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ABSTRACT:

The automatic classification of land cover types from hyperspectral images is a challenging problem due to (among others) the large
amount of spectral bands and their high spatial and spectral correlation. The extraction of meaningful features, that enables a subsequent
classifier to distinguish between different land cover classes, is often limited to a subset of all available data dimensions which is found
by band selection techniques or other methods of dimensionality reduction. This work applies Projection-Based Random Forests to
hyperspectral images, which not only overcome the need of an explicit feature extraction, but also provide mechanisms to automatically
select spectral bands that contain original (i.e. non-redundant) as well as highly meaningful information for the given classification
task. The proposed method is applied to four challenging hyperspectral datasets and it is shown that the effective number of spectral
bands can be considerably limited without loosing too much of classification performance, e.g. a loss of 1% accuracy if roughly 13%
of all available bands are used.

1. INTRODUCTION

The semantic analysis of hyperspectral images is of outmost im-
portance in many applications as for example urban planning
(Taubenbck et al., 2012) or agriculture surveys (Alcantara et al.,
2012), but states on the other hand a hard challenge due to the
high dimensionality of the data, the high spatial and spectral cor-
relation, the high in-class variation, as well as measurement noise.
The high number of spectral bands hinders a direct and exhaus-
tive visualization of the image data and makes the usually applied
approach of extracting a large set of image features infeasible.

Common approaches to deal with the large number of spectral
bands range from (semi-)automatic preselection of bands (e.g.
manual rejection of noisy bands), to band-fusion by dimensional-
ity reduction (e.g. principal component analysis (Benediktsson et
al., 2005)), to more sophisticated band-selection techniques. The
work of (Guo et al., 2006) proposes an approach based on infor-
mation theory. It uses the mutual information between the spec-
tral signatures of different target variables to select bands that are
considered to be of equal information content with respect to the
given classification task. In (Tuia et al., 2014) the authors pro-
pose an incremental selection of the best features from a large
set of possible features. In each iteration new features are gener-
ated and only added to an active set, if the overall performance
increases. The choice of an efficient classifier as well as enforc-
ing sparseness of the active set reduce the computational load.
The classification performance increases, if PCA is applied to the
spectral bands prior to feature computation.

After reducing the amount of spectral bands, a (mostly prede-
fined) set of feature extraction operators is applied to the remain-
ing set of channels to further extract meaningful information. Ex-
amples are texture descriptors ((Pacifici et al., 2009)) and mor-
phological operators ((Tuia et al., 2009)). Landcover maps tend
to be smooth in the sense that neighboring pixels have a high
probability to belong to the same class (Schindler, 2012). This
spatial context is exploited by the application of spatial image
filters. Their output is used (potentially additionally to the origi-
nal bands) during further classification steps (Fauvel et al., 2013).
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Figure 1: Proposed band selection based on usage frequencies
of individual bands in a ProB-RF (red, blue) and correlation be-
tween classification maps (grey)

These methods have two major disadvantages:

1. The set of features is defined a priori and heavily depends on
expert knowledge. The set of filters might be suboptimal by
lacking features important for the classification task while
including other, less informative features.

2. The computational load of applying all filters of a large fil-
terbank to all (or a reasonably sized subset of) spectral bands
is tremendous.

This paper proposes an approach of automatic band selection,
that relies on neither any kind of predefined features nor task-
independent dimensionality reduction techniques. Instead of any
kind of preprocessing or explicit feature extraction, Projection-
Based Random Forests (ProB-RFs) are directly applied to the
hyperspectral image data. ProB-RFs have been introduced in
(Hänsch, 2014) in the context of object classification from po-
larimetric synthetic aperture radar images and are a variation of
the general concept of Random Forests (Breiman, 2001). They
are designed and optimized for the semantic analysis of images,
but keep the general advantages of RFs including their high ef-
ficiency during training and application as well as the ability to
provide robust and accurate results.
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ProB-RFs have been adapted and applied to hyperspectral data in
(Hänsch and Hellwich, 2015), where the authors show the gen-
eral applicability to classification tasks from hyperspectral im-
ages. The work discussed here focuses on the usage of ProB-RFs
for automatic band selection instead of a standalone classification
framework. In this context the high efficiency and the built-in fea-
ture selection of RFs are of particular interest. The band selection
proposed by this work is based on two steps: On the one hand, the
correlation of classification maps based on single bands (Figure 1
shows the corresponding correlation matrix in grey) is used to
reject redundant bands, i.e. bands that contain information with
similar descriptive power as other bands. On the other hand, pro-
vide RFs a built-in feature selection that forces the classification
to focus on bands with superior information content (with respect
to the given classification task). The usage frequency of the indi-
vidual bands within the RF (visualized as blue curve in Figure 1)
is an interesting insight into the given classification problem and
can serve as information source to built more specialized systems.

The proposed approach of band selection, especially regarding
correlation-based band rejection, is closely related to band clus-
tering (Li et al., 2011). While band clustering merges only ad-
jacent bands in one cluster, the groups as used by the proposed
approach do not follow any predefined order. The idea to use cor-
relation coefficients to group bands is also investigated in (Zhao
et al., 2011). While the authors used the correlation between
the data itself, the proposed methods computes the correlation of
classification maps. Even if two bands show very distinct features
(i.e. correlate less on the data level), the information contained in
these bands might still be redundant given a specific classifica-
tion task. Other works of band selection apply methods based
on information theory such as mutual information (Martinez-Uso
et al., 2006, Bigdeli et al., 2013, Li et al., 2011). The disadvan-
tage of these approaches is, that two different methods are used to
judge the descriptive power of a band and to actually use it to in-
fer the classification decision. In the proposed work the classifier
selects meaningful bands by itself. Redundant bands are rejected
beforehand, but by classifiers of the same framework which en-
sures a higher consistency.

ProB-RFs as used in this work and their implicit feature compu-
tation and selection are discussed in Section 2., while Section 3.
explains their usage for band selection. The proposed framework
is applied to hyperspectral datasets in Section 4.. The experi-
mental results show that ProB-RFs not only lead to an accurate
probabilistic estimate of the class posterior. They also provide in-
formation about which bands have been useful to solve the clas-
sification task and which bands do not contain descriptive infor-
mation. These bands can be used to develop optimized expert
systems to further increase classification performance or lower
the computational load.

2. PROJECTION-BASED RANDOM FORESTS

As an instance of Ensemble Theory (Dietterich and Fisher, 2000)
Random Forests combine the output of many (suboptimal) deci-
sion trees to one final system answer. Over the last decade many
different tree-based ensemble learning methods have been pro-
posed including Randomized Trees (Dietterich and Fisher, 2000),
Extremely Randomized Trees (Geurts et al., 2006), Perfect Ran-
dom Trees (Cutler and Zhao, 2001), Rotation Forests (Rodriguez
et al., 2006), and Projection-Based RFs (ProB-RFs) (Hänsch, 2014).

The task of pixel-wise labelling is usually solved by computing
a feature vector for each pixel, which serves as input to a classi-
fier. The features can be as simple as the radiometric information

contained in one pixel alone, or more sophisticated by includ-
ing spatial and radiometric information from the neighborhood.
Common Random Forests define decision boundaries, which are
piecewise constant and parallel to the coordinate axes of the fea-
ture space. Instead of treating the provided pixel-wise feature
vectors independently, ProB-RFs analyse the spatial context of
images and are therefore especially well suited for image analysis
problems. In (Hänsch, 2014) their classification capabilities have
been shown in various image processing tasks with a focus on ob-
ject categorization of polarimetric synthetic aperture radar data.
Their usage in the work proposed here is based on their adaption
to hyperspectral images in (Hänsch and Hellwich, 2015). Sim-
ilar to this work, no preprocessing of the data is performed, in
particular no manual band selection or feature extraction. The
classifier is directly applied to the hyperspectral images as they
are. However, in contrast to (Hänsch and Hellwich, 2015) this
work does not focus on the mere classification performance but
rather on how ProB-RFs can be used in order to detect spectral
bands that are meaningful for the classification task at hand.

ProB-RFs as used in this work belong to the group of super-
vised learning methods, i.e. tree creation and training are based
on training data. For each sample of the training data the class
label is provided additionally to the spectral information itself.
Instead of using the whole dataset, each tree creates its own indi-
vidual subset by drawing random samples from the training data
(Bagging, (Breiman, 1996)). The process of tree creation can be
interpreted as a partitioning procedure of these training samples.
Each non-terminal node has two child nodes. Starting from the
root node of each tree, each node applies a binary test on every
data point of the local subset of the whole dataset, which was
propagated to this node by its parent node. Based on the outcome
of this binary test, a data point is propagated to either the left or
the right child node, respectively.

To exploit the spatial context of images image patches are used
instead of single pixels. This allows the classifier to access not
only radiometric information of the center pixel (i.e. the pixel
under investigation) as well as the radiometric information in its
surrounding, but also spatial (e.g. texture) information.

In this work hyperspectral images withB spectral bands are used.
No predefined features are computed, but the hyperspectral data
is used as it is. ProB-RFs represent each data point x as a three-
dimensional data cube x ∈ RB,Nx,Ny , where Nx ×Ny is the
spatial dimension of the used local neighborhood.

The test function te : RB,Nx,Ny → {0, 1} is not defined in this
high-dimensional space directly. All data points x are projected
to scalar values x̂ ∈ R by a projection function pr : RB,Nx,Ny → R.
The projection function selects one spectral band b and applies an
operator op (e.g. average, minimal/maximal value) to one to four
regions Ri within the patch (based on the projection type pt).
The final scalar value is the difference of the operator outputs
(see Equation 2).

te(x) =

{
1 , if pr(x) < θ
0 , if pr(x) ≥ θ (1)

pr(x) =


opb,R(x)− rv , if pt = 1

opb,R1(x)− opb,R2(x) , if pt = 2
(opb,R1(x)− opb,R2(x))
−(opb,R3(x)− opb,R4(x)) , if pt = 3

(2)

All parameters of the projection used by a node (spectral band,
region size and position, reference value rv, operator) are ran-
domly sampled (see (Hänsch, 2014) for more information).
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The spectral-spatial projection represents each high-dimensional
data cube x as a single real-valued scalar x̂. The test function
(Equation 1) becomes a simple threshold operation (i.e. x̂ < θ?)
within this one-dimensional space. The test outcome determines
whether a data point is propagated to the left or right child node.

There exist several approaches to define the split point θ, rang-
ing from simple uniform sampling to supervised selection ap-
proaches for example based on the probability of misclassifica-
tion. This work defines the split point as the median of the set of
projected values D̂nt ⊂ R at node nt. It is sufficiently easy to
compute and leads to equally sized subsets that are propagated to
the child nodes. Given a sufficient tree height, this provides a fine
partition of the input space and leads to accurate results.

The created splits rely only on the data itself, but do not depend
on the supervision signal provided by the training data. To gener-
ate splits that are stronger optimized with respect to the classifi-
cation task, each node creates several test functions, i.e. based on
different projections (e.g. by selecting different spectral bands).
Optimal splits would lead to child nodes, that are of equal size
(i.e. contain the same amount of data) and are as pure as possible
(i.e. contain samples of as few classes as possible ). While bal-
anced splits are ensured by the median-based split function, the
impurity I(n) of the child nodes is estimated by the Gini-index
(Equation 3) based on the local posterior class distribution of the
corresponding sample subset. For each of the possible split can-
didates the drop of impurity ∆I(θ) from the parent nt to the child
nodes nt,L/R is computed by Equation 4, where C is the set of
class labels, P (c|n) is the local class posterior estimate at node
n, and PL/R denotes the relative size of the child nodes. From
all split candidates the one with the largest drop of impurity is
selected.

I(n) =
|C|
|C| − 1

(
1−

∑
c∈C

(P (c|n))2
)

(3)

∆I(θ) = I(nt)− PL · I(nt,L)− PR · I(nt,R) (4)

The recursive splitting of the input set is stopped and a termi-
nal node (leaf) is created instead of a non-terminal node, if either
the tree has reached a maximal height, all samples belong to the
same class, or the number of samples at this node is below a cer-
tain threshold. In this case the local class posterior P (c|nt) is
estimated from the samples within this leaf nt and assigned to it.

A query sample x is propagated through all trees of the forest
during prediction. It falls in exactly one leaf per tree. The final
class posterior is estimated as the weighted sum in Equation 5,
where the weight wnt depends on the size of nt (see (Hänsch,
2014) for details).

P (c|x) =

T∑
t=1

wntP (c|nt) (5)

RFs offer an interesting method of assessing the strength of the
individual base learners, which plays an important role within this
work. Since each tree only uses a certain subset of all training
samples (bagging), there is a set of samples that have never been
used by a tree. These out-of-bag (OOB) samples can be used to
estimate an approximation of the generalization error without the
need of an additional hold-out set. Each tree uses its own OOB-
samples, estimates their class posterior and compares it with the
reference signal. The computed error serves as measurement of
the strength of each individual tree.

3. AUTOMATIC BAND-SELECTION

While the previous Section 2. briefly explains the principle frame-
work of ProB-RFs, this section discusses how the characteristics
and mechanisms of ProB-RFs can be used for automatic band se-
lection of hyperspectral data. The overall goal is to limit the total
number of spectral bands without loosing too much classification
accuracy.

This work investigates two possible reasons to decrease the in-
fluence of a spectral band on the classifier:

1) The band does not contain information, that is meaningful
for the given classification task given the information contained
within the other bands. The reason might be, that it does not con-
tain any meaningful information at all, as for example very noisy
bands, or another band contains similar information but in higher
quality as for example with less noise or higher contrast. This
case is discussed in Subsection 3.1.

2) Certain spectral bands might be redundant with respect to the
classification task. The measurements of hyperspectral images
are not completely independent of each other, but the data of two
spectrally adjacent bands will correlate to a certain extent. The
similarity of the data contained in these bands causes the classi-
fication decisions based on them to be correlated as well. Even
if the data of two bands is not similar in terms of correlation, the
classification results obtained from these bands can still correlate.
In both cases, the data contained in one band can not contribute
new information to the classification decision, if the data of the
other band is already available and used. This case is discussed
in Subsection 3.2.

3.1 Descriptive Band Selection

In this work each node of the ProB-RF creates multiple candidate
splits and selects the best of these splits based on the drop of im-
purity (see Section 2.). The different splits are based on different
projections, in particular different spectral bands are used. In this
way, each band is tested many times with different spatial pro-
jections, whether it can lead to a significant decrease of impurity.
A band that is more descriptive than others will be selected more
often. A band that does not contain meaningful information with
respect to the classification task given the other bands will be less
often selected. Thus, the overall frequency with which the nodes
of the forest used a specific spectral band is a strong indicator for
its descriptive power.

This band selection is carried out during the training procedure
of the ProB-RF. It is a direct byproduct of the tree creation pro-
cess and does not require any additional calculations.

3.2 Redundant Band Rejection

The built-in feature selection of ProB-RF (as discussed above)
is only able to select bands that are descriptive with respect to
the classification task, but it cannot detect bands that contain re-
dundant information. A straight-forward attempt to detect those
bands is to compute the correlation coefficient between the corre-
sponding slices of the hyperspectral image cube. However, with
respect to the classification task, the image data of two bands can
show only small correlation, but are still not able to contribute
new information to the classification decision.

In order to detect those redundant bands, an additional ProB-RF
is created, which contains as many trees as spectral bands. Each
of these trees have access to only one single band and no two
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trees have access to the same band. Consequently, the prelimi-
nary classification decision of each of the homogeneous-feature
trees (HFT) depends on one of the spectral bands alone. Af-
ter all HFTs have been trained, they are applied to the provided
image data and the individual classification maps are compared.
The correlation between two of these maps is used as indicator,
whether the two corresponding spectral bands are redundant. If
the correlation coefficient between two classification maps lies
above a specified threshold, only the band is kept, where the cor-
responding HFT has the lower OOB-error.

After the redundant bands have been detected and rejected, the
subsequent training and application of the final ProB-RF is based
on the remaining bands alone.

4. EXPERIMENTS

Four different datasets are used to evaluate the proposed band
selection schemes. These datasets cover natural and man-made
targets, contain low as well as high-resolution images with differ-
ent numbers of spectral bands, and represent classification tasks
with different numbers of classes.

4.1 Data

4.1.1 Indian Pines 1992 The Indian Pines 1992 dataset was
acquired by the AVIRIS spectrometer over North-western Indi-
ana in June 1992. The image data contains 145×145 pixels with
a resolution of 20m and contains 220 spectral bands in the wave-
length range 400−2500 nm. The available ground truth provides
labels of 16 different crop types for 10, 366 pixels. Figure 2a
shows an exemplary band of this dataset, which often serves as
benchmark due to two major challenges: 1) The number of train-
ing samples are unevenly distributed among the classes. 2) Some
of the crops are in a very early stage of growth causing a strong
mixture between plant and soil signatures. A typical preprocess-
ing step for this dataset is the manual removal of bands covering
the region of water absorption. This preprocessing step is omitted
in the current study.

4.1.2 Kennedy Space Center The Kennedy Space Center dataset
shown in Figure 2b is acquired by the AVIRIS sensor over Florida
in 1996. Since the images are taken at an altitude of approxi-
mately 20km, the spatial resolution of this dataset is 18m. The
ground truth provides labels of 13 different land cover types.

4.1.3 Pavia Center and Pavia University Both datasets are
acquired over Pavia, Italy, by the ROSIS sensor and have a spatial
resolution of 1.3m. Pavia Center is a 1096×1096 pixels large im-
age with 102 spectral bands, while Pavia University is 610×610
pixels large and consists of 103 spectral bands. The ground truth
provided labels of nine different classes. Figures 2c-2d show a
sample band of these datasets, where areas with no information
have been removed.

4.2 Label generation and evaluation criteria

The classification performance is measured by the balanced ac-
curacy, i.e. the average true positive rate over all classes. In each
experiment 10% of all labelled samples are randomly selected
for testing. The remaining samples are used for training, but ex-
cluding those in a 3 × 3 neighborhood of the test samples. Each
experiment is repeated ten times and the performance averaged.

(a) Indian Pines 1992, 145 × 145 px, 220
bands, 16 classes

(b) Kennedy Space Center, 512× 614 px, 176 bands, 13 classes

(c) Pavia Center, 1096× 715 px, 102 bands, 9 classes

(d) Pavia University, 610× 340 px, 103 bands, 9 classes

Figure 2: Sample bands of Pavia datasets

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-7-263-2016

 
266



(a) Indian Pines

(b) Kennedy Space Center

Figure 3: Usage frequency of spectral bands with exemplary in-
formative and noninformative bands

4.3 Results

4.3.1 Non-descriptive band removal Additionally to classi-
fication maps of high accuracy, the proposed system provides
deep insights into the actual classification task, namely which
spectral bands are useful and which are not. As discussed in
Section 3.1 each node generates many test functions (potentially)
based on different spectral bands during tree creation. From this
set only the test is selected, which leads to the best split of the
data. The frequency with which a band is used by nodes in the
forest is a reliable measurement of how informative this band is
for the current classification task. Figures 3-4 show the mean and
standard deviation of the relative usage frequencies of all bands
of the different datasets along with a few exemplary bands. The
usage frequency of the Indian Pines 1992 dataset in Figure 3a
shows clear minimal values for spectral bands that are commonly
removed manually in other works ([104−108], [150−163], 220),
but also at other bands which seem to be less informative. Fur-
thermore, there are clear peaks at certain channels, on which the
ProB-RF focussed in order to achieve the highest performance.
During the experiments with the Kennedy Space Center dataset
especially the first bands are used frequently as shown in Fig-
ure 3b, while there is a clear trend that channels with higher IDs
are less important. For the Pavia Center dataset especially bands
at the beginning and center of the spectrum are of less impor-
tance, while higher bands are frequently used (Figure 4a). Al-

(a) Pavia Center

(b) Pavia University

Figure 4: Usage frequency of spectral bands with exemplary in-
formative and noninformative bands

though less dominant, the same effect is visible in Figure 4b for
the Pavia University dataset.

It should be noted, that this information is a direct byproduct of
the classification process based on any kind of RFs, that generate
multiple tests for split selection. No additional dimensionality re-
duction techniques have to be applied beforehand or afterwards.
This built-in feature selection allows the classifier to focus on in-
formation that is actually important to solve the classification task
at hand. It is therefore highly task-dependent. Given the same
data but a different classification task, the usage frequency of the
individual bands will change if other bands prove to contain de-
scriptive information for this task. The obtained information can
subsequently be used to built expert systems to further improve
the classification performance if necessary.

4.3.2 Classification performance Figure 5 shows the confu-
sion matrices obtained by averaging over ten experiments. In
each run a single ProB-RF as described in Section 2. is trained
and evaluated on the hyperspectral data, where the correspond-
ing usage frequencies of the spectral bands are presented in Sec-
tion 4.3.1 In all four cases the balanced accuracy a (i.e. average
true positive rate) is over 90%.

To put the achieved performance into perspective, the work of
(Tuia et al., 2014) shall serve as an example which proposes a
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(a) Indian Pines
κ = 0.85±0.03
a = 0.92±0.02

(b) Kennedy SC
κ = 0.98±0.01
a = 0.97±0.01

(c) Pavia Center
κ = 0.98±0.00
a = 0.98±0.00

(d) Pavia Uni.
κ = 0.96±0.01
a = 0.97±0.00

Figure 5: Confusion matrices (with blue and red colors corre-
sponding to zero and one, respectively), κ-statistic, and balanced
accuracy a for different datasets

highly sophisticated method of iterative feature selection based
on active sets. The reported performance for the Indian Pines
1992 dataset is κ = 0.83 ± 0.02, which is further increased to
κ = 0.89± 0.03 by using PCA to the original bands before fea-
ture computation. The processing steps necessary to achieve this
performance involve the manual rejection of noisy bands, appli-
cation of PCA, enforcing a balanced training set, computation of
a large set of features, and a complex iterative feature selection
method. As discussed above, ProB-RF are directly applied to the
original data and still achieve a performance of κ = 0.85± 0.03.

4.3.3 Redundant band removal Although the built-in fea-
ture selection of ProB-RF reliably rejects bands with no descrip-
tive power, it cannot detect bands that contain redundant informa-
tion with respect to the given classification task. For this goal an
additional ProB-RF is generated prior to the creation of the final
classifier. This forest consists of as many homogeneous feature
trees (HFTs) as there are spectral bands, i.e. trees that have ac-
cess to only a single spectral band (see Section 3.2).

Figure 6 shows the correlation matrices of the spectral bands
based on the corresponding HFTs for all four datasets. A high
correlation at position (t1, t2) means, that the corresponding HFTs
t1 and t2 made the same decisions despite having access to two
different bands b1 and b2. The higher the individual strength of
the trees (i.e. low OOB-error), the more correct decisions are
made, and the higher is the correlation. Figure 6 shows, that sev-
eral bands show low correlation with all other bands. These bands
are very likely to contain less information about the given clas-
sification task, causing the corresponding HFT to make wrong
decisions which (by definition) do not correlate with the (more
correct) decisions of other trees.

Also visible in Figure 6 are groups of bands, that have high corre-
lation between each other, but low correlation to bands outside of
the group. These bands are considered to contain redundant in-
formation with respect to the given classification task. Using the
whole group, or only one suitable exemplar of this group will not
significantly change the quality of information the ProB-RF has
access to solve the classification task. Therefore, these bands can
be removed to limit the total amount of bands. Figure 7 shows
how many bands remain and how the accuracy of the classifica-
tion maps changes, if from a group of bands, that have a pairwise
correlation over a given threshold, only the strongest (in terms of
OOB-error of the HFT) is used and the others are rejected. If the
correlation threshold is low, all bands are considered as redundant
and only the strongest band is selected. Although the subsequent
classification by a ProB-RF is based on one single spectral band
alone, the classification accuracy is still in a reasonable range.
When the correlation threshold is increased, less and less bands
are considered as redundant, leading to a larger number of bands
and an increased classification performance. When the correla-
tion threshold is high enough, no bands are considered as redun-
dant and all bands are used leading to the highest performance.

(a) Indian Pines (b) Kennedy Space Center

(c) Pavia Center (d) Pavia University

Figure 6: Correlation of bands based on classification maps

(a) Indian Pines (b) Kennedy Space Center

(c) Pavia Center (d) Pavia University

Figure 7: Number of bands (blue) and balanced accuracy (red)
for different correlation thresholds)

However, as can be seen in Figure 7, a classification performance
close to the top-performance of using all bands can already be
achieved with considerably few bands. Using only a single strong
band leads to an accuracy of 83.8% for the Indian Pines 1992
dataset, which is considerably increased to 89.3% by using 24
bands. By using all 220 bands, the further gain in accuracy is
only 1.3%. The usage of only 20 out of 176 bands of the Kennedy
Space Center dataset leads to an accuracy of 97.3%, which could
not be improved by using more bands. For the Pavia Center and
Pavia University datasets, 12 and 18 of the roughly 100 bands
have been enough to reach a performance of 97.8% and 96.2%,
respectively, which increased only slightly by less than 1% if all
bands are used.
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Figure 8: Classification accuracy versus (relative) number of
bands

This fact is emphasized in Figure 8, which summarizes the rela-
tionship between the number of used bands and the classification
accuracy. Although the achieved accuracy is a monotonous func-
tion with respect to the number of bands, it increases only slightly
if more than a certain number of bands is used. The largest in-
crease of accuracy is achieved by using around the 20 strongest
of the available bands. On average, using more than 13% of the
spectral bands increased the classification accuracy less than 1%.

Figure 9: Usage frequency of all (blue) and selected (red) spectral
bands

Figure 9 shows again the mean and standard deviation of the
relative usage frequency of all bands of the Indian Pines 1992
dataset. Additionally, it shows in red which bands remain after
the redundant feature rejection step as well as their relative us-
age frequency. The correlation based feature selection only con-
siders the relative strength of the bands (i.e. OOB-error of the
corresponding HFT) within in a correlating group of bands, but
not their absolute strength. Since HFTs based on non-descriptive
(e.g. noisy) bands lead to many wrong classification decisions,
their semantic maps have by definition a small correlation with
others. Consequently, weak bands have a higher probability to
survive the band rejection step. This is clearly visible in Fig-
ure 9, where the majority of selected bands (in red) are within the
deep valleys of the initial usage frequency (in blue). However,
the built-in feature selection of ProB-RF ensures, that these weak
bands are less used by the final classifier.

The effective number of bands, i.e. the number of bands with
a significant usage frequency, is therefore lower than the number
of input bands. A final classifier, which might incorporate also
more sophisticated features than the bands itself, should be based
on these bands alone. They contain original (i.e. non-redundant)
as well as highly meaningful information for the given classifica-
tion task. If necessary, it might be worth to try to access this in-
formation by more complex features. Since the number of bands
is considerably limited at this step, an exhaustive application of
feature operators is feasible.

5. CONCLUSION AND FUTURE WORK

The Prob-RF classifier, that is used in this work, does not rely
on a computationally expensive feature extraction step, but does
work directly on the hyperspectral images. Nevertheless, it auto-
matically computes semantic maps with state-of-the-art accuracy.

The high efficiency, accuracy, and robustness of this classifier
is exploited to gain a deeper insight into the classification task.
The built-in feature selection capabilities of RFs is used to es-
timate how relevant each spectral band is for the given classifi-
cation task. The relevance measurement is based on the relative
frequency with which a spectral band is used by the nodes of all
trees in the forest.

The feature selection of RFs is only able to detect whether a band
contains descriptive information with respect to a specific clas-
sification task. It is however unable to detect, whether a group
of bands contains the same or similar useful information. In or-
der to find these sets of bands an additional ProB-RF is created
prior to the final classification. This RF contains only trees, that
have access to one single band. The correlation of the resulting
classification maps of two individual trees serves as measurement
whether the information contained in the corresponding bands is
redundant.

The experiments show that both approaches increase the classifi-
cation accuracy. The number of spectral bands can be consider-
ably limited without a significant loss of classification accuracy.
On average the usage of only roughly 13% of all available bands
resulted in a decreased accuracy of less than 1%.

Future work will investigate the characteristics of the proposed
method further, especially with respect to two effects:

1. The automatic feature selection of RFs becomes more and
more random the higher within a tree it is carried out. Most
of the “easy” decisions are already made by then and the
continued splitting is more and more based on noise or ran-
dom fluctuations within the data. This effect should be taken
into account, if the relative usage frequency of a band is used
to measure its importance for a given classification task.

2. The stronger the individual trees, the higher is the correla-
tion between the corresponding classification maps. This
leads to the fact that good bands show stronger correlation
and are more likely to be considered as redundant than weak
bands. Consequently, the redundancy estimation based on
the correlation of classification maps should be corrected for
this bias.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-7-263-2016

 
269



REFERENCES

Alcantara, C., Kuemmerle, T., Prishchepov, A. V. and Radeloff,
V. C., 2012. Mapping abandoned agriculture with multi-temporal
{MODIS} satellite data. Remote Sensing of Environment 124(0),
pp. 334 – 347.

Benediktsson, J., Palmason, J. and Sveinsson, J., 2005. Classifi-
cation of hyperspectral data from urban areas based on extended
morphological profiles. Geoscience and Remote Sensing, IEEE
Transactions on 43(3), pp. 480–491.

Bigdeli, B., Samadzadegan, F. and Reinartz, P., 2013. Band
grouping versus band clustering in svm ensemble classification
of hyperspectral imagery. Photogrammetric Engineering and Re-
mote Sensing 79, pp. 523–534.

Breiman, L., 1996. Bagging predictors. In: Machine Learning,
pp. 123–140.

Breiman, L., 2001. Random forests. Machine Learning 45(1),
pp. 5–32.

Cutler, A. and Zhao, G., 2001. Pert - perfect random tree ensem-
bles. In: Computing Science and Statistics.

Dietterich, T. G. and Fisher, D., 2000. An experimental com-
parison of three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. In: Machine Learn-
ing, pp. 139–157.

Fauvel, M., Tarabalka, Y., Benediktsson, J., Chanussot, J. and
Tilton, J., 2013. Advances in spectral-spatial classification of hy-
perspectral images. Proceedings of the IEEE 101(3), pp. 652–
675.

Geurts, P., Ernst, D. and Wehenkel, L., 2006. Extremely random-
ized trees. Machine Learning 63(1), pp. 3–42.

Guo, B., Gunn, S., Damper, R. and Nelson, J., 2006. Band
selection for hyperspectral image classification using mutual in-
formation. Geoscience and Remote Sensing Letters, IEEE 3(4),
pp. 522–526.
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