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ABSTRACT: 

 

Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-

to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely 

used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for 

automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR 

data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which 

provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable 

method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed 

method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the 

normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified 

as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points 

classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping 

method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, 

Australia. 
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1. INTRODUCTION 

Accurate and up-to-date maps of urban tree cover are required 

for many applications such as planning, green space 

management and improvement of liveability within cities. The 

automated production of tree cover maps from available 

remotely sensed imagery and ranging data remains a research 

topic of interest.  

 

Multispectral satellite/aerial images and airborne LiDAR (Light 

Detection And Ranging), provide sets of complementary spatial 

data. For instance, multispectral satellite imagery offers low-

cost spectral data for vegetation classification over large areas, 

while LiDAR data provides accurate 3D point clouds with 

recorded intensity values of the reflected laser beam. The 

integration of satellite imagery with LiDAR point clouds, 

registered to 1-pixel level, offers an enriched data source for 

scene classification.    

 

LiDAR point clouds are used for many forestry applications 

such as the estimation of forest inventory, measurement of tree 

canopy profile, estimation of leaf area index, etc. (Koch et al., 

2006; Kwak et al., 2007; Li et al., 2012; Maltamo et al., 2014; 

Rutledge and Popescu, 2006). The performance of tree canopy 

cover mapping using LiDAR data and WorldView 2 imagery 

data separately has previously been analysed and it was shown 

that superior results were achieved using LiDAR data 

(Jakubowski et al., 2013). Nevertheless, algorithms designed for 

the extraction of trees, from LiDAR data, can fail in urban areas 

due to the presence of man-made objects, principally buildings.  

 

There are a number of classification techniques that have been 

applied in the extraction of man-made and natural features from 

LiDAR data. For instance, the random forest classification 

method has been used to extract buildings, trees and power lines 

(Guan et al., 2013; Kim et al., 2010). Support vector machine-

based classification methods have also been applied for the 

extraction of buildings and trees (Lodha et al., 2006; Secord and 

Zakhor, 2007; Zhang et al., 2013). Moreover, principal 

component analysis (PCA) has been used for 3D shape analysis 

to identify planar and non-planar surfaces in LiDAR point 

clouds, in order to identify buildings and trees (Carlberg et al., 

2009; Lalonde et al., 2006).  

 

While these approaches offer a variety of solutions, a universal 

challenge is that buildings and trees can appear geometrically 

similar, which complicates their extraction from LiDAR data. 

The combination of LiDAR data and multispectral imagery, 

which brings the benefits of geometric and radiometric data 

attributes, has been employed for the extraction of buildings 

(Awrangjeb et al., 2010; Rottensteiner et al., 2003; Teo and 

Chen, 2004). Also, fusion of LiDAR and multispectral images, 

via the Dempster-Shafer algorithm, has been utilised to detect 

buildings in LiDAR data. This improved the correctness of the 

LiDAR point cloud classification process for small residential 

buildings by up to 20% (Rottensteiner et al., 2007). In 

applications focussing on building extraction, an aim of the 

LiDAR point cloud processing is generally to remove trees. 

However, the separation of buildings and tree points can be 
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complicated, especially when trees are close to buildings, 

potentially with the canopy partially overhanging the building.  

 

Approaches exploiting the complementary nature of 

multispectral imagery and LiDAR data for the extraction of both 

buildings and trees in urban areas have also been reported. For 

example, object-based classification of fused LiDAR data and 

aerial orthoimagery has been adopted for urban thematic 

mapping (Guan et al., 2013), and the extracted vegetation mask 

from the aerial imagery has been utilised to differentiate trees 

from buildings in LiDAR data (Bandyopadhyay et al., 2013). 

Demir and Baltsavias (2010) utilised four different methods for 

the extraction of trees and buildings using aerial images and 

LiDAR data. While building and tree extraction from fused 

imagery and LiDAR data has yielded improved classification 

performance, the process still suffers somewhat from the lack of 

a full incorporation of spectral information. Importantly, the 

performance using fused data is dependent upon the quality of 

the co-registration of the imagery and the LiDAR point cloud.  

 

As distinct from the method proposed in this paper, the 

approaches referred to above neither fully address the data 

misalignment problem nor use fused multispectral image data in 

the point cloud processing procedure. The process proposed 

here centres upon a fusion of multispectral image and LiDAR 

point cloud data to improve point cloud classification quality, 

and consequently to produce tree canopy cover maps. It will be 

illustrated through the example of using co-registered 

WorldView 2 multispectral imagery and LiDAR data covering 

an urban area to improve the quality of LiDAR classification for 

tree canopy cover mapping.    

 

The paper is organised as follows: Section 2 presents the 

proposed method for tree canopy cover mapping. The 

performance of the proposed method is then experimentally 

evaluated and discussed in Section 3, and conclusions follow in 

Section 4. 

 

2. METHOD 

The flow chart shown in Figure 1 presents the proposed method 

for tree canopy cover mapping. It includes three main 

components, namely: data pre-processing, data fusion and 

mapping. 

 

 

 

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of tree canopy cover mapping process. 

2.1 Data Pre-processing 

2.1.1 Calculation of NDVI: Multispectral imagery (4 bands 

of red, green, blue and infrared) can be utilised for the 

extraction of vegetation. The normalised difference vegetation 

index (NDVI) as a vegetation measure is defined as: 
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Here, IR and R are the infrared and red bands of the image, 

respectively. NDVI is used for differentiating the vegetation 

from green man-made objects. Since NDVI calculates the 

normalised difference between the infrared and red bands, it is 

able to compensate the shadow effect of the image. 

 

2.1.2 Classification of LiDAR point cloud: LiDAR point 

cloud classification into ground and non-ground points is 

required to generate a digital elevation model (DEM) from the 

LiDAR data. Various reliable methods for separating ground 

points from non-ground points have been proposed (eg Kobler 

et al., 2007; Kraus and Pfeifer, 1998), and are commonly 

available through commercial software tools.  

 

However, classification of non-ground LiDAR points into 

different classes such as buildings and trees is still a challenging 

task. Geometric characteristics of LiDAR points, such as planar 

and non-planar facets, have been widely used to classify LiDAR 

point clouds. In this method, planar and non-planar objects 

relate to buildings and trees, respectively, and surface variation 

is measured by using principle component analysis (PCA) of the 

surface points (Hoppe et al., 1992; Lalonde et al., 2006). The 

planarity of k-nearest neighbour points xi around a point x0 can 

be defined via the covariance matrix of points. The symmetric 

and positive semi-definite covariance matrix is given as 
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where, x denotes the mean of x. The PCA of matrix C provides 

real eigenvalues λ0≤λ1≤λ2 with corresponding eigenvectors v0 , 

v1 and v2 on an orthogonal basis of R3. The eigenvalue λ0 

measures the variance of xi in v0 direction, and v0 estimates the 

surface normal of xi. A scale-invariant surface variation of the k-

nearest neighbours is given by:  
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Here, l is the measure of planarity and it has a very low value 

(close to zero) for a planar surface because in the planar surface 

λ0<<(λ1 ≈ λ2). Non-planar surfaces, on the other hand, yield 

higher values of l. To correctly extract planar and non-planar 

surfaces, selection of an appropriate threshold Tl is necessary. 

For instance, points with l>Tl can be detected as LiDAR tree 

points. The threshold value is a function of the roughness of 

planar surfaces and the noise in the data. Therefore, it varies 

from one data set to another.  

 

In spite of proven performance of this method in building 

extraction, it may lead to misclassification of tree points due to 

the modifications of tree canopies in urban areas. For example, 

trimming tree canopies due to the overlap with power lines 

modifies tree canopy shape and causes appearance of planar 

Satellite 

image & 

LiDAR   
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surfaces in the tree canopies. This invokes the assumption of 

LiDAR classification criteria that trees have non-planar 

surfaces. Also, large tree canopies may have small planar 

surfaces that can be classified as buildings. 

 

2.2 Data Fusion 

2.3.1 Registration of image to LiDAR: In integration of the 

LiDAR point cloud with imagery, a one-to-one correspondence 

of LiDAR points and image pixels is required. To establish this 

correspondence between LiDAR and imagery data, geometric 

alignment of the data set is necessary and any small   

displacement between the data set significantly decreases the 

quality of integration. 

 

Although multi-sensor data may be georeferenced, residual 

misalignment errors are often present and these errors need to 

be removed through a registration procedure. In order to co-

register imagery to the LiDAR point cloud with sub-pixel 

accuracy, an intensity-based method using local mutual 

information, proposed by Parmehr et al., (2013), is adopted. To 

estimate the transformation between the satellite image and 3D 

LiDAR point cloud, 3D affine transformation was utilised 

(Yamakawa and Fraser, 2004). It is able to model the parallel 

projection of satellite imagery and therefore removes the image 

perspective errors in the registered image.  

 

2.3.2 Fusion of spectral information and LiDAR data: 

Registration of imagery to LiDAR data facilitates enrichment of 

the LiDAR point cloud with spectral information. Therefore, 

every LiDAR point acquires RGB and NDVI values in addition 

to its original information in a process known as point cloud 

colourising. Also, a true orthorectified image can be produced 

using registered imagery and LiDAR data. 

 

Data fusion techniques are mainly adopted for data sets in raster 

format. Rasterising the LiDAR point cloud yields the 

appearance of artefacts. Here, point-based data fusion is 

adopted to maintain the integrity of the point cloud data 

structure for the further processing.  

 

2.3.3 Determination of optimum NDVI threshold: In order to 

utilise fused NDVI and the LiDAR point cloud for the 

separation of trees from buildings, NDVI values need to be 

classified into 0 and 1 for buildings and trees, respectively. The 

quality of classification of NDVI for tree and building points is 

highly dependent on the NDVI threshold value.  

 

In this paper, an automatic threshold selection method proposed 

by Otsu (1979) is deployed because of its performance in 

bimodal data (tree and building classes) clustering, and 

therefore, atmospheric pre-processing of multi-spectral image is 

not required. This method tries to maximise the discrimination 

of tree and building classes using the histogram of NDVI 

values. As a result, classified NDVI values with minimum 

standard deviations in each class can be calculated and these are 

used to improve LiDAR point cloud classification.  

 

2.3 Mapping  

2.3.1 Improvement of point cloud classification: PCA-based 

LiDAR point cloud classification, the most popular LiDAR data 

classification method, may fail in the separation of trees and 

buildings due to possible planar surfaces within the tree 

canopies. For example, tree points can be classified as building 

points. Therefore, the fused NDVI values with LiDAR points 

are employed to improve the classification. Building points with 

high value of NDVI can be considered as tree points. In spite of 

high accuracy in the registration of the two data sets, NDVI is 

unlikely to be 100% reliable in separating trees from buildings. 

That is, NDVI suffers from both the existence of noise in the 

imagery data and the residual errors from the estimation of 

sensor perspective model parameters in the registration 

procedure.  

 

In order to minimise both the effects of noise in NDVI values 

and errors in the registration, a region growing-based method 

has been adopted to take NDVI values into account for 

detection of tree points. The procedure of the proposed 

algorithm is given as follows: 

 

Algorithm 1. The use of NDVI in LiDAR classification. 

 

Input: Classified LiDAR using only LiDAR data 
 

Output: Improved LiDAR classification using integrated 

NDVI 

 

for PiTree in LiDAR points do 

 find k number of Pj neighbouring Pi  

 for PjBuilding in LiDAR points do 

  if NDVI of Pj>Threshold then 

  PjTree 

  end if  

 end for  

end for  

 

2.3.2 Production of tree canopy cover map: Due to the 

discrete nature of LiDAR points, direct extraction of a canopy 

cover map from LiDAR tree points is highly impacted by gaps 

in the LiDAR point cloud. This is more challenging if the 

density of the point cloud is low. Here, point-based and raster-

based closing morphological operators are applied to fill the 

gaps among the LiDAR tree points. The point-based method 

takes k-nearest neighbour points and applies morphological 

closing operator to remove the gaps. While the raster-based 

method needs conversion of discrete LiDAR points into raster 

form, which can yield the appearance of artefacts. As a result, 

the point-based morphological closing operator is able to 

provide more accurate tree canopy cover rather than the 

conventional raster-based morphological closing operator. 

 

After removing gaps in LiDAR tree points, nearest neighbour 

interpolation is utilised to create a raster tree canopy cover map. 

Finally, this map is converted to a vector canopy cover map 

which can be used in GIS software for various applications. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS  

3.1 Data Set  

The data set covered a 3 x 6 km area of Williamstown in 

Melbourne, Australia. It comprised a WorldView 2 satellite 

image with 50 cm ground sample distance (GSD), which was 

captured in 2011. The corresponding LiDAR point cloud of 1-2 

pts/m2 point density, along with corresponding intensity data, 

was acquired in 2009. The pan-sharpened true-colour satellite 

image is shown in Figure 2 along with the NDVI image. The 

corresponding LiDAR DSM and intensity image are shown in 

Figure 3.  
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Figure 2. True colour satellite image (top) and NDVI image 

(bottom). 

 

 
 

 
 

Figure 3. Colour-coded LiDAR DSM (top) and LiDAR 

intensity image (bottom). 

 

3.2 Results and Discussion 

3.2.1 Data fusion: Accurate co-registration of the data sets is 

necessary for data fusion. An intensity-based registration 

method using local mutual information employing 8 well-

distributed templates was adopted to register the WorldView 2 

image to the LiDAR point cloud. To estimate the accuracy of 

the registration, the standard error of unit weight, 0, of the 

least-squares adjustment was used and a 0 value of 1 pixel was 

achieved for the registration. The orthorectified satellite image 

is shown in Figure 4. A small portion of the colourised LiDAR 

point cloud with co-registered colour and NDVI images is 

shown in Figure 5, which indicates the accuracy of the 

registration. As seen in the figure, LiDAR points of vegetation 

including trees and grass have higher values of NDVI. These 

are presented in light grey whereas buildings, with low NDVI 

values, are presented in dark grey.  

 

 
 

Figure 4. Orthorectified satellite image.  

 

 
 

 
 

Figure 5. Colourised LiDAR points with colour (top) and NDVI 

images (bottom) for a small area. 

 

3.2.2 Mapping: The NDVI values associated with the 

LiDAR points are employed in the classification process as 

additional information. This provided more reliable extraction 

of trees from LiDAR data compared to a purely geometric 

classification. The performance of the classification of fused 

LiDAR data with NDVI values is demonstrated through both 

visual and statistical evaluation approaches. In order to apply 

visual evaluation, three examples are given in Figure 6, where 

LiDAR classification results using only LiDAR data, and fused 

LiDAR data with NDVI values, are shown.  

 

The classification results shown in Figure 6 indicate a 

significant misclassification in building and tree points. The tree 

points misclassified as buildings were detected by using the 

fused LiDAR and NDVI, which improved the reliability of tree 

extraction. Although the use of fused LiDAR and NDVI 

increases the robustness of tree extraction, it fails in the 

detection of tree points where trees are not recognised in both 

the LiDAR and imagery data. This occurs, for example, where 

trees appearing in the LiDAR data were cut down and replaced 

by buildings before the satellite image was recorded, as 

exemplified in Figure 7. 
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Ground Buildings Trees 

 

Figure 6. Examples of classified LiDAR points using LiDAR 

data only (left) and fused LiDAR data and NDVI (right). 

 

   
 

Ground Buildings Trees 

 

Figure 7. Colourised LiDAR points (left), classified LiDAR 

points using LiDAR data only (middle) and fused LiDAR data 

and NDVI (right). 

 

The correctness of tree extraction was ascertained manually  and 

statistical evaluation of the results was carried out using the 

well-known completeness and correctness measures proposed 

by Heipke et al. (1997). Table 1 summarises the evaluation for 

extraction of trees using both LiDAR data only and fused 

LiDAR and NDVI. As indicated in the table, use of the 

proposed method improved completeness and correctness of 

tree extraction by 13% and 18%, respectively.  

Table 1. Accuracy analysis of the results. 
 

 LiDAR only Fused data set 

Completeness 85% 98% 

Correctness 76% 94% 

Overall Quality 75% 92% 

 

The main advantage of the proposed method is that it 

complements and extends tree detection based on conventional 

LiDAR point cloud classification methods. Tree detection can 

be further improved by using multiple return information of 

LiDAR points. In this experiment, multiple return data was 

unavailable; therefore, only an improvement of detected tree 

canopies was achieved. In terms of overall quality, superior 

performance in extraction of tree canopies was achieved using 

the proposed method, with the improvement being 17%. This 

highlights the significance of the use of fused LiDAR and 

multispectral imagery for tree canopy extraction.   

 

A small area of the produced tree canopy cover map, before and 

after removal of gaps in the point cloud, is shown in Figure 8. 

Finally, a small area of the produced vector tree canopy cover 

map, overlaying the orthorectified image, is shown in Figure 9.  

 

  
 

Figure 8. Tree canopy cover map before (left) and after (right) 

removal of gaps, tree (white) and non-tree (black). 

 

 
 

Figure 9. Tree canopy cover map. 

 

4. CONCLUSIONS 

The performance of the proposed method for urban tree canopy 

cover mapping using fused multispectral satellite imagery and 

LiDAR data has been demonstrated. The proposed method 

introduces a new approach for the enrichment of LiDAR point 

clouds through co-registration with imagery data. It has been 

observed that the use of LiDAR classification may yield 

misclassification of tree points in urban areas due to the 

complexity of tree canopy shape. Complementary spectral 

information from registered satellite images has been shown to 

afford correction of the misclassification, and consequently lead 

to an improved reliability of LiDAR point cloud classification. 
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Comprehensive testing has shown that the classification 

performance can be enhanced by as much as 17% when using 

the fused data set. While the proposed method improved 

classification quality, it failed in the extraction of some tree 

canopies due to both the low density of the LiDAR data used in 

the experimental testing, and the lack of multiple return LiDAR 

data. Future research work will focus on extraction of additional 

biometric information on urban tree canopies through use of the 

same method applied to higher resolution imagery and LiDAR 

data.  
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