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ABSTRACT:  

Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral 

information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause 

information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature 

information around the central pixel within a neighbourhood window, the unsupervised convolutional sparse auto-encoder (UCSAE) 

with window-in-window selection strategy is proposed in this paper. Window-in-window selection strategy selects the sub-window 

spatial-spectral information for the spatial-spectral feature learning and extraction with the sparse auto-encoder (SAE). Convolution 

mechanism is applied after the SAE feature extraction stage with the SAE features upon the larger outer window. The UCSAE 

algorithm was validated by two common hyperspectral imagery (HSI) datasets—Pavia University dataset and the Kennedy Space 

Centre (KSC) dataset, which shows an improvement over the traditional hyperspectral spatial-spectral classification methods. 
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1. INTRODUCTION 

During the past 30 years, the airborne or space-borne imaging 

spectrometer has been rapidly developed, which helps gather a 

huge amount of hyperspectral imagery data with hundreds of 

bands covering a broad spectrum of wavelength range. It is 

noted that the hyperspectral imagery contains rich spectral 

information and has proven to be effective for discriminating 

the ground objects. Meanwhile, with the development of the 

sensors, the hyperspectral imaging techniques can also provide 

abundant detail and structural spatial information (Grahn et al., 

2007, Camps-Valls et al., 2014, Landgrebe et al., 2003, Zhao et 

al., 2015a, Zhao et al., 2015b). The high spectral resolution and 

high spatial resolution properties enable the hyperspectral 

imagery data to become very useful and widely applicable in 

agriculture, surveillance, astronomy, mineralogy, and 

environment science areas (Chang et al., 2013, Fauvel et al., 

2013, Feng et al., 2016, Jiao et al., 2015, Zhong et al., 2012). 

Among the various application areas, the most common 

utilization of the hyperspectral imagery data is the ground 

object classification.  

The traditional ground object classification tasks from the 

hyperspectral imagery data are mainly solved by exhaustively 

considering the spectral signatures. However, current 

hyperspectral imagery data can provide both rich spectral 

information and finer spatial information, which increases the 

possibilities of more accurately discriminating the ground 

objects. Therefore, finding an effective manner of efficiently 

exploiting both the spectral information and the neighbourhood 

spatial information around the central pixel from the 

hyperspectral imagery is of great significance (Zhou et al., 2015, 

Ji et al., 2014, Kang et al., 2014, Jimenez et al., 2005). Various 

spatial-spectral feature classification methods have been 

proposed, including the neighbourhood window opening 

operations (Chen et al., 2014, Plaza et al., 2009), morphological 

operations (Fauvel et al, 2008), and segmentation approaches. 

All these spatial-spectral feature classification methods focus on 

combining the spectral information vectors and the spatial 

information vectors together into a long vector, and the 

common characteristics of these algorithms can be categorized 

as spatially constrained approaches. These methods mainly 

consider the spectral information and the spatial information in 

a separate manner, and cause the spectral and spatial 

information loss and connection deficiency. When given a fixed 

larger spatial neighbourhood window around the central pixel, 

how to exhaustively extract the information within the larger 

outer window is a critical problem to be solved. In recent years, 

Deep learning (Hinton and Salakhutdinov, 2006, Hinon et al., 

2006, Bengio et al., 2007) has developed very fast and achieved 

great success due to its powerful feature extraction and feature 

representation ability. Deep learning consists of two types of 

feature extraction and feature representation models—

supervised feature learning models and unsupervised feature 

learning models. Among the unsupervised feature learning 

models, sparse auto-encoder (SAE) (Ng et al., 2010) is a kind of 

efficient feature extraction method, which adopts the 

reconstruction-oriented feature learning manner. Finding an 

efficient feature representation approach is at the core of the 

hyperspectral imagery spatial-spectral feature classification task. 

To better represent the spatial-spectral information from the 

hyperspectral imagery, SAE is exploited in this paper due to its 

specific feature extraction ability and automatic and integrated 

spatial and spectral information representation manner.  

To cooperate with the high spectral and finer spatial 

properties from the hyperspectral imagery, SAE is exploited 

with the window-in-window selection strategy to better 
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represent the spatial and spectral information around the central 

pixel. Similar to the heterogeneous property consideration of 

the conventional neighbourhood window opening operation, 

window-in-window selection strategy works by first selecting a 

larger outer window around the central pixel and then by 

stochastically selecting the sub-windows within this larger outer 

window. SAE is utilized for extracting the features from these 

sub-windows, which helps produce a set of representative SAE 

features. Throughout the SAE feature extraction, a deeper-level 

intrinsic features within a certain local spatial window are 

extracted.  

After the SAE feature extraction, the SAE features contain 

abundant orientation and structural information. To fully utilize 

the SAE features upon the larger outer windows, an effective 

convolution mechanism is utilized. After convolution, the 

convolved feature maps are the response sets containing each of 

the SAE feature responding to the larger outer window, which 

conserve abundant detail and structural information for the 

larger outer windows. Throughout the UCSAE algorithm 

classification process, a deeper-level of spatial-spectral feature 

classification for the hyperspectral imagery is performed. 

In this paper, the UCSAE has two specific contributions. 

Firstly, this paper first adopts the window-in-window local 

spatial-spectral information selection strategy, which facilities 

the local SAE feature extraction on the sub-windows. Secondly, 

this paper first applies the convolution mechanism to represent 

the spatial-spectral features for the hyperspectral imager 

classification task, which generates the feature responses of the 

SAE features upon the lager outer windows and helps conserve 

the information responses to the maximum extent. 

The rest of this paper is organized as follows. Section II 

mainly introduces the deep learning related works. Section III 

explicitly explains the main hyperspectral spatial-spectral 

feature classification algorithm--the unsupervised convolutional 

sparse auto-encoder (UCSAE). In section IV, the experimental 

results conducted with the UCSAE algorithm on two widely 

utilized hyperspectral imagery datasets are presented and the 

experimental analysis is given in detail. The final section 

concludes the proposed algorithm for hyperspectral imagery 

spatial-spectral classification.  

 

2. DEEP LEARNIING RELATED WORKS 

Deep learning (Hinton and Salakhutdinov, 2006, Hinton et al., 

2006, Begnio et al., 2007, Ng et al., 2010, Simard et al., 2003, 

Krizhevsky et al., 2012, Bengio et al., 2009, Boureau et al., 

2010, LeCun et al., 1998) is another development of the 

machine learning areas by solving the limited feature expression 

ability from the conventional machine learning techniques with 

more deep layers to automatically extract the features from the 

original images. According to the paper (LeCun et al.,2015), 

deep learning allows computational models composed of 

multiple processing layers to learn representations of data with 

multiple levels of abstraction, meaning that deep learning 

discovers the intricate structures in large datasets by utilizing 

the backpropagation algorithm to indicate how a machine 

should change it internal parameters.  

It is noted that deep learning can be divided into two 

categories—supervised feature learning and unsupervised 

feature learning. Supervised feature learning is the most 

common form of machine learning, whether the network 

structure is deep or not. Supervised feature learning tries to 

compute an objective function that measures the error between 

the output scores and the desired pattern of scores. Through 

modifying the internal adjustable parameters with 

backpropagation algorithm and the chain rules, the error of the 

supervised feature learning is reduced. For supervised feature 

learning, these adjustable parameters usually are the network 

weights to be adjusted. The difference between the supervised 

feature learning and the unsupervised feature learning is that 

supervised feature learning optimizes the network weights by 

considering the supervised label information into the network, 

while unsupervised feature learning creates layers of feature 

detectors without requiring labelled data. The objective of 

unsupervised feature learning is that each layer of the feature 

detectors was to be able to reconstruct or model the activities of 

feature detectors in the layer below. However, both the 

supervised feature learning and the unsupervised feature 

learning can be regarded as constructed from multiple simple 

building blocks, which can transform the low-level feature 

representation into the high-level feature representation. In 

recent years, various deep learning models were studied, 

including convolutional neural networks (CNN) (Simard et al., 

2003), deep belief networks (DBN) (Hinton et al., 2006, Bengio 

et al., 2007), auto-encoder (AE) (Hinton and Salakhutdinov, 

2006), denoising auto-encoder (DAE) (Vincent et al., 2008a, 

Vincent et al., 2010b), and the reconstruction-oriented sparse 

auto-encoder (SAE).  

SAE is an efficient unsupervised reconstruction-oriented 

feature extraction model, which optimizes the network weights 

by minimizing the network reconstruction error between the 

input data and the reconstructed data. The reason why the SAE 

can realize the goal of data reconstruction is that the hidden 

units of the SAE conserves the useful information of the input 

data to the maximum extent. To keep the information of the 

hidden units to the maximum extent is to extract efficient 

network weights to map the input data into the most valuable 

hidden units. This process is realized by minimizing the 

network reconstruction error with L-BFGS algorithm. The 

sparse property of the SAE is performed by adding the sparse 

constraint on the hidden units with Kullback-Leibler (KL) 

divergence, where the sparsity is measured between the given 

sparse value and the average value of the hidden unit activation. 

When these two values are close to the threshold, the value of 

the KL-divergence is set to 1, otherwise to 0. For SAE, when 

the input data of the SAE are local patches, the network can 

extract the representative local features. SAE also has an 

advantage of taking the whole dimensional information into 

consideration to reduce the information loss.  

 

3. HYPERSPECTRAL IMAGERY SPATIAL-

SPECTRAL CLASSIFICATION BASED ON THE 

UNSUPERVISED CONVOLUTIONAL SPARSE AUTO-

ENCODER  

In this paper, the UCSAE algorithm has been proposed for 

the hyperspectral imagery spatial-spectral feature classification. 

Based on the accurate spectral signatures and abundant finer 

spatial information, how to adequately utilize the spectral and 

spatial information of the hyperspectral imagery is critical. 

Conventional spatial-spectral classification models are proposed 

by considering the spatial and spectral information separately or 

in a direct combination manner. Given a fixed window around 

the central pixel, in order to solve the connection deficiency 

problem between the spatial information and the spectral 

information, the SAE model in deep learning research fields 

was introduced in this paper with the window-in-window 

selection strategy. By learning the features within the larger 

outer window, the local features of the larger outer window can 

be obtained. To better represent the larger outer window with 

the SAE features, the convolution mechanism is introduced. 

The unsupervised convolutional sparse auto-encoder (UCSAE) 
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introduced in this paper can be separated into three stages: 1) 

the SAE feature extraction with the window-in-window spatial-

spectral information selection strategy; 2) spatial-spectral 

feature representation based on the convolution mechanism; and 

3) spatial-spectral feature softmax classification. The follow 

part will show how each stage works. 

 

3.1 SAE Feature Extraction with the Window-in-Window 

Spatial-Spectral Information Selection Strategy 

The window-in-window spatial-spectral information selection 

strategy works in two steps. In the first step, the large outer 

spatial neighbourhood window around the central pixel was 

selected both considering the spectral information and the 

spatial neighbourhood information from the hyperspectral 

imagery. In the second step, the sub-windows needed are 

stochastically sampled within this larger outer window to 

extract the features via SAE. Given the larger outer window size 

around the central pixel is w w , the size of the sub-window 

is
1 1w w , the band number of the hyperspectral imagery is N , 

and the number of the sub-windows is M , then the direct 

concatenated spatial-spectral information vector 

is
1 1w w N M   . To extract the features from the sub-

windows around the central pixel from the hyperspectral 

imagery, the concatenated spatial-spectral information 

vector
1 1w w N M   will be imported into the sparse auto-

encoder.  

SAE is a reconstruction-oriented feature extraction model, 

which mines the intrinsic features of the sub-windows from the 

larger outer windows. Suppose that the sub-window sets 

1 1X w w N M     and NX R is imported into the SAE, the 

SAE feature extraction procedure can be separated into two 

stages: encoding and decoding. During the encoding stage, the 

input data are mapped into the hidden units; the decoding stage 

maps the hidden units into the reconstructed data. The hidden 

unit representation are shown in (1) and (2).  

1 1( ) ( )a f x g W x b     (1) 

1
( )

1 exp( )
g x

x


 
  (2) 

During the decoding stage, the hidden unit representation is 

mapped into the reconstructed data in (3).  

2 2( )z g W a b   (3) 

In equation (1) and (3), 1

K NW R   and 2

N KW R  are the 

encoding weight and the decoding weight respectively; 

1

Kb R and 2

Nb R are the biases respectively. For SAE, the 

network realizes the reconstruction process with tied 

weights
1 2

TW W . After the SAE feature extraction procedure, 

the features are transformed through : N Kf R R , where K is 

equal to the hidden unit number. 

To better extract the features from the local sub-windows, the 

cost function of SAE is shown in (4), which is optimized with 

L-BFGS algorithm.  

11
2

( ) 2

1 1 1 1 1

1
ˆ( , ) ( ) ( || )

2 2

l l ln s sm s
i i l

sparse ji j

i l i j j

J X Z x z W KL


  


    

       (4) 

In (4), X and Z represent the input data and the reconstructed 

data, respectively. m is the number of samples for training; and 

  represents the weight decay parameter;   represents the 

sparse constraint coefficient. The third term in (4) represents the 

sparse term, where the sparse constraint is added with the KL 

divergence. Figure 1 shows the network structure of the sparse 

auto-encoder. 

 

 
Figure 1 The network structure of the sparse auto-encoder 

 

3.2 Spatial-Spectral Feature Representation Based on the 

Convolution Mechanism 

After the SAE feature extraction, the SAE features contain 

abundant representative detail and structural information of the 

sub-windows from all of the pixels’ larger outer windows. The 

SAE features are the representative features for all the 

categories. According to the convolution response mechanism, 

the convolved feature maps can fully represent the larger outer 

windows by calculating each of the SAE features with the larger 

outer window. Suppose that the size of the larger outer window 

is w w with N bands, the size of the SAE features is 

1 1w w with K channels. After convolution, the convolved 

feature map size for each of the larger outer window around the 

central pixel is 
1 1( 1) ( 1)w w w w K      with the stride 1. 

After the convolution stage, the max pooling (Scherer et al., 

2010) is added on the convolved feature maps.  

 

3.3 Spatial-Spectral Feature Softmax Classification 

After the convolution stage and the pooling stage, the pooled 

feature maps will be imported into the softmax classifier, where 

the size of the pooled feature maps is 

1 1(( 1) / ) (( 1) / )w w s w w s K       with pooling size s . To 

classify each pixel, the softmax regression classifier is shown in 

(5). 
( )
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( ) 2
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1

1
( ) ( )log
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l
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ijk x
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 (5) 

In this chapter, the detailed procedures of how the UCSAE 

works step by step are introduced. To have a direct recognition 

of the UCSAE working mechanism, Figure 2 shows the detailed 

flowchart of the UCSAE algorithm. 

 
Figure 2 The flowchart of UCSAE 
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4. EXPERIMENTS AND ANALYSIS 

In this section, we validated the proposed algorithm--UCSAE 

with two popular hyperspectral imagery datasets and presented 

the experimental results which demonstrates the benefits of 

UCSAE over the traditional hyperspectral imagery spatial-

spectral feature classification methods—RBF-SVM (Chen et al., 

2014), RBF-EMP (Fauvel et al., 2008), and SAE-LR (Chen et 

al., 2014). To evaluate the classification results by the UCSAE, 

the qualitative and quantitative evaluations are made, where the 

quantitative evaluation is measured by the overall classification 

(OA), average accuracy (AA), and the kappa coefficient 

criterions.  

 

4.1 Experimental Hyperspectral Data Set Description 

In the experimental part, two hyperspectral remote sensing 

imagery datasets were utilized to measure the UCSAE spatial-

spectral classification performance. The first hyperspectral 

imagery dataset is the Pavia University dataset, and the second 

is the Kennedy Space Centre (KSC) dataset. The Pavia 

University dataset was gathered by the Reflective Optics System 

Imaging Spectrometer (ROSIS-3) sensor over the city of Pavia, 

Italy, with 610 340   pixels. This dataset contains 115 bands in 

the 0.43 0.86 m   range of the electromagnetic spectrum, with 

a spatial resolution of 1.3 m per pixel. After removing some 

bands contaminated by noise, the remaining 103 bands were 

utilized for the final classification. For the Pavia University 

dataset, the 50% of the ground truth samples were stochastically 

selected as the training samples and the remaining samples were 

set as the test samples. The Pavia University image and the 

ground truth samples are shown in Figure 3, respectively. The 

training and testing sample settings were listed in Table.1. For 

the Pavia University dataset, the large outer window size is set 

as 7 7  and the size of the sub-windows is set as 4 4 . 

 

  

Asphalt

Meadows

Gravel

Trees

Metal_sheets

Bare_soil

Bitumen

Bricks

Shadows
 

(a) (b)  

Figure 3 (a) The Pavia University image. (b) The ground-truth 

samples for the Pavia University image. 

 

Class 

number 

Class 

name 

Training 

samples 

Test 

samples 

1 Asphalt 3328 3327 

2 Meadows 9337 9336 

3 Gravel 1062 1061 

4 Trees 1544 1544 

5 Metal_sheets 685 684 

6 Bare_soil 2527 2526 

7 Bitumen 677 677 

8 Bricks 1853 1853 

9 Shadows 487 492 

 Overall 21500 21500 

Table 1 Land-cover classes and the number of pixels for the 

Pavia University dataset 

 

The second hyperspectral imagery dataset utilized for the 

experiment was the Kennedy Space Centre (KSC) dataset. The 

KSC dataset was acquired by the National Aeronautics and 

Space Administration (NASA) Airborne Visible/Infrared 

Imaging Spectrometer instrument (AVIRIS), which covers the 

electromagnetic spectrum range of 0.4 2.5 m with 224 bands, 

and consists of 512 614 pixels with a spatial resolution of 18 

m. By removing the water absorption and low signal-to-noise 

ratio (SNR) bands, 176 bands were remained for the UCSAE 

spatial-spectral feature classification. For the KSC dataset, 50% 

of the training samples were set as the training samples, and the 

remaining samples were set as the test samples. The KSC image 

and the ground truth are shown in Figure 4. The training and 

testing sample setting are listed in Table 2. For the KSC dataset, 

the large outer window size is set as 7 7  and the size of the 

sub-windows is set as 4 4 .  

 

 

Scrub
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CP/Oak

Slash pine

Oak/Broadleaf

Hardwood swamp

Graminoid marsh

Spartina marsh

Catiail marsh

Salt marsh

Mud flats

Water  

Figure 4 The KSC image and the corresponding ground-

truth samples. 

 
Class 

number 

Class 

name 

Training 

samples 

Test 

samples 

1 Scrub 395 395 

2 Willow swamp 136 136 

3 CP hammock 142 143 

4 CP/Oak 140 141 

5 Slash pine 95 95 

6 Oak/Broadleaf 129 129 

7 Hardwood swamp 67 67 

8 Graminoid marsh 230 230 

9 Spartina marsh 274 275 

10 Cattail marsh 216 217 

11 Salt marsh 224 224 

12 Mud flats 266 266 

13 Water 486 482 

 Overall 2800 2800 

Table 2 Land-cover classes and the number of pixels for the 

KSC dataset 
 

4.2 Qualitative Evaluation of the UCSAE Based Spatial-

Spectral Classification Results 

For the Pavia University dataset, compared with RBF-SVM, 

EMP-SVM, and SAE-LR classification methods, the qualitative 

evaluation was shown in Figure 5.  
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(a) RBF-SVM (b) EMP-RBF 

  
(c) SAE-LR (d) UCSAE 

Figure 5 The classification maps for the different spatial-

spectral classification methods.  

 

From the classification maps in Figure 5, it can be seen that 

the classification results by UCSAE algorithm has a better 

classification result for the class of Bitumen. Comparing (a), (b), 

(c) and (d), it can be seen that (d) has better detail conservation 

in the overall view.  

 

  
(a) RBF-SVM (b) EMP-RBF 

  
(c) SAE-LR (d) UCSAE 

Figure 6 The classification maps for the different spatial-

spectral classification methods. 
For the KSC dataset, compared with RBF-SVM, EMP-SVM, 

and SAE-LR classification methods, the qualitative evaluation 

was shown in Figure 6. From Figure 6, it can be seen that the 

classes of Willow swamp, CP/Oak, Slash pine, and 

Oak/Broadleaf achieve a better detail classification results, 

while the classes of Spartina marsh by RBF-SVM, EMP-RBF, 

SAE-LR, and UCSAE show a similar visual effect. 

 

4.3 Quantitative Evaluation of the UCSAE Based Spatial-

Spectral Classification Results 

To quantitative evaluate the classification results in Figure 5 

and Figure 6 for the Pavia University dataset and the KSC 

dataset, respectively, the quantitative evaluations of the Pavia 

University dataset and the KSC dataset are shown in Table 3 

and Table 4, respectively.  

 

Methods RBF-

SVM 

EMP-

RBF 

SAE-LR UCSAE 

A
cc

u
ra

cy
 

Asphalt 0.9919 0.9907 0.9763 0.9901 

Meadows 0.9989 0.9988 0.9885 0.9943 

Gravel 0.9359 0.9303 0.9727 0.9642 

Trees 0.9786 0.9773 0.9832 0.9845 

Metal_ 

sheets 

1.0000 1.0000 1.0000 1.0000 

Bare_ 

soil 

0.8880 0.8492 0.9272 0.9394 

Bitumen 0.9705 0.9631 0.9380 0.9542 

Bricks 0.9795 0.9773 0.9288 0.9752 

Shadows 0.9980 0.9980 0.9939 0.9898 

OA 0.9777 0.9721 0.9720 0.9824 

AA 0.9712 0.9650 0.9676 0.9769 

Kappa 0.9707 0.9634 0.9634 0.9766 

Table 3 Different spatial-spectral classification accuracy 

comparisons on the Pavia University dataset 

 

From Table 3, it can be seen that the UCSAE algorithm 

achieves a 98.24% OA better than the traditional spatial-

spectral classification methods. From Table 3, it can be seen 

that the classes of Trees, and Bare_soil obtain a better producer 

classification accuracy than the RBF-SVM, EMP-RBF and 

SAE-LR algorithms, while the classes of Gravel obtains a better 

producer classification accuracy by the UCSAE than the RBF-

SVM, EMP-RBF, and SAE-LR algorithms. The reason why the 

UCSAE algorithm can obtain a better classification result for 

the Bare_soil class is mainly due to the neat and wide-range 

distributions and the spectral properties of these two classes that 

are more easily extracted by the UCSAE algorithm. 

 

Methods RBF-

SVM 

EMP-RBF SAE-LR UCSAE 

A
cc

u
ra

cy
 

Scrub 0.9873 0.9873 0.9949 0.9921 

Willow  

swamp 

0.9926 0.9926 0.9853 1.0000 

CP  

hammock 

0.8881 0.8881 0.9790 0.9609 

CP/Oak 0.7234 0.7163 0.7305 0.9127 

Slash  

pine 

0.7684 0.7789 0.9053 1.0000 

Oak/ 

Broadleaf 

0.8837 0.8992 0.8450 0.9123 

Hardwood  

swamp 

0.9851 0.9851 0.9851 0.9615 

Graminoid  

marsh 

1.0000 1.0000 1.0000 0.9953 

Spartina  

marsh 

1.0000 1.0000 1.0000 1.0000 

Cattail  

marsh 

1.0000 1.0000 1.0000 1.0000 

Salt  

marsh 

1.0000 1.0000 1.0000 0.9952 
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Mud  

flats 

1.0000 1.0000 1.0000 0.9960 

Water 1.0000 1.0000 1.0000 1.0000 

OA 0.9646 0.9654 0.9732 0.9869 

AA 0.9407 0.9421 0.9558 0.9789 

Kappa 0.9609 0.9617 0.9704 0.9850 

Table 4 Different spatial-spectral classification accuracy 

comparisons on the KSC dataset 
 

From Table 4, it can be seen that the UCSAE algorithm for 

the KSC dataset obtains a 98.69% classification accuracy. By 

analysing Table 4, it can be seen that the classes of Willow 

swamp, CP/Oak, Slash pine, and Oak/Broadleaf show better 

producer accuracy for the UCSAE algorithm for the KSC 

dataset, which is mainly ascribed to the continuous and wide-

range distributions of these classes.  

 

4.4 Parameter Analysis 

Based on the theoretical explanation of the SAE, it’s noted 

that the hidden unit number and the sparsity are the main 

parameters influencing the classification properties. For the 

Pavia University dataset, according to (Coates et al., 2011), the 

optimal classification accuracy is obtained when the hidden unit 

number equals to 1000, and the sparsity value equals to 0.3. The 

parameter analysis for the Pavia University dataset is shown in 

Figure 7. 
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Figure 7 Parameter analysis for the hidden unit number and 

sparsity parameter with the Pavia University dataset. 

 

For the KSC dataset, the optimal classification accuracy is 

obtained when the hidden unit number is 1300 and the sparsity 

value is 0.5. The detailed parameter analysis is shown in Figure 

8. 
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Figure 8 Parameter analysis for the hidden unit number and 

sparsity parameter with the KSC dataset. 

 

5. CONCLUSIONS 

Based on the feature extraction superiority of the SAE model 

and the efficient feature representation power by convolution 

mechanism, a novel spatial-spectral classification algorithm 

named UCSAE has been proposed for hyperspectral remote 

sensing imagery. Within a fixed spatial neighbourhood window 

around a central pixel, the UCSAE shows better classification 

performance than the direct spatial-spectral classification 

methods due to its intrinsic feature extraction properties. To 

better extract the features within the larger outer windows, the 

window-in-window spatial-spectral information selection 

strategy is proposed in this paper for the latter SAE feature 

extraction procedure. As for the UCSAE algorithm, it can 

provide an information conservation manner in the 

classification procedure. The experimental results demonstrate 

that the proposed UCSAE algorithm can obtain a better spatial-

spectral classification performance over the traditional spatial-

spectral classification methods on the Pavia University dataset 

and the KSC dataset. Besides, when the experimental area is 

larger but with uniform ROI (area of interest) sampling on the 

imagery, this method is also applicable.  

 

ACKNOWLEDGEMENTS 

This work was supported by National Natural Science 

Foundation of China under Grant No. 41371344, State Key 

Laboratory of Earth Surface Processes and Resource Ecology 

under Grant No. 2015-KF-02, Program for Changjiang Scholars 

and Innovative Research Team in University under Grant No. 

IRT1278, Natural Science Foundation of Hubei Province under 

Grant No. 2015CFA002, and Open Research Fund Program of 

Shenzhen Key Laboratory of Spatial Smart Sensing and 

Services (Shenzhen University). 

 

REFERENCES 

Bengio, Y., 2009. Learning Deep Architectures for AI. 

Foundations and Trends in Machine Learning, vol. 2, pp. 1-

127. 

Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H., 2007. 

Greedy layer-wise training of deep networks. Adv. in Neur. In., 

vol. 19.  

Boureau, Y.-L; Bach, F.; LeCun, Y.; Ponce, J., 2010. Learning 

mid-level features for recognition. In Proceedings of IEEE Conf. 

Computer Vision and Pattern Recognition (CVPR), pp.2559–

2566.  

Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson. J.A., 

2014. Advances in hyperspectral image classification: Earth 

monitoring with statistical learning methods.  IEEE Signal 

Process. Mag, vol. 31, pp. 45-54. 

Chang, C.-I., 2013. Hyperspectral data processing: algorithm 

design and analysis. John Wiley & Sons. 

Chen, Y.; Lin, Zh.; Zhao, X.; Wang, G.; Gu, Y., 2014. Deep 

Learning-based Classification of Hyperspectral Data. IEEE J. 

Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, pp. 2094-

2107. 

Coates, A.; Ng, A. Y.; Lee, H., 2011. An analysis of single-

layer networks in unsupervised feature learning. In Proceedings 

of the International Conference on Artificial Intelligence and 

Statistics, pp. 215–223. 

Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R., 

2008. Spectral and spatial classification of hyperspectral data 

using SVMs and morphological profiles. IEEE Trans. Geosci. 

Remote Sens., vol. 46, pp. 3804-3814. 

Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; 

Tilton, J.C., 2013. Advances in spectral-spatial classification of 

hyperspectral images. Proceedings of IEEE, vol. 101, pp. 652-

675. 

Grahn, H. F; Geladi, P., 2007. Techniques and Applications of 

Hyperspectral Image Analysis. Hoboken, NJ, USA: Wiley.  

Hinton, G. E.; Osindero, S.; Y.-W, 2006. A fast learning 

algorithm for deep belief nets. Neural Comput., vol. 18, pp. 

1527-1554. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-7-25-2016

 
30



 

Hinton, G. E.; Salakhutdinov, R.R., 2006. Reducing the 

dimensionality of data with neural networks. Science, vol. 313, 

pp. 504-506. 

H. Jiao, Y. Zhong, and L. Zhang, 2012. "Artificial DNA 

computing-based spectral encoding and matching algorithm for 

hyperspectral remote sensing data," IEEE Transactions on 

Geoscience and Remote Sensing, vol. 50, no. 10, pp. 4085-4104. 

Ji, R.; Gao, Y.; Hong, R.; Liu, Q.; Tao, D.; Li, X., 2014. 

Spectral-Spatial Constraint Hyperspectral Image Classification. 

IEEE Trans. Geosci. Remote Sens., vol. 52, pp. 1811-1824.  

J. Zhao, Y. Zhong, and L. Zhang, 2015a. "Detail-Preserving 

Smoothing Classifier Based on Conditional Random Fields for 

High Spatial Resolution Remote Sensing Imagery," IEEE 

Transactions on Geoscience and Remote Sensing, vol. 53, no. 5, 

pp. 2440-2452.  

J. Zhao, Y. Zhong, Y. Wu, L. Zhang, and H. Shu, 2015b. "Sub-

pixel mapping based on conditional random fields for 

hyperspectral remote sensing imagery," IEEE Journal of 

Selected Topics in Signal Processing, vol. 9, no. 6, pp. 1049-

1060.  

Jimenez, L. O.; Rivera-Median, J. L.; Rodirguez-Diaz, E., 2005. 

Integration of spatial and spectral information by means of 

unsupervised extraction and classification for homogenous 

objects applied to multispectral and hyperspectral data. IEEE 

Trans. Geosci. Remote Sens., vol. 43, pp. 844-851. 

Kang, X.; Li, Sh.; Benediktsson, J.A., 2014. Spectral-Spatial 

Hyperspectral Image Classification with Edge-Preserving 

Filtering. IEEE Trans. Geosci. Remote Sens., vol. 52, pp. 2666-

2677. 

Krizhevsky, A.; Sutskever, I.; Hinton, G., 2012. ImageNet 

classification with deep convolutional neural networks. In 

Proceedings of Advances in Neural Information Processing 

Systems (NIPS), vol. 25, pp. 1090–1098. 

Landgrebe, D., 2003. Signal Theory Methods in Multispectral 

Remote Sensing. Hoboken, NJ, USA: Wiley.  

LeCun, Y.; Bengio, Y.; Hinton, G.E., 2015. Deep Learning. 

Nature, vol. 521, pp. 436-444. 

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., 1998. Gradient 

based learning applied to document recognition. Proceedings of 

IEEE, vol. 86, pp. 2278-2324. 

Ng, Andrew, 2010. Sparse autoencoder. CS294A Lecture notes, 

Stanford Univ.. 

Plaza, A.; Plaza, J.; Martin, G., 2009. Incorporation of spatial 

constraints into spectral mixture analysis of remotely sensed 

hyperspectral data. In Proceedings of IEEE Int. Workshop 

Machine Learning Signal Processing, pp. 1-6. 

Boureau, Y.-L.; Bach, F., LeCun,Y.; Ponce, J., 2010. Learning 

mid-level features for recognition.  

R. Feng, Y. Zhong, Y. Wu, X. Xu, D. He, and L. Zhang, 2016.  

"Nonlocal Total Variation Subpixel Mapping for Hyperspectral 

Remote Sensing Imagery," Remote Sensing, vol. 8, no. 3, p. 250. 

Simard, P. Y.; Steinkraus, D.; Platt, J. C., 2003. Best practices 

for convolutional neural networks applied to visual document 

analysis. Int. Conf. Document Analysis and Recognition, vol. 2, 

pp. 958–962. 

Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A., 

2008a. Extracting and composing robust features with 

denoising auto-encoders. In Proceedings of ACM Int. Conf. 

Machine Learning, pp. 1096-1103. 

Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P., 

2010b. Stacked denoising autoencoders: Learning Useful 

Representations in a Deep Network with a Local Denoising 

Criterion. J. Mach. Learn. Res., vol. 11, pp. 3371-3408. 

Y. Zhong and L. Zhang, 2012. "An adaptive artificial immune 

network for supervised classification of multi-/hyperspectral 

remote sensing imagery," IEEE Transactions on Geoscience 

and Remote Sensing, vol. 50, no. 3, pp. 894-909. 

Zhou, Y.; Wei, Y., 2015. Learning Hierarchical Spectral-

Spectral Features for Hyperspectral Image Classification. IEEE 

Trans. Cybern.. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-7-25-2016

 
31




