 
prototype space is extensively presented and analyzed in 
(Ghamary Asl et.al, 2014b). In this regard, to construct the PS 
(Figure 2.b), the hyperspectral image scene is simply 
partitioned into a given number of partitions with an equal 
number of pixels. Then, the PS is generated by the averages of 
the spectral signatures of each partition. 
 
Evidently, two coincident vectors in the PS, which are 
dependent/correlated, gain more independence or less 
correlation as the angle between them approaches 90°. 
Therefore, the angle between two band vectors in the PS 
(Figure 2b) can be used to describe the correlation of the bands, 
which as stated above, can refer to the existence of two 
different signal sources in the image scene. 
 
Step 2) First Criterion: The most distinct band, which has the 
biggest sum of angles from other bands, is selected as the first 
feature (f1). In this regard, for a given band, the summation of 
the angles with other bands in the PS can be considered as the 
criterion { }B

1
2
1

1
11 ,...,, CCCC =  to determine the most distinct 

band. For the jth band, j
1C  is defined as follows: 

 
,
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 bi and bj = ith and jth band vectors in the PS (Figure 
 2b) and B is the number of all bands. 
 
In order to select f1, the criterion j

1C  is computed for each band 
j. Hence, band j, which optimizes the criterion, is selected as f1 
(i.e., the first feature). Hereafter fi refers to the ith selected 
feature. 
 

{ },maxarg 11
j

j

Cf
b

=      Bj ,...,2,1=     (2) 

Step 3) Second Criterion: The second feature f2, is selected 
such that the angle between f1 and f2 gets maximum. To select 
the kth feature, which k starts from 2, the criterion 

{ }B
2

2
2

1
22 ,...,, CCCC =  that explains the products of the elements 

jibfα (i=1,2,…, k-1) for each band  is defined as follows, where 

)(cos 1
jijiji

bfbfbf
−=α . 
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For example, when k=2 (i.e., f2) then 

j1
j

bfC α=2 and when k=3 

(i.e., f3) j2j1
j

bfbfC αα ×=2 . For the ith feature in the selected 

feature set { }kfffU ,...,, 21= , a set of elements 
jibfα can be 

calculated. Therefore, the angle matrix A with dimension (k ‒ 
1) × B is generated (Eq.4) to determine the kth optimal feature. 
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Then, the kth band is selected using the following argument. 
 

{ },maxarg 2
j

k
j
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b

=      Bj ,...,2,1=    (5) 

 

 

 
Figure 2. Partition space construction: (a) Image partitioning 
and spectral space showing the mean spectra of two partitions. 
(b) Partition space, constructed by the mean spectra of Partition 
1 and Partition 2, which represents the bands scatter. The band 
vectors b29 and b42 correspond to the 29th and 42th selected 
features, and 

4229bbα is the angle between these two vectors in 

the PS. 
 
After selecting the kth feature, matrix A is updated through 
adding a row containing the angles between the kth feature and 
all B bands. In this regard, the algorithm continues until the 
angle between fk and f1 becomes equal to the minimum value of 
the first row of A (i.e., the algorithm returns to the initial status 
of selecting f1). In other words, the algorithm stops when it 
finds a band having the minimum angle with the first selected 
feature f1. 
 

Step 4) VD estimation: the proposed UFSVD method gives the 
number of selected features (i.e., the number of members of set 
U) as an estimate of VD. 
 

3. EXPERIMENTS AND RESULTS 

In this section, the data used for experiments are introduced and 
then the proposed method along with the three famous VD 
estimation methods are evaluated and compared. 
 
3.1 The Data used and the Area of Study 

In this research, the VD estimation methods are evaluated using 
real and synthetic hyperspectral datasets. The substances and 
classes that exist in these datasets are completely shown in 
Table 1. More details are described as follows: 
 
1) Indian Pine: This image has been acquired by AVIRIS over 
the jungle/agricultural region of Indian Pine in the Indiana state, 
USA, with a size of 145 × 145 pixels in 220 spectral bands and 
in the 0.4-2.5 µm spectral range 
(https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.
html). The image is reported to contain 16 classes (Table 1). 
Bands 104~108, 150~163 and 220 are noisy and water 
absorption bands and were removed from the list of original 
bands to leave 200 bands (Chang, 2010b). 

(b) 

(a) 

4229bbα

 

29b  

42b  
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2) Cuprite: Cuprite is a mineral and research region located in 
the state of Nevada, USA, containing various types of minerals. 
According to the report in 
(http://speclab.cr.usgs.gov/papers/cuprite.gr.truth.1992/swayze.
1992.html), 18 substances are detectable in the region. The 
utilized images were acquired by AVIRIS in 1995 (available 
from the data samples of the ENVI software) and 1997 
(available  on: http://aviris.jpl.nasa.gov/data/free_data.html), at 
a height of 20 km, named Cuprite1995 and Cuprite1997, 
respectively. Cuprite1995 is available with 350×400 pixels and 
50 bands in the spectral range of 2.0-2.5 µm. The Cuprite1997 
data contains 224 spectral bands in the 0.4-2.5 µm spectral 
range. Bands 1~3, 104~115, 148~170,221~224 are noisy and 
water absorption bands and were removed from the list of 
original bands to leave 182 bands. A sub-image of the 4th scene 
with 400×400 pixels, from UL: (1, 215) to LR: (400, 614), was 
considered for the experiments. 

3) Botswana: This image has been acquired by the Hyperion 
satellite sensor from the Okavango delta in Botswana, USA, 
containing seasonal and occasional swamps and dry woodlands 
located in the distal portion of the data. In this experiment, the 
whole image with the size of 1476×256 pixels, containing 14 
reported classes, was used (Table 1). Uncalibrated and noisy 
bands that contain water absorption features were removed, 
resulting in 145 bands (10~55, 82~97, 102~119, 134~164, 
187~220) (www.csr.utexas.edu/hyperspectral/data/Botswana). 

4) Synthetic Data: Two hyperspectral datasets with four SNR 
values 10, 15, 20 and 30 were generated by 9 and 12 spectral 
signatures (Table 1) using the codes provided in 
(http://www.lx.it.pt/~bioucas/code/demo_HySime.zip).The case 
of 9-sample uses the first 9 samples (out of 12 samples) shown 
in Table 1. The types of noises added to the data were white and 
color with the distribution parameter η (noise shape) being 0 
and 1/18, respectively. Each dataset consists of 10000 samples 
(i.e., 100 × 100), having 224 spectral bands in the 0.4-2.5 µm 
range. It must be noted that the abundances of endmembers for 
each pixel were generated based on the Dirichlet distribution. 

 

3.2 Evaluating VD estimation 

In this part, the proposed method along with the three famous 
HFC, NWHFC and HySime methods, referred to as “compared 
methods”, were evaluated by hyperspectral datasets. It is 
notable that the HFC and NWHFC are evaluated with three 
false alarm values (PF) 10-3, 10-4 and 10-5. Evidently, if the VD 
estimated by a method is closer to the number of signatures 
constituting a given data, it can be concluded that the method 
has a better performance in estimating the VD of that data. At 
the end of this part, for each hyperspectral data / image, all the 
methods are compared in terms of time consumption. The HFC 
and NWHFC codes are presented in (Chang, 2013), and those 
of the HySime method are available on 
(http://www.lx.it.pt/~bioucas/code/demo_HySime.zip). 
 
3.2.1 Experiments with real datasets: To evaluate the 
impact of the number of partitions on the VDs estimated by the 
UFSVD method, a sensitivity analysis is conducted. As shown 
in Figure 3 for Indian Pine, Cuprite1995, Cuprite1997 and 
Botswana, the VDs become steady while increasing the number 
of partitions. Indeed, in our proposed method, the proper 
number of partitions is a practical consideration. There is a 
concern that some materials present in an image scene will only 
occur in limited spatially and for a given partition may not have 
statistical significance. In such cases it is possible that these 
materials would be lost through the averaging process and have 
no impact on finding distinct bands. It is assumed that the 
spatial partitioning can be adapted to address this issue, but this 
leads to the next point. In this study, the appropriate number of 
partitions is set and proposed to be equal to the number of 
partitions which results in maximum VD. The criteria used for 
evaluating the estimated VDs is based on the ground truth of 
each dataset. However, the assumption that the ground truth is 
complete is not true because the first simple part of an image 
which is not demonstrated on a ground truth map is the 
background that may contain several signal sources not 
presented on the ground truth map. This is true in many cases, 
even for the data used in this study. According to the above-
mentioned descriptions, the much more correct estimated VD is 
probably more than the number of classes demonstrated on an 
image scene ground truth map. All of these can support the idea 
that the maximum estimation of VD is much proper than the 
other estimations in UFSVD method. It is obvious that 
difference between the maximum estimated VD and the number 
of the classes attributed to a particular image (in a standard, 
comprehensive and acceptable manner) should not be 
significant. 
 
In this part, we apply the proposed and compared methods to 
the real datasets. Table 2 shows the VDs estimated by the HFC, 
NWHFC, HySime and UFSVD methods for all the datasets. It 
is noteworthy that in UFSVD method the cases of 2 partitions 
and 3 partitions present acceptable results for all of the utilized 
datasets. Hence the results of these cases are shown in Table 2. 
Nevertheless, one can determine the desired VD by assessing 
the sensitivity analysis on the number of partitions. 
 
The VDs estimated for the Indian Pine dataset by the NWHFC, 
HySime and UFSVD methods display a good match with the 
number of signatures (i.e., #S=16). This indicates the high 
performance of these three methods in VD estimation for this 
image. In contrast, HFC achieved very poor estimates. 
 
According to the information in Table 1, 18 different minerals 
have been detected in the Cuprite region. The results obtained 

Materials / Classes Dataset 
Oats, Grass/Pasture-mowed, Alfalfa, Stone-steel 
towers, Wheat, Corn, Bldg-Grass-Tree-
Drives,Hay-windrowed, Grass/Pasture, Soybean-
clean, Grass/Trees, Corn-min, Soybeans-notill, 
Woods, Corn-notill,Soybeans-min 

Indian 
Pine 

(#S = 16) 

K-Alunite, Na-Alunite, Buddingtonite, 
Limestone, Fe-Chlorite, Dickite, Goethite, 
Halloysite, Hematite, Montmorillonite + tr. Illite, 
K-jarosite, Kaolinite (wxl), Kaolinite (pxl),Ca-
Montmorillonite, Tr. Smectite and muscovite, 
Nontronite, Opal, Paragonite 

Cuprite 
(#S = 18) 

Exposes Soils, Island Interior, Riparian, Hippo 
Grass, Reeds, Water, Acacia Shrublands, 
Firescar, Mixed Mopane, Acacia Grasslands, 
Acacia Woodlands, Short Mopane,FloodPlain 
Grasses 1, FloodPlain Grasses 2 

Botswana 
(#S = 14) 

Alunite AL706 Na, Uralite HS345.3B, Olivine 
KI3291  <60um, Albite GDS30 74-250um fr, 
Datolite HS442.3B, Illite IL101 (2M2), Albite 
HS324.3B, Topaz Harris_Park_#9, Illite IMt-1.a, 
Clinochlore_Fe GDS157, Labradorite 
HS105.3B, Rutile HS137.3B 

Synthetic 
(#S = 12) 

Table 1. Signal sources (i.e., substances/classes) of the 
hyperspectral datasets used to evaluate the VD estimation 
methods {#S: Number of Signal sources}. 
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for Cuprite1995 in Table 2 show that the UFSVD method in 
comparison with the other three methods has the closest 
estimate of the reported number of signatures for this image 
(i.e., #S=18). Although the UFSVD method overestimated the 
VD with the value of 22, but due to the high number of 
substances, the possibility of rare pixels and the spectral 
complexity of the region, it can be said that the method has 
given a good estimate. The HySime method gave a poor 
performance with a relatively large difference between the 
estimated and real number of signatures. HFC and NWHFC 
using various false alarm values (10-3, 10-4 and 10-5) show 
considerable differences between the estimated VDs and the 
real number of signatures reported for this image. 
In contrast to the achieved results for Cuprite1995 (with 50 
bands), all the methods obtained more acceptable results for 
Cuprite1997 (with 182 bands). This demonstrates that the 
compared methods are more sensitive to the number of bands 
than the proposed method. 
For the Botswana dataset, the values obtained by UFSVD (i.e., 
17 with 8 partitions) is close to but more than the number of 
signal sources reported for this image (i.e., #S=14). Meanwhile, 
the HFC method gave acceptable estimates of the VD for all of 
the false alarm values (i.e., PF=10-3,10-4 and 10-5). In contrast, 
the results of NWHFC are far from the real number of signal 
sources. However, HySime yielded a relatively good result with 
the VD value of 22. 
 

 
Figure 3. Sensitivity analysis: The impact of the number of 

partitions on the VDs estimated by the UFSVD method. 

 
 
In general, according to the results, among the compared 
methods, HySime gave good VD estimates. However, UFSVD 
yielded better estimates for the examined datasets, which 
signifies its reliability and efficiency. 

3.2.2 Experiment with synthetic datasets: In this part, the 
proposed UFSVD algorithm is applied to the synthetic datasets 
(Table 1) and compared with HFC, NWHFC and HySime. 
Table 3 shows the VDs estimated by all these methods for the 
datasets. It must be noted that the results for Color-Noise-added 
Datasets (CNDs: η=1/18) are given in parentheses under those 
for the White-Noise-added Datasets (WNDs: η=0). According 
to the table, in all methods, the results achieved for WNDs are 
generally more accurate than those for CNDs. 
 
As given in Table 3, most of the VDs obtained by UFSVD 
using three partitions, which is the number of partitions 
according to the maximum VD, show a good stability and 
performance in all noise addition cases (i.e., several SNRs and 
noise types) of both datasets (i.e., #S=9 and 12). However, this 
situation does not hold for HFC, NWHFC and HySime so that 
in lower SNR values of 10 and 15, they show very poor 
performance for both datasets. In this regard, using the first 
dataset (#S=9), the compared methods yielded acceptable 
estimates only for the SNR values of 20 and 30. Nevertheless, 
for SNR 20, the HFC and HySime methods did not present 
satisfactory results for the case of color noise. In the second 
dataset (#S=12), almost in all noise addition cases and for all 
the compared methods, the estimated values are very poor. 
Here, using the dataset with the highest SNR (i.e., 30), only 
HySime achieved good results being 11 and 10 for the white 
and color noise, respectively. 
 
Based on the results in Table 3, the compared methods (i.e., 
HFC, NWHFC and HySime), unlike the UFSVD method, 
showed high sensitivity to the noise. However, UFSVD does 
not use noise estimation and is not very prone to the noise. This 
may be because averaging is conducted over all image pixels in 
each partition. Generally, UFSVD showed a high performance 
in VD estimation. 
 

 
 

VD Estimation Method Dataset 

UFSVD 
(Max #F 
in #P=3) 

HySime 

NWHFC HFC 
SNR #S false alarm values (PF) 

10-5 10-4 10-3 10-5 10-4 10-3 

9 
(7) 

4 
(2) 

4 
(3) 

5 
(3) 

5 
(3) 

4 
(2) 

5 
(2) 

6 
(2) 10 

9 

9 
(7) 

5 
(3) 

6 
(5) 

6 
(5) 

7 
(5) 

6 
(3) 

7 
(3) 

7 
(3) 15 

9 
(10) 

7 
(5) 

8 
(8) 

8 
(8) 

8 
(8) 

8 
(4) 

8 
(4) 

8 
(5) 20 

9 
(8) 

9 
(8) 

9 
(8) 

9 
(9) 

9 
(9) 

9 
(7) 

9 
(7) 

9 
(7) 30 

11 
(8) 

4 
(3) 

3 
(4) 

3 
(4) 

3 
(4) 

3 
(2) 

3 
(2) 

3 
(2) 10 

12 

12 
(14) 

6 
(4) 

3 
(4) 

4 
(4) 

4 
(5) 

3 
(3) 

4 
(3) 

4 
(3) 15 

13 
(9) 

8 
(6) 

4 
(5) 

5 
(5) 

5 
(5) 

4 
(3) 

4 
(3) 

4 
(3) 20 

12 
(12) 

11 
(10) 

6 
(6) 

6 
(6) 

7 
(6) 

7 
(5) 

7 
(5) 

8 
(5) 30 

Table 3. The VDs estimated by HFC, NWHFC, HySime and 
UFSVD for the synthetic datasets. the results for Color-Noise-
added Datasets (η=1/18; η is noise shape) are given in 
parentheses under those for the White-Noise-added Datasets 
(η=0). {{#S: Number of Signal sources (i.e., Substances 
/Classes), #P: Number of dataset Partitions, #F: Number of 
selected Features.} 

VD Estimation Method Dataset 

UFSVD 

HySime 

NWHFC HFC 

#S Name 

M
ax #F 
(#P) 

( #P=3 ) 

( #P=2 ) 

false alarm values (PF) 

10-5 10-4 10-3 10-5 10-4 10-3 

19 
(4) 15 16 16 18 18 18 28 30 34 16 Indian Pine 

22 
(3) 22 14 9 4 4 4 5 5 6 18 Cuprite1995 

19 
(5) 18 16 20 18 19 22 21 22 22 18 Cuprite1997 

17 
(8) 14 15 22 39 41 45 18 20 21 14 Botswana 

Table 2. The VDs estimated by HFC, NWHFC, HySime 
and UFSVD for the real datasets. {#S: Number of Signal 
sources (i.e., Substances /Classes), #P: Number of dataset 
Partitions, #F: Number of selected Features.} 
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3.3 Evaluation of the computational cost 

In this part, the running times of the HFC, NWHFC, HySime 
and UFSVD algorithms are presented for each dataset. Table 4 
contains the running times for these four algorithms. According 
to this table, the running times of HFC and UFSVD are 
generally shorter than those of the other methods. On the other 
hand, a closer inspection of the table indicates that the running 
time of the HySime method varies considerably for different 
datasets. This means that HySime is more dependent on the 
number of bands and image size. NWHFC, too, in terms of 
running time, has a similar but much better performance than 
HySime. Due to noise estimation and computations for 
eigenvalues and eigenvectors (singular value decomposition 
(SVD)), the NWHFC and HySime methods need more time to 
estimate the VD. However, UFSVD consists of simple stages 
and therefore estimates the VD with high speed, low 
complexity and without the need for noise estimation. As 
shown in Table IV, the running times of the UFSVD method are 
suitable and acceptable in comparison with the other methods. 
It is worth noting that most of the UFSVD time is consumed 
while calculating the average spectrum for each partition. 

 
 

4. CONCLUSION 

In this paper, a new VD estimation method, named UFSVD, 
was proposed based on a geometric feature selection algorithm 
in the PS. UFSVD uses the angle between band vectors in the 
PS to find and select the most independent bands as appropriate 
features. Finally, the number of selected features is accepted as 
the VD estimate. Moreover, the sensitivity analysis and 
experimental results demonstrated that the maximum estimated 
VD (equivalent to the maximum number of selected features by 
the UFSVD method) is proper for an image scene. The obtained 
results for four real datasets demonstrated that, among the 
compared methods, HySime gave good VD estimates. 
However, UFSVD generally yielded better and acceptable 
estimates for the examined datasets. Moreover, the results 
achieved on synthetic datasets showed that most of the VDs 
obtained by UFSVD have a good stability and performance in 
all noise addition cases (i.e., several SNRs and noise types) of 
both datasets (i.e., #S=9 and 12). However, this situation does 
not hold for HFC, NWHFC and HySime so that in lower SNR 
values of 10 and 15, they show very poor performance for both 
datasets. Furthermore, the evaluation of the running time 
showed that the performance of UFSVD method is acceptable. 
According to the experimental results conducted on the real and 
synthetic datasets, UFSVD is generally able to yield better 
performance with less sensitivity to the SNR and noise type. 
 
In sum, there are several merits for UFSVD. It is automatic and 
distribution-free. In addition, no tuning parameters and noise 
estimation processes are needed. 
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