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ABSTRACT: 

 

Tropical forest embraces a large stock of carbon in the global carbon cycle and contributes to the enormous amount of above and 

below ground biomass. The carbon kept in the aboveground living biomass of trees is typically the largest pool and the most 

directly impacted by the anthropogenic factor such as deforestation and forest degradation. However, fewer studies had been 

proposed to model the carbon for tropical rain forest and the quantification still remain uncertainties. A multiple linear regression 

(MLR) is one of the methods to define the relationship between the field inventory measurements and the statistical extracted from 

the remotely sensed data which is LiDAR and WorldView-3 imagery (WV-3). This paper highlight the model development from 

fusion of multispectral WV-3 with the LIDAR metrics to model the carbon estimation of the tropical lowland Dipterocarp forest of 

the study area. The result shown the over segmentation and under segmentation value for this output is 0.19 and 0.11 respecti vely, 

thus D-value for the classification is 0.19 which is 81%. Overall, this study produce a significant correlation coefficient (r) 

between Crown projection area (CPA) and Carbon stocks (CS); height from LiDAR (H_LDR) and Carbon stocks (CS); and Crown 

projection area (CPA) and height from LiDAR (H_LDR) were shown 0.671, 0.709 and 0.549 respectively. The CPA of the 

segmentation found to be representative spatially with higher correlation of relationship between diameter at the breast height 

(DBH) and carbon stocks which is Pearson Correlation p = 0.000 (p < 0.01) with correlation coefficient (r) is 0.909 which shown 

that there a good relationship between carbon and DBH predictors to improve the inventory estimates of carbon using multiple 

linear regression method. The study concluded that the integration of WV-3 imagery with the CHM raster based LiDAR were 

useful in order to quantify the AGB and carbon stocks for a larger sample area of the Lowland Dipterocarp forest. 

 

 

                                                             
*  Corresponding author 

 

1. INTRODUCTION 

1.1 Aboveground Biomass and carbon stocks in relation to 

Climate Change 

Forests are crucial for human life. They provide important 

resources for medicine, foods, habitat for animal and also play 

an essential role in carbon sequestration (Abd Latif et al., 

2011). In the past few centuries, anthropogenic activities and 

natural consequences has increased the concentration of carbon 

dioxide including greenhouse gases (GHG) to the atmosphere 

(FAO, 2015). In year 1992, the United Nation Framework 

Convention on Climate Change (UNFCC) formed a framework 

to decrease the GHG conveyed at the United Nations 

Conference on Environment and Development (UNCED) held 

in Rio de Janeiro (UNFCC, 2015). In 2007, the Bali Climate 

Change Conference under United Nations had adopted Kyoto 

protocol by setting rightfully binding obligation for reduction of 

GHG gases emission (UNFCC, 1998). During this conference, 

an important agreement was reached for the developing 

countries to initiate actions in reducing emissions from 

deforestation and forest degradation (REDD) (Pelletier et al., 

2012). It sets a collective global target of reducing GHG 

emissions by about 5% of the 1990 levels by the first 

commitment period from 2008 to 2012. An amendment made 

to the protocol in Doha, Qatar, on 8 December 2012, known as 

the "Doha Amendment to the Kyoto Protocol", aims to reduce 

GHG emissions by at least 18% below 1990 levels from 2013 

to 2020 during the second commitment period (UNFCC, 2015). 

In continuation to the persistent efforts to combat global 

warming and restrain associated global risks, developing a 

method is increasingly important for monitoring, reporting and 

verification (MRV) mechanism of Reducing Emissions from 

Deforestation and Forest Degradation (REDD+). 

 

In South East Asia generally, due to the economic factors, it 

has been historically proven that a lot of primary forest had 

been cleared for timber extraction and extensive conversion to 

oil palm plantation, and rubber plantation (Hansen et al., 

2013). It is confirmed in a recent forest cover research that 

shows the main cause of forest loss in South East Asia is the 

conversion of the forest to cash crop plantation (Stibig et al., 
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2014). Extensive deforestation and conversion have significant 

impacts from local to regional scales on wide ranges of 

ecosystem offered by forest such as hydrological and habitat 

provision (Blackburn et al., 2014). Consequently, many 

habitats of plants and animal are lost and it impacts the 

biodiversity and the richness of species contained in the 

forests.  

 

1.2 Aboveground Biomass for tropical rain forest. 

Estimating the aboveground biomass of the forest, and 

investigating the carbon stock for the tropical rainforest are not 

easy tasks due to the complex architecture of trees and plants 

that vary in sizes (Mohd Zaki et al., 2015; Mohd Zaki & Latif, 

2016). In order to predict the tree structure parameter using 

integration of field data and remote sensing technology, models 

are normally developed by previous researchers (Babcock et 

al., 2015; Gonzalez et al., 2010; Li et al., 2015; Saeidi et al., 

2014). With the present complex structure of tropical forest, 

there is an enormous uncertainty for carbon stocks estimation. 

(Figure 1). In order to measure the aboveground biomass and 

carbon stocks of an area, the fusion of small footprint discrete 

Light Detection and Ranging (LiDAR) and Very high 

resolution (VHR) WV-3 (30cm spatial resolution) data had 

been used to precisely determine the AGB/C stocks for the 

dominant tree of the study area. Primarily, there are six 

dominant family species which are Dipterocarpaceae, 

Euphorbiaceaea, Sapotaceae, Burseraceae, Moraceae, and 

Lamiaceae. Among them, one of the species is categorized as 

Critically Endangered (CR) by (IUCN, 2014) which is Hopea 

Sulcata  or Merawan Meranti. 

 

Figure 1. Profile diagram of Tropical rainforest (Turner, 1996) 

 

The model conveyed in this study aims at filling the knowledge 

gap by assess modelling the carbon stocks of lowland 

Dipterocarp forest for Malaysia cases. The models for 

aboveground biomass and carbon stocks needed for forest 

biomass with the remote sensing environment, and the option 

that geospatial technology, can be provided in order to support 

effective forest management. Therefore, the objective of this 

study includes (i) investigating the relationship between carbon 

stocks and tree parameter (DBH, tree height, and crown 

diameter), (ii) developing a model of carbon stocks estimation 

using Crown Projection Area (CPA) of the emergent and 

canopy layer of the tree crown and height derived from LIDAR, 

(iii) producing the map of carbon stocks generated from the 

model and (iv) predicting the carbon estimation for the broader 

area of Ayer Hitam Forest Reserve. 

2. MATERIAL AND METHODS 

2.1 Study Area 

The study area is located at Latitude 3°00'24.19"N, Longitude 

101°38'25.24"E in the Ayer Hitam Forest Reserve (AHFR), 

Selangor State, Malaysia (Figure 2). The data collected from 

this lowland Dipterocarp forest of Ayer Hitam Forest Reserve 

chosen for field sampling are owned by University Putra 

Malaysia (UPM) under custodian of Faculty of Forestry. This 

secondary forest comprises of various species that are dominant 

by family tree of Dipterocarpacaea. The altitude that 

comprises in this lowland forest varies from 15 m to 233 m 

height, and the terrain slope undulating up to 34º (Shida et al., 

2014).The average annual rainfall is 2178 mm while the 

average temperature annually is  25.3ºC with maximum 27.7º 

C and minimum 22.9º C (Shida et al., 2014). 

 

 
Figure 2. A map of the location of the study area. Figure 2a.  

Shows the location of Selangor District, at Peninsular 

Malaysia. Fig. 2b shows a location of Ayer Hitam Forest 

Reserve Lowland Dipterocarp forest covered by the WV-3 

satellite image data. 

 

2.2 Airborne Laser Scanning (ALS) Data and WV-3 data 

The ALS survey had been flown using a Eurocopter 120 on 

August 2013. The LiteMapper-Q560 that consist of RIEGL 

LMS-Q560 laser scanner for LiDAR scanner was mounted on 

the aircraft, along with the Hassleblad digital camera 39 

megapixel with 50mm focal length. Table 1 summarizes the 

flight parameter used for capturing LiDAR to achieve point 

density of 11.98 per square units. The projection used is 

WGS1984 UTM Zone 47N. The ALS survey of raw files was 

pre-processed using AeroOffice IGI to analyse the quality of 

IMU and GPS data. Terrasolid tools were used to process the 

ALS dataset (Bentley Systems, 2015) into LIDAR 3D point 

clouds. Super-spectral high resolution of WV-3 (8 bands) 25 

km2 with the projection of UTM47 N and WGS84 datum, have 

been used in this study. The data was obtained on 9th 

December 2014 that consists of 31cm panchromatic band, 4 

bands VNIR colours (blue, green, red and NIR-1) and 4 added 

VNIR colours which are coastal, yellow, red edge and near-

IR2. The spatial resolution was 0.30 m (panchromatic) and 1.2 

m (multispectral). The classification was performed on a pan-

sharpen WV-3 image using hyperspherical colour sharpening 

(HCS) techniques for better visualization. 

 

System LiteMapper-Q560 

Scan angle 45 º 

Pulse frequency 150kHz 

Overlap Side overlap 40,frontal 

overlap 60 
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Swath width 1155m 

Ground Speed 90knot 

Flying heighta 1000m 

Laser scan angle Min 426º max 60 º 

           a Height above ground level 

Table 1. Summary of discrete LiDAR returns and details 

 

2.3 Field sampling plot  

Field sampling had been collected using stratification number 

of sampling, estimated using equation (1). Tree stand sampling 

and forest mensuration data was collected on May 2015 at 2 ha 

rectangular that consists 50 subplots included tree id, species, 

tree ages, stem diameter at breast height (1.3) for live trees 

which have 10 cm and above, sample of tree height (living 

tree), crown base height (the height for 1st branches up to the 

crown), leaf area index and also crown diameter of the 

canopies.  

       (1) 

 

Nplot = Minimum number of sampling plots 

t2 = Value of tree distribution of Nplot 

CV = Coefficient of Variance (%)  

E = Allowable error 

 

Field plot and tree coordinates were located by traversing using 

total station to the plot edge coordinate. Each of coordinate 

were tied by Global Positioning System (GPS) observation of 

Topcon GTS using static observation L1/L2 and L5 bands. The 

positional accuracy of the plot coordinates was generally within 

± 0.5 m of the acceptable tolerance. Single tree locations that 

consist of coordinate, bearing and slope distance were 

measured for each individual tree in relation with the centre 

plots for the future use. In all plots, the tree height of forest 

stands were measured using digital DISTO D5 laser ranger 

while the DBH (1.3 m above ground height) was measured 

using a DBH tape. 

 

2.4 Data Preparation and Analysis 

 
Figure 3. Methodology workflow 

 

This study was performed according to three major phases. 

This comprises of the data collection of the forest stands, data 

acquisition, pre-processing of the data, object based image 

analysis (OBIA), model development, validation of the data 

and finally the statistical analysis. Figure 3 illustrate the 

process involved in this study. 

 

2.4.1 Canopy Height Model generation: Canopy height 

model is commonly calculated in the form of raster 

representation, generate from the highest echo of first return 

laser pulse known that create the digital surface model (DSM) 

subtract with the lowest echo of last return which is known as 

digital terrain model (DTM) (Popescu et al., 2003). 

Normalization is applied to the CHM which gives the absolute 

point of height of tree height on Z-axis, and according to the 

dataset, the maximum tree was 44m. Thus, we drop all the 

LiDAR points that are higher than the value of maximum tree, 

as a noise. The CHM was created using LAStools software in 

ArcGIS plug-in. Figure 4 show the CHM of the tree height in 

3Dimension (3D) view. 

 

 
 

Figure 4. Canopy height model. Figure 4a. The top view of the 

CHM of the study area. Fig. 4b. The 3D view from the top of 

CHM, Fig. 4c. The interpolation of height of the CHM and 

finally Fig. 4d. The perspective view of the CHM of the study 

area. 

 

2.4.2 Estimation Carbon stocks using allometric 

equation: AGB estimation were calculated using allometric 

equations (Chave et al., 2014) (Equation 2) that uses wood 

density, height and DBH as predictors. Wood density is an 

important predictor in the calculation of AGB based on species 

despite of the height and DBH (Fayolle et al., 2013). The 

details of each tree were recorded as: total height ht, bole 

height hb, crown diameter ci, diameter at 1.30m height di and 

species. 

 

….. (2) 

Where AGB = Aboveground biomass (kg / tree), ρ = wood 

density, E = Bioclimatic variables and D = diameter at breast 

height (DBH). 
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On the basis, carbon were converted by applying the 

conversion factor of 0.47 which represents 47% of the dry 

biomass assumed to be carbon for all part of the tree as the 

default value that had been recommend by IPCC (IPCC, 2006). 

 

2.4.3 Crown Projection Area (CPA) delineation and 

validation: There are many approaches in calculating the 

accuracy assessment of segmentation based on literature but 

the most common method used is by visual (Mohd Zaki et al., 

2015)Previous researchers have used different type of 

segmentation validation by overlapping the area that intersect 

between output segmented area with reference area (Möller et 

al.,  2007). Another researcher used  the distance between two 

centroids to assess the segmentation accuracy (Ke, 

Quackenbush, & Im, 2010). On the other hand , Gougeon 

(1995) had developed the segmentation validation using 1:1 

spatial corresponding based on goodness of fit (D). However, 

Clinton et al., (2010) had improve the segmentation validation 

method developed by Ke et al., (2010) and Möller et al., 

(2007) by modifying the relative area metrics by calculating  

Equation (3) and (4) and measuring the goodness of fit by 

using Equation (5). 

 

  ……………… (3) 

 

……………..... (4) 

 

…... (5) 

 

Segmentation accuracy is measured based on distance index 

(D) ranging from 0 to 1, where 0 shows that the classification 

is an ideal match between xi and yi, while 1 is the minimum 

mismatch. In order to evaluate the multi-resolution 

segmentation, this study has applied evaluation approach by 

Clinton et al., (2010) where it measures the segmentation 

goodness measures. 

 

2.4.4 Statistical analysis: The correlation between CS 

stocks, height, DBH and CPA were analysed using Pearson’s 

correlation as well as multiple linear regression model. 

Bootstrap sampling was executed in order to account for the 

small value of tree stands. The statistical analysis is proceeded 

by performed by calculating statistical parameter such as 

residual R2, adjusted R2, Root Mean Square Error (RMSE) 

(Equation 7), segmentation validation and height validation. 

The multi-collinearity test also had been done in order to avoid 

any collinearity problem between variables, with a tolerance 

cut of value of variance inflation factor (VIF) should be less 

than 10 (O’Brien et al., 2007) (Equation 6). 

 

 ….. (6) 

 

Where   is the squared multiple correlation of the variables 

of jth explanatory variable in the regression model (Equation 

6). During the classification of the segmentation of the 

individual tree, one to one matching of reference and 

segmentation tree crowns was used for developing the model. 

Then, the model were validated with 30% of field sampling 

data out of 911 number of tree stands that had been measured.  

 

 …….. (7) 

 

Where n is the number of samples, yi is the calculated value of 

carbon, is the predicted carbon by model of the response 

variables. 

3. ANALYSIS AND DISCUSSION 

The analysis of this research comprises of the description of 

studies, normality, and correlation analysis. The following 

paragraphs will explain the results of these analyses. 

 

3.1 Descriptive statistics 

Overall, the amount of tree sampling of the whole study area at 

Ayer Hitam Forest Reserve was 911 trees collected from 50 

subplots within 2 ha plots. The accuracy of GPS observation at 

the base station was 3 mm for horizontal (x and y) and 5mm 

for vertical (z) plot. In total, 911 of tree had been measured 

from the observation where six dominant genuses had been 

identified: Dipterocarpaceae, Euphorbiaceaea, Burseraceae, 

Sapotaceae, Moraceae, Rhizophoraceae and Rubiaceae. 

Dominant species nominated by Endospermun diadenum, 

Hopea Sulcata, Shorea Macroptera and Dipterocarpus 

Verucosus. In order to ensure representative, 183 of tree were 

randomly selected in each subplot, while the other 62 trees 

(30%) were used as a reference (Figure 5). 

 

 

   
 

Figure 5. Box plot of data collection from field data (DBH, 

height, crown diameter and bole height). Fig. 5a. Show the 

boxplot of DBH of the tree stands, Fig. 5b. The height of the 

tree, Fig. 5c. The crown diameter of the tree stands and Fig. 

4d. The bole height which is the height from of the first 

branch. 

 

3.2 Normality test for model development 

The selection predictor variables had analysed the normality 

test used for the model development. The result represents the 

distribution of DBH, height from field, height from LiDAR and 

a.) b.) 

c.) d.) 
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crown projection area derived from the fusion of LiDAR and 

multispectral WV-3. 

 

 Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

DBH 0.048 183 0.200 0.984 183 0.041 

H_Fiel

d 

0.073 183 0.018 0.983 183 0.026 

H_LD

R 

0.053 183 0.200 0.985 183 0.052 

CPA 0.058 183 0.200 0.984 183 0.038 

*.This is a lower bound of true significance 

a. Liliefors Significance Correction 

 

Table 2. Normality test for model development. 

 

Based on the finding, this shows the output of the Kolmogorov-

Smirnov and the ShapiroWilk tests for the distribution of 

DBH, height (field), height (LiDAR), and CPA. For both test, 

p-value was nearly normal distributed (P > 0.01) (Table 2). 

The log transformation had been applied to make sure that the 

data is normally distributed for the all dependent variables thus 

to make a perfectly linear regression (Piaw, 2014). 

 

3.3 Validation of LiDAR derived height 

With regards to the analysis, the highest positive r value was 

recorded for height LiDAR versus height field which is 0.995 

(Figure 6) which shows that there is a strong correlation 

between height LiDAR and height field. Besides, there is no 

significant difference (p > 0.01) between height measured from 

field and height derived from LiDAR.  However, there is a 

strong correlation between height measured from field and 

height derived from LiDAR. Table 3 and Table 4 summarize 

the output result of the compare means between heights 

LiDAR versus height field of 245 sample of tree. 

 

 
Figure 6. The relationship between tree height from field 

(Ht_m) and tree height derived from LiDAR (Ht_LIDAR). 

 

 

 

Table 3. Summary of statistical –Tree height from field and 

LiDAR data 

 

Correlation of coefficient 0.991 

R2 Linear 0.982 

Adjusted R2 0.982 

Standard Error 0.699 

RMSE 0.486 

Intercept 0.739 

Number of sample 245 

 

Table 4. Overall summary of fit 

 

3.4 Accuracy assessment of segmentation output 

Accuracy assessment of the tree crown segmentation had been 

applied in two techniques, which is i.) By using techniques 1:1 

matching of the references and segmentation polygon, ii.) 

Quantify the goodness of fit (D) which represents the ideal 

segmentation. Based on Table 5, it is shown that the average 

accuracy of the segmentation is 79.5%. Out of 288 manually 

delineated of the crown, only 266 were matched 1:1 (78% 

match). The over segmentation and under segmentation value 

for this output is 0.19 and 0.11 respectively ,thus D-value for 

the classification is 0.19 which is 81% .The result shows that 

the segmentation output are acceptable for further analysis. 

(Figure 7). 

 

Table 

Head 

Accuracy Segmentation 

Total 

Reference 

Polygon 

Total 1:1 

match 

OS US D 

1:1 288 266    

Goodness 

of fit 

  0.19 0.11 0.19 

Total 

accuracy 

 78%   81% 

(OS = over segmentation, US = under segmentation and D = 

Goodness of fit) 

 

Table 5. Accuracy assessment of OBIA output 

 

 
Figure 7. The segmented (Red colour) and Reference (Yellow) 

polygon 

Test F P value t df 

Pearson’s 

correlation 

12963.067 0.052 -1.950 244 

T-Test 0.011 0.918 -1.041 488 
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3.5 Correlation analysis –Pearson correlation 

In an effort to see the relationship between these variables, for 

example, between DBH and height LiDAR, height field and 

CPA, Pearson correlation had been done to measure the 

correlation between independent variables of carbon 

estimation. 

 

Variable DBH H_LDR CPA CS 

DBH        PC 

               Sig. 

             N 

1 

 

183 

0.763** 

0.000 

183 

0.718** 

0.000 

183 

0.909** 

0.000 

183 

H_LDR   PC 

               Sig. 

             N 

0.763** 

0.000 

183 

1 

 

183 

0.549** 

0.000 

183 

0.709** 

0.000 

183 

CPA         PC 

               Sig. 

             N 

0.718** 

0.000 

183 

0.549** 

0.000 

183 

1 

 

183 

0.671 

0.000 

183 

H_Field    PC  

               Sig.  

                N   

0.763** 

0.000 

183 

0.995** 

0.000 

183 

0.556** 

0.000 

183 

1 

0.000 

183 

**Correlation is significant at the 0.01 level (2-tailed) 

(PC= Pearson Correlation, N = number of samples, H_LDR = 

tree height from LiDAR, H_Field = tree height from field, CPA 

= crown projection area, .Sig = significant level) 

 

Table 6. Pearson correlation of the DBH, H_LDR and CPA. 

 

From the analysis, the highest positive r value was recorded for 

H_LDR versus H_Field which is 0.995 which shows that there 

is a strong correlation between height LiDAR and height field 

(P < 0.01). As a result, there is strong evidence that suggests 

that this correlation is significant. The positive correlation 

between Ht_LiDAR and DBH showed in Table 6, which 

depicted that the high correlation between this two variables 

(0.763) with (P < 0.01). The results show that there is a high 

correlation between height LiDAR and DBH.  

 

Pearson correlation analysis of the independent variables is 

used to calculate the carbon stocks where carbon as the 

dependent variable. High positive relationship between DBH 

and carbon stocks was found with (P < 0.01) (Table 6). The 

data yielded by this study provides strong evidence. Multiple 

regression model was developed using LiDAR derived height 

and CPA as independent variable and carbon as a dependent 

predictors. (See Table 7, Table 8 and Table 9). 

 

a. Dependent Variables: Carbon Stocks 

b. Predictors: (Constant), H_LDR and CPA 

 

Table 7. Model summary 

 

 

 

 

 

 

 

Model Sum of 

Squares 

df Mean 

Square 

F Sig. 

Regression 17245373. 2 8622686. 10

0 

0.00b 

Residual 15430193. 180 85723.2   

Total 32675567. 182    

a. Dependent Variables: Carbon Stocks 

b. Predictors: (Constant), Ht_LiDAR and CPA 

 

Table 8. ANOVAa 

 

 

Model 

Unstd. Coef Std. 

Coef. 

 

   

     t 

 

        

Sig. B S.E Beta 

1(Constant) 

         CPA 

     H_LDR 

-2971.429 

630.330 

1847.432 

297.2 

107.2 

230.2 

 

0.352 

0.480 

-11.55 

5.879 

8.024 

0.00 

0.00 

0.00 

a. Dependent Variables: Carbon stocks. 

 

Table 9. Coefficientsa  

 

3.6 The multiple linear regression analysis 

Based on the regression, there was a negative linear 

relationship between predictor and output variables, β = -

2971.429, ρ = 0.000 (p < 0.01). Multi-collinearity between the 

two variables had been checked by applying the variance 

inflation factor (VIF) test where the result shows that there was 

no sign of multi-collinearity found between these two variables 

(VIF= 1.363). By using multiple regression model to predict 

the carbon stocks estimation over the height derived from 

LiDAR and crown projection area was a negative predictors, β 

= -2971.429, p = 0.000 (p < 0.01) disputed that every unit 

increase of carbon stocks, the height from LiDAR and CPA 

were decreased by -2971.429m. Thus, the relationship of 

carbon stocks can be written as the following equations: 

 

… (7) 

 

.......(8) 

 

The coefficient demonstrated in Table 9 represents the effect 

size, beta = 0.726. Moreover, the result shows that the Durbin-

Watson value is 1.502 which exemplifies that autocorrelation 

is within the tolerance where the Analysis of variance 

(ANOVA) test indicates that the overall model are significant, 

p = 0.000 (p < 0.01). 

 

3.7 Validation of multiple linear regression model 

Pearson’s product- model of tree crown was validated using a 

random selection of 30% of the independent dataset which is in 

this case 62 trees from various types of tree height and species. 

The resulting coefficient of determination between carbon 

predicted and the carbon observed was 0.6737 (R2 = 0.6737) 

(Figure 8). 

R2 

 

Adj.R2 S.E 

 

Change Statistics Durbin 

Watson 

F  Sig F  

0.726a 0.528 0.523 100.587 0.000 1.502 
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Figure 8. Scatter plot of multiple regression model validation 

 

3.8 Carbon Stocks Map  

In brief, the range of the predicted carbon is around 800 

kg/trees to 7634 kg/tree where it can be concluded that the 

higher the CPA and height value, the greater the amount of 

carbon it would make. Figure 9 shows that the darker colour of 

the CPA which indicates the highest value of carbon, while the 

white colour of the background of the map is the gap of each 

individual tree. The carbon stocks map of the study area is 

shown in (Figure 9).  

 

 
Figure 9. Carbon stocks of the study area 

 

(Karna (2013) found out that a significant correlation 

coefficient (r) between (CPA – Carbon), (height – Carbon), 

and (CPA – Height) is 0.73, 0.76 and 0.63 respectively. 

Similar to this relationship, this study produced 0.671, 0.709 

and 0.549 for the type of Lowland Dipterocarp forest which 

mainly focuses on tropical rain forest. However, the highest 

correlation exemplified by the relationship between DBH and 

carbon stocks which is Pearson Correlation (0.909) shows that 

there is a good relationship between carbon and DBH 

predictors to improve the inventory estimation of carbon using 

multiple linear regression method. 

 

4. CONCLUSION AND RECOMMENDATION 

This paper presents a model development from fusion of CHM 

derived from LiDAR and WorldView-3 imagery using the 

MLR-based methodology to estimates the forest biomass from 

remote sensing technology. The combination of LiDAR and 

Very High Resolution Multispectral Imagery, WV-3 has 

demonstrated a promising capability to model the aboveground 

biomass and carbon stocks needed for forest biomass 

estimation for lowland Dipterocarp forest. Results indicate that 

the relationship between carbon stocks with LiDAR and CPA 

obtained in this study are similar in terms of correlation 

produce and the levels of variances with other studies that have 

been done previously (Karna et al., 2013). The output MLR 

shown that there is non-linear equation of the predicted model 

where the natural logarithmic had been used and get the better 

prediction. Future works should address the gaps that did not 

cover in this paper. The primary limitation of the methods is 

the robust of the complexity intermingles of the tropical forest 

itself and the improvement of the CPA delineation should be 

address. Finally, the synergistic use of the non-parametric test 

comparing with this traditional regression analysis, MLR will 

be the future works in order to estimate the biomass and 

carbon stocks of the tropical rainforest. 
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