ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume III-7
https://doi.org/10.5194/isprs-annals-III-7-257-2016
https://doi.org/10.5194/isprs-annals-III-7-257-2016
07 Jun 2016
 | 07 Jun 2016

INFLUENCE OF THE VIEWING GEOMETRY WITHIN HYPERSPECTRAL IMAGES RETRIEVED FROM UAV SNAPSHOT CAMERAS

Helge Aasen

Keywords: BRDF, angular effects, vegetation index, barley, image-frame camera

Abstract. Hyperspectral data has great potential for vegetation parameter retrieval. However, due to angular effects resulting from different sun-surface-sensor geometries, objects might appear differently depending on the position of an object within the field of view of a sensor. Recently, lightweight snapshot cameras have been introduced, which capture hyperspectral information in two spatial and one spectral dimension and can be mounted on unmanned aerial vehicles.

This study investigates the influence of the different viewing geometries within an image on the apparent hyperspectral reflection retrieved by these sensors. Additionally, it is evaluated how hyperspectral vegetation indices like the NDVI are effected by the angular effects within a single image and if the viewing geometry influences the apparent heterogeneity with an area of interest. The study is carried out for a barley canopy at booting stage.

The results show significant influences of the position of the area of interest within the image. The red region of the spectrum is more influenced by the position than the near infrared. The ability of the NDVI to compensate these effects was limited to the capturing positions close to nadir. The apparent heterogeneity of the area of interest is the highest close to a nadir.