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ABSTRACT:

In urban areas, information concerning very high resolution land cover and especially material maps are necessary for several city
modelling or monitoring applications. That is to say, knowledge concerning the roofing materials or the different kinds of ground areas
is required. Airborne remote sensing techniques appear to be convenient for providing such information at a large scale. However,
results obtained using most traditional processing methods based on usual red-green-blue-near infrared multispectral images remain
limited for such applications. A possible way to improve classification results is to enhance the imagery spectral resolution using
superspectral or hyperspectral sensors. In this study, it is intended to design a superspectral sensor dedicated to urban materials
classification and this work particularly focused on the selection of the optimal spectral band subsets for such sensor. First, reflectance
spectral signatures of urban materials were collected from 7 spectral libraires. Then, spectral optimization was performed using this
data set. The band selection workflow included two steps, optimising first the number of spectral bands using an incremental method
and then examining several possible optimised band subsets using a stochastic algorithm. The same wrapper relevance criterion relying
on a confidence measure of Random Forests classifier was used at both steps. To cope with the limited number of available spectra
for several classes, additional synthetic spectra were generated from the collection of reference spectra: intra-class variability was
simulated by multiplying reference spectra by a random coefficient. At the end, selected band subsets were evaluated considering the
classification quality reached using a rbf svm classifier. It was confirmed that a limited band subset was sufficient to classify common
urban materials. The important contribution of bands from the Short Wave Infra-Red (SWIR) spectral domain (1000 - 2400 nm) to
material classification was also shown.

1. INTRODUCTION

1.1 Some needs for urban materials maps

During last decade, needs for high resolution land cover data have
been growing. Indeed, such knowledge is necessary to answer
several societal, regulatory and scientific needs, to produce en-
vironmental indicators to manage ecosystems and territories, to
monitor environmental or human phenomena, or to be able to
have a picture of an initial situation and to evaluate the impacts
of public policies. Thus, to answer these needs, national mapping
or environment agencies, in many countries, have undertaken the
production of such large scale land cover databases. Neverthe-
less, these databases provide a general classification and may not
suit some specific (often new) applications requiring a finer se-
mantic or geometric level of details. That is to say that, on one
hand, additional land cover classes should sometimes be speci-
fied, whereas, on the other hand, some existing classes should be
delineated at a finer level.
Indeed, in urban areas, both semantic and spatial finer knowl-
edge about land cover and especially maps of urban materials are
required by several city modelling applications. Urban environ-
ment is indeed strongly influenced, in terms of ecology, energy
and climate by the present materials. These materials can be ei-
ther natural or artificial. Such material maps would be useful to
derive indicators to monitor public policies impacts, or to feed
urban simulation models. Indeed, at present, most applications
∗Corresponding author

are still experimental scientific ones such as micro-meteorology,
hydrology, pollutants flow monitoring and ground perviousness
monitoring. Several possible applications requiring very high res-
olution knowledge about urban land cover and materials are listed
in (Heldens et al., 2011) and (Shafri et al., 2012) and described
below.

1.1.1 Quantification of pollutant flows Some roofing mate-
rials can generate pollutant elements. Reducing the production
of pollutants at their sources implies to identify sources and to
quantify emissions. Several kinds of pollution are generated by
roofing materials.
First, metallic elements are generated by corrosion of roof ma-
terials before being swept away by rainwater: roofing materials
could be a major source of zinc, cadmium, lead and copper during
wet weather (Chebbo et al., 2001). Especially, zinc emissions are
mainly in the labile form (Heijerick et al., 2002), which is bio-
available and harmful to aquatic organisms. Copper roofs have
also been identified as a possible source of pollution. Last, some
other kinds of roofing materials can help to release organic pol-
luting elements (polycyclic aromatic compounds, organic carbon)
due to a not visible bitumen layer (Lemp and Weidner, 2005).
Laboratory experiments have often already been done to model
pollutant runoff rates for roofing materials (Robert-Sainte, 2009).
Knowledge about the different roofing materials coverage areas
is thus required so as to able to extrapolate these results to whole
drainage areas: a map of roofing materials is thus needed.
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1.1.2 Monitoring of dangerous materials: asbestos-cement
roofs Another possible application in the field of urban mate-
rials concerns the monitoring of asbestos-cement roofing materi-
als (Heldens et al., 2011, Bassani et al., 2007). Asbestos-cement
based materials can indeed be dangerous for human health, es-
pecially when they are deteriorated. Therefore, it is important
to be at least able to evaluate the amount of buildings covered
by asbestos-cement roofing sheets. Evaluating their deterioration
status is also a useful issue.

1.1.3 Weather models Very fine knowledge concerning ur-
ban land cover (in terms of materials, perviousness and vege-
tation) are required by micro weather (wind, temperature, ...)
model simulators (Heldens et al., 2011, Heldens et al., 2010, Kot-
thaus et al., 2014).

1.1.4 Monitoring of ground perviousness On one hand, it
has been shown that the continuous development of impervious
areas (especially in the periphery of cities), such as wide park-
ing areas, plays an important role in the aggravation of flooding
events, both in terms of magnitude and speed. Thus, having tools
to monitor the extension of impervious areas and to check their
appliance to new legislation would be useful. On the other hand,
perviousness maps are required as input data by (micro) hydro-
logical models (Heldens et al., 2011).

1.1.5 Determination of road type and monitoring of road
condition At least, maps of road types (cobblestone, asphalt,
...) can be useful for some of the above mentioned applications.
A more important and complex application focuses on the mon-
itoring of road condition: such information indeed offers great
interest for authorities in charge of the planning of road network
renovation projects. Extracting this knowledge out of aerial data
could be a way to avoid expensive and long field investigation
(Herold et al., 2004b, Mohammadi, 2012).

1.1.6 Monitoring of photo-voltaic development On one hand,
knowledge about roofing materials is a way to estimate the poten-
tial of a city to develop photo-voltaic energy (Roy, 2010, Jochem
et al., 2009). On the other hand, detecting already installed panels
is necessary to monitor the development of this technology.

1.2 Toward a superspectral camera dedicated to urban ma-
terial applications ?

Thus, very high resolution urban land cover is required to provide
knowledge about the roofing materials and the different kinds of
ground areas. Such information can be a map of urban material
(i.e. a classification). Since no existing map contains such in-
formation, airborne remote sensing techniques appear to be con-
venient for obtaining such a map at a large scale. However, re-
mote sensing of urban environments from airborne acquisitions
namely still remains a major issue, since on one hand, urban ar-
eas are characterised by a high variety of materials which can
appear very similar on images, and on the other hand, by a strong
intra-class variability due for instance to material aging and uses
(Lacherade et al., 2005). Thus results provided by most tradi-
tional processing methods based on usual red-green-blue-near in-
frared multispectral images remain limited for such applications.
A possible way to improve classification results is to enhance the
imagery spectral resolution using superspectral or hyperspectral
sensors.
Hyperspectral imagery consists of hundreds of contiguous spec-
tral bands. Nevertheless, most of these spectral bands are highly
correlated to each other and thus contain redundant information.
Thus using all of them for a particular classification problem is
not necessary. Therefore, only a subset of well selected spec-
tral bands would be sufficient for urban materials classification

(Herold et al., 2004a). It would then be possible to design from
this optimised band subset a superspectral aerial camera system
dedicated to urban material classification. Such superspectral
system could offer some advantages compared to most hyper-
spectral sensors. It could first make it possible to combine the use
of suitable spectral bands for a specific application with a higher
spatial resolution and a larger swath. It could also be a pho-
togrammetric system, making it possible to capture multistereo-
scopic images, offering thus a possible calculation of BRDF mod-
els (Martinoty, 2005).

This paper presents experiments that were performed to define
the optimal band subset for such superspectral sensor dedicated to
urban material classification. The used automatic band selection
framework and criterion are first presented. Second, data sets and
experiments are described: experiments were performed on data
sets generated from material reference reflectance spectra from
available spectral libraries. These libraries and the way they were
used to generate synthetic spectra are presented. Then, obtained
results are presented, evaluated and discussed.

2. SPECTRAL OPTIMISATION

The selection of an optimal set of spectral bands is called spectral
optimisation. To achieve this task, automatic feature selection
(FS) methods can be used. FS methods will here be applied to
select the most relevant band subset among the original bands of
a hyperspectral data set for a specific classification problem.

2.1 Feature selection: state-of-the-art

Feature selection (FS) can be seen as a classic optimisation prob-
lem involving both a metric (that is to say a FS score measuring
the relevance of feature subsets) to optimise and an optimisation
strategy.
FS methods and criteria are often differentiated between “filter”,
“wrapper” and “embedded”. It is also possible to distinguish su-
pervised and unsupervised ones, whether classes are taken into
account.

Filters Filter methods compute a score of relevance for each
feature independently from any classifier. Some filter methods
are ranking approaches: features are ranked according to a score
of importance, as the ReliefF score (Kira and Rendell, 1992) or a
score calculated from PCA decomposition (Chang et al., 1999).
Other filters associate a score to feature subsets. In supervised
cases, separability measures such as Bhattacharyya or Jeffries-
Matusita (JM) distances can be used in order to identify the fea-
ture subsets making it possible to best separate classes (Bruzzone
and Serpico, 2000, Serpico and Moser, 2007). High order statis-
tics from information theory such as divergence, entropy and mu-
tual information can also be used to select the best feature subsets
achieving the minimum redundancy and the maximum relevance,
either in unsupervised or supervised situations: (Martı́nez-Usó et
al., 2007) first cluster “correlated” features and then select the
most representative feature of each group, while (Battiti, 1994,
Estévez et al., 2009) select the set of bands that are the most cor-
related to the ground truth and the less correlated to each other.

Wrappers For wrappers, the relevance score associated to a
feature subset corresponds to the classification performance (mea-
sured by a classification quality rate) reached using this feature
subset. Examples of such approaches can be found in (Estévez
et al., 2009, Li et al., 2011) using SVM classifier, (Zhang et
al., 2007) using maximum likelihood classifier, (Dı́az-Uriarte and
De Andres, 2006) using Random Forests.
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Embedded Embedded FS methods are also related to a classi-
fier, but feature selection is performed using a feature relevance
score different from a classification performance rate. Some em-
bedded approaches are regularisation models associating a fit-to-
data term (e.g. a classification error rate) to a regularisation func-
tion, penalising models when the number of features increases
(Tuia et al., 2014). Other embedded approaches progressively
eliminate features from the model, as SVM-RFE (Guyon et al.,
2002) that considers the importance of the features in a SVM
model. Other approaches have a built-in mechanism for feature
selection, as decision trees using only the most discriminative
feature when splitting a tree node (Breiman, 2001).

Another issue for band selection is the optimisation strategy to
determine the best feature subset corresponding to a criteria. An
exhaustive search is often impossible, especially for wrappers.
Therefore, heuristics have been proposed to find a near optimal
solution without visiting the entire solution space. These opti-
misation methods can be divided into incremental and stochastic
ones.
Several incremental search strategies have been detailed in (Pudil
et al., 1994), including the Sequential Forward Search (SFS) start-
ing from one feature and incrementally adding another feature
making it possible to obtain the best score or on the opposite the
Sequential Backward Search (SBS) starting from all possible fea-
tures and incrementally removing the worst features. Variants
such as Sequential Forward Floating Search (SFFS) or Sequen-
tial Backward Search (SBFS) are proposed in (Pudil et al., 1994).
Among stochastic optimisation strategies used for feature selec-
tion, several algorithms have been used for feature selection, in-
cluding Genetic algorithms (Li et al., 2011, Estévez et al., 2009),
Particle Swarm Optimisation (PSO) (Yang et al., 2012) or simu-
lated annealing (De Backer et al., 2005, Chang et al., 2011).

2.2 Proposed feature selection approach

The proposed approach (Le Bris et al., 2014) relies on generic
optimisation heuristics. It works in two steps (as reminded in fig.
1):

1. First, the optimal number of spectral bands is identified us-
ing the incremental algorithm SFFS (Pudil et al., 1994). In-
deed, in the context of sensor design, first step consists in
optimising the number of band. SFFS starts from empty
band subset, and incrementally add bands to the subset, con-
sidering a FS score, and questioning the current band subset
solution each time a new band is selected. Thus, this algo-
rithm makes it possible to see the influence of the number of
selected bands on the classification results.

2. Optimised band subsets solutions are then proposed genetic
algorithm (GA) for the optimal number of bands identified
at previous step. GA is a stochastic algorithm and it is here
used to provide several good solutions. At the end, the solu-
tion involving the less correlated bands to each other is re-
tained as the final solution. Besides, intermediate good band
subsets candidates proposed by GA are used to derive band
importance profiles, assessing the importance of bands con-
sidering the frequency at which they appeared among these
intermediate solutions.

2.3 Used FS criterion

The score used to evaluate the relevance of band subsets within
the previous framework is adapted from the one proposed in (Le Bris
et al., 2015). It is a wrapper score that relies on Random Forests
classifier and takes into account classification confidence.

Identify the optimal number of bands

using an incremental algorithm (SFFS)

Band optimization for a fixed number of bands

Select several optimized band subsets

using a stochastic algorithm (GA)

Band importance profile

Hyperspectral data + ground truth

Several band subset solutions

Optimal number of bands

Final solution
(the one minimizing 

band correlation) 

Figure 1: Proposed feature selection approach

2.3.1 Random Forests Random Forests (RF) (Breiman, 2001)
is a modification of bagging applied with decision trees. It can
achieve a classification accuracy comparable to boosting (Breiman,
2001), or SVM (Pal, 2005). It does not require assumptions
on the distribution of the data, which is interesting when differ-
ent types or scales of input features are used. It was success-
fully applied to remote sensing problems involving multispectral,
hyperspectral or multisource data. This ensemble classifier is a
combination of tree predictors built from T multiple bootstrapped
training samples. For each node of a tree, a subset of features is
randomly selected. Then, the best feature with regard to Gini im-
purity measure is used for node splitting. For classification, each
tree gives a vote for the most popular class at each input instance
and the final label is determined by a majority vote of all trees.
Thus, for each sample to classify, the number of votes obtained
by each possible label can be used as a class membership mea-
sure. Besides, it is provided by Random Forests at no additional
computational cost.
Let C = {c1, ...., cnc} be the set of possible classes and v(x, c)
the number of votes obtained by class c when classifying sample
x. A class membership scorem can then be obtained by normalis-
ing the number of votes by the number of trees: m(x, c) = v(x,c)

T
.

RF also provides a classification confidence measure named un-
supervised margin and defined as the difference between the two
best class memberships, that is to say:

M(x) = m(x, ĉ)−max
c6=ĉ

m(x, c) with ĉ = argmaxcm(x, c)

The more confident the classifier, the more the margin.

2.3.2 A FS score taking into account RF confidence mea-
sures LetX = {(xi, yi)}1≤i≤n be a set a ground truth samples
xi and their associated true label yi. A possible feature selection
scoreR taking into account class membership measures and thus
classification confidence can be defined as:

R(X ) =
n∑

i=1

δ(yi, c(xi)).M(xi) ∈ [0; 1]

with δ(i, j) = {−1 if i 6= j and 1 otherwise}, and c(x) the label
given to x by the classifier.
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This score has the advantage to measure both the ability to well
classify the test samples for a given feature set and the separabil-
ity between classes. Indeed, the more the samples are well classi-
fied, the more the score increases. The more the classifier is con-
fident for well classified samples, the more the score increases.
The more the classifier is confident for bad labelled samples, the
more the score decreases.

3. DATA SET

Spectral optimisation was performed from a library of reference
spectra of urban materials. These spectra were collected from
several available existing spectral libraries listed in section 3.1.
Such data offers several advantages, compared to another alter-
native such as the use of aerial hyperspectral scenes over sev-
eral urban landscapes. On one hand, these spectra were captured
through field or laboratory measurements, and are thus pure and
“clean” reflectance measures. On the other hand, they are gener-
ally well described, without ambiguity about their class. Besides,
it is a way to have spectra of rare (but thematically important)
materials.

3.1 Spectral libraries

The reference spectra used in this study were collected from sev-
eral available existing spectral libraries. The number of spectra
per original library is shown by table 1.

• ASTER Spectral Library 1 : The ASTER spectral library
(Baldridge et al., 2009) is made available by the Jet Propul-
sion Laboratory. It contains more than 2400 spectra of nat-
ural and artificial materials from 3 other spectral libraries:
the Johns Hopkins University (JHU) Spectral Library, the
Jet Propulsion Laboratory (JPL) Spectral Library and the
USGS Spectral Library.

• SLUM 2 : The Spectral Library of impervious Urban Ma-
terials (SLUM) (Kotthaus et al., 2014) is produced within
the London Urban Micromet data Archive (LUMA). It con-
tains reflectance spectral measures of 74 impervious materi-
als collected in London.

• MEMOIRES 3 and ONERA data : Many urban materi-
als spectra were made available by ONERA, and especially
from the spectral library MEMOIRES (Moyen d’Echange
et de valorisation de Mesures de propriétés thermiques, Op-
tiques et InfraRouges d’Echantillons et de Scènes) (Martin
and Rosier, 2012). Most of them were collected in Toulouse
(France).

• Santa Barbara libraries 4 : Many urban materials spectra
collected (only field measures) on Santa Barbara (Herold et
al., 2004a) are available. Two libraries can be distinguished:
one dedicated to spectral optimisation for urban classifica-
tion (Herold et al., 2004a) and the other dedicated to the
analysis of road conditions (Herold et al., 2004b).

• Ben Dor spectral libray Spectra collected in Tel Aviv by
(Ben-Dor et al., 2001) for urban classification were also
used.

• DESIREX Spectra from field measurements campaign DE-
SIREX 08 (ESA) (Sobrino, 2008) in Madrid were also avail-
able.

1http://speclib.jpl.nasa.gov/
2http://LondonClimate.info/LUMA/SLUM.html
3http://www.onera.fr/dota/memoires
4http://www.ncgia.ucsb.edu/ncrst/research/pavementhealth/urban/

Table 1: Origin of collected spectra
Library Number of spectra
ASTER 29
BenDor 33
SLUM 55
DESIREX 11
ONERA MEMOIRES 282
SantaBarbara road 43
SantaBarbara materials 62

3.2 Integration of collected spectra into a data base

First, all collected spectra were integrated into a common data
base. This required to define a common legend, to be able to
have a homogeneous spectral collection. Interesting taxonomies
for urban materials have been proposed in previous works such
as (Heiden et al., 2007) or (Herold et al., 2004a). These tax-
onomies are often hierarchical ones, with a last level of detail
corresponding to fine information about materials such as colour
or condition. However, at this step, it is intended to keep as many
information as possible to describe the collected spectra rather
than to have a frozen nomenclature. Thus, it was decided to store
collected spectra in our database, associating several attributes to
each of them:
• Material class
• Variety (e.g. “zinc” or “steel” for material “metal”)
• Colour
• Condition (e.g. aging)
• Corresponding land cover (e.g. “ground” or “roof” for “grav-

els”)

It must here be kept in mind that it was not always possible to
obtain all these information for most spectra.

Spectral domain: Only spectra concerning both the Visible Near
Infra-Red (VNIR) (400-1000 nm) and the Short Wave Infra-Red
(SWIR) (1000-2400 nm) spectral domains were kept. The spec-
tral resolution of the collected spectra was generally comprised
between 1 and 5 nm, and sometimes 10 nm in the SWIR domain.
Besides, all collected spectra had not been measured under the
same conditions. Only reflectance spectra were considered. How-
ever, for spectral optimisation experiments, it was necessary to
remove the bands concerned by atmospheric absorption. Further-
more, other artefacts were present on some spectra, as for in-
stance some transitions between the VNIR and SWIR sensor of
an ASD. They also had to be removed.

Ignored classes: Experiments focused on artificial materials.
Thus, some classes were let aside from the data base, even if they
can be important in urban land cover. For instance, vegetation is a
key element in urban landscape, but was let aside in next experi-
ments, since the discrimination between vegetation and non vege-
tation is easy and because it was intended to be considered in fur-
ther studies specifically dedicated to its characterisation. Water
was also let aside, since few spectra were available and because
its aspect can be very different depending on depth, turbidity and
eutrophysation level. On the opposite, natural bare ground was
considered since it is very important in perviousness studies.

At the end, the synthesis of the kept spectra is presented on figure
2. It can be seen that there is a strong heterogeneity in the num-
ber of available spectra per class: some classes (asphalt, concrete,
stone pavements) are well represented, while other ones concern
very few spectra (such as slates and asbestos). Furthermore, the
number of spectra per class is generally not sufficient to correctly
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evaluate intra class variability and thus to be significant to per-
form spectral optimisation using the proposed method, and to val-
idate results on test data sets.
To cope with this insufficient number of available spectra, it was
here proposed to generate new spectra from the ones in the data
base.

Sand

Gravel

Bare ground

Road paints

Cement/concrete

Stone pavements

Asphalt

Plastic

Paint metal

Not painted metal

Asbestos

Fiber-cement

Tar paper

Shingle

Slates

Tiles

Figure 2: Number of available spectra for the most important
material classes

3.3 Generate new synthetic spectra from the data base

A random multiplicative factor was simply applied to reference
spectra in order to generate more synthetic spectra from the data
base (DB). It partly simulates intra-class variability, even though
it does not simulate the totality of intra-class variability (such as
colour or aging). For each generated synthetic spectrum, the mul-
tiplicative factor was randomly selected between 0.8 and 1.2, ac-
cording to the standard deviations of the classes for which a suffi-
cient amount of spectra was available. Finer quantitative analyses
are available in (Lacherade et al., 2005).

At the end, the proposed process to generate an experimental data
set (also reminded in fig. 3) is as follows:
For each class c do
Generate a set of synthetic spectra GTc for class c:
GTc ← ∅
Create a query to list the spectra belonging to this class
Create list Lc of spectra from the DB corresponding to this

query
For i from 1 to n do
Randomly select spectrum s from Lc

Variability generation:
Apply to s a random multiplicative factor (between 0.8 and 1.2)
s← rand().s

Add this spectrum to the experimental data set: GTc ← GTc∪s
EndFor

EndFor

4. EXPERIMENTS AND RESULTS

Experiments were performed for next legend. It consisted in
classes corresponding both to the most common materials in the
database and to other important classes (e.g. slate) frequently
present in urban areas. Such classes would be the basic classes
of a material map, because they are likely sure to be found in an
urban area.

• Slate
• Asphalt

Spectral data 
base

Query file defining
 a class XXXX

Ex : RedTile 
Class=tile  
Colour=red Select spectra corresponding to the query

n spectra
to generate

Select randomly n spectra among selection

Simulate class variability
Apply random multiplicative factor to spectra

Resample spectrally
Remove bad bands

Desired spectral 
resolution

n spectra for class XXXX

Figure 3: Synthetic spectra collection generation scheme

• Cement/concrete
• Gravel
• Metal
• Stone pavement bricks
• Shingle
• Bare ground
• Tile

In order to perform spectral optimisation, a data set was gener-
ated from the data base according to this legend. It contained
100 training spectra and 500 test spectra, resampled at a 10 nm
spectral resolution ranging from 420 to 2400 nm.

4.1 Band selection in the [VNIR-SWIR] domain (420-2400
nm)

Band selection was first performed within the spectral domain
ranging from 420 to 2400 nm.
First, the optimal number of spectra was defined, owing to SFFS
algorithm. Figure 4 shows the evolution of the FS score and of
several classification quality rates reached by a RBF SVM clas-
sifier depending on the number of selected bands. It can be seen
that up to a band subset size, selecting new bands has very few
impact on results. Thus, in next experiments 10 bands were se-
lected.

Then, several 10-band subsets (presented in figure 5 ) were pro-
posed by GA. Band importance profile (displayed on figure 5)
was calculated from intermediate results of GA. Some part of the
spectrum were considered relevant, especially in the VNIR do-
main and in the 2000-2400 nm range of the SWIR domain, while,
on the opposite, the 1000-1500 nm spectral domain is not consid-
ered relevant for this classification task.

At the end, the band subset with the less correlated bands was
selected and evaluated.

4.2 Band selection in the VNIR domain (420-1000 nm)

The same process was applied to the 420-1000 nm spectral do-
main. An optimal number of 10 bands was also identified by
SFFS. Then, several band subsets (presented in figure 6 ) were
proposed by GA for 10 bands, and band importance profile (dis-
played on figure 6) was calculated from intermediate results of
GA. Although 10 bands were selected, a pattern of 4-5 important
blobs appears along the spectrum, corresponding approximately
to usual multispectral bands (blue, green, red and near infrared).
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Figure 4: Evolution of the FS score (top) and of the quality of
RBF SVM classification depending on the number of selected
bands
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Figure 5: Selected band subsets of 10 bands (top) and band im-
portance profiles (bottom) for spectral optimisation in the [VNIR-
SWIR] (420-2400 nm) spectral domain. (red frame = final solu-
tion)

4.3 Evaluation of optimised subsets of bands from different
spectral domains

The classification performance of the band subsets previously op-
timised was evaluated for a RBF SVM classifier. The classifier
was applied to a test data set containing 1000 samples per class.
Two scenarios were considered to train the classifier using either
100 or 50 samples per class, so as to have an easy case and a more
difficult one.
This quantitative evaluation was first performed both for the whole
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Figure 6: Selected band subsets of 10 bands (top) and band im-
portance profiles (bottom) for spectral optimisation in the VNIR
(420-1000 nm) spectral domain. (red frame = final solution)

hyperspectral set of bands and for the subsets of 10 bands selected
from the VNIR (420-1000 nm) and from the [VNIR-SWIR] (420-
2400 nm) spectral domains, but also from the [VNIR-SWIR] spec-
tral domain limited to the 420-1800 nm range. Indeed, it was in-
teresting to evaluate the impact of a restriction to the first part of
the SWIR domain, since it is less perturbed by atmospheric ef-
fects and receives more photons than the (1800-2400 nm) part.
Results are presented on figure 7: 10 bands selected in the 420-
2400 nm domain led to similar results as when using all the hy-
perspectral bands. The worst results were obtained for band sub-
sets limited to the VNIR domain, while intermediate results were
reached using bands from the 420-1800 nm. The differences be-
tween the classification precisions reached for the different spec-
tral configurations tended to be more significant for the difficult
training scenario (i.e. when the classifier is trained from only 50
samples per class), since Kappa is 0.90 for all bands, 0.90 for 10
bands from the [VNIR-SWIR] (420-2400 nm), 0.87 for 10 bands
from the (420-1800 nm) range and 0.81 for 10 bands from the
VNIR domain.

Further experiments were performed to assess the relevance of
bands from the SWIR domain for urban materials classification:
only 4 individual original bands were selected (as for usual mul-
tispectral sensors). As for previous experiments, subsets of 4
bands were selected from the VNIR (420-1000 nm), the [VNIR-
SWIR1] (420-1800 nm) and the the [VNIR-SWIR] (420-2400
nm) spectral domains. Their classification performances for a
RBF SVM classifier were compared to the configuration of an
existing multispectral sensor: the Pléiades satellite. Results are
presented on figure 8. As previously, best results were obtained
using bands selected in the [VNIR-SWIR] domain. Indeed, when
the classifier is trained from 50 samples per class, Kappa reached
0.82 for 4 bands from the [VNIR-SWIR] (420-2400 nm), 0.81 for
4 bands from the (420-1800 nm) range and 0.78 for 4 bands from
the VNIR domain. It can also be said that better results were
reached using the optimised subset of 4 bands from the VNIR
domain rather than the Pléiades configuration, for which Kappa
reached 0.74.

Nevertheless, obtained quantitative evaluations are really opti-
mistic and must be considered carefully. Indeed, it must be kept
in mind that some classes were represented by very few spectra
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in the spectral data base, and thus, their variability is not com-
pletely considered. For instance, “slates” represented by few
spectra in the data base were very well classified, while on the
opposite some classes, such as “asphalt”, “cement/concrete” or
“stone pavements”, which were represented by larger amounts of
reference spectra in the data base obtained the lowest classifica-
tion rates. Thus, there is also a risk of overfitting.
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Figure 7: Quantitative results reached using selected band subsets
of 10 bands from different spectral domains: F-scores of the dif-
ferent classes and Kappa coefficient reached by RBF SVM clas-
sification. The classifier was trained using 100 samples (top) and
50 samples (bottom).

5. CONCLUSION

In this study, band selection was performed to identify optimal
band subsets for urban map classification in the context of de-
signing a superspectral sensor dedicated to this application.
Spectral optimisation was performed on data sets generated from
a collection of reference reflectance spectra from several avail-
able spectral libraries.
A limited number of bands (10) was proven to be sufficient to
obtain good discrimination between 9 common urban materials.
The importance of the SWIR domain (and especially of the 1800-
2400 nm) was also confirmed.
Nevertheless, some classes were represented by very few spec-
tra in the spectral data base, and thus, their variability can not
be completely considered. Therefore, obtained quantitative eval-
uations are really optimistic and must be considered carefully.
However, new urban material spectra measurement campaigns
will occur within the French ANR HYEP 5 project and will be
integrated in the data base. Besides, further experiments will also
be carried out using aerial hyperspectral scenes. They will bring

5http://hyep.cnrs.fr
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Figure 8: Quantitative evaluation of results reached using se-
lected band subsets of 4 bands from different spectral domains:
F-scores of the different classes and Kappa coefficient reached
by RBF SVM classification. The classifier was trained using 100
samples (top) and 50 samples (bottom).

more realistic evaluation results, since such data will be perturbed
by sensor and atmospheric noise, while in the experiments pre-
sented in this paper such phenomena were not taken into account
since only clean reflectance data measured on the field or in lab-
oratory were used.
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Pléiades.

Serpico, S. B. and Moser, G., 2007. Extraction of spectral chan-
nels from hyperspectral images for classification purposes. IEEE
Transactions on Geoscience and Remote Sensing 45(2), pp. 484–
495.

Shafri, H., Taherzadeh, E., Mansor, S. and Ashurov, R., 2012.
Hyperspectral remote sensing of urban areas: an overview of
techniques and applications. Research Journal of Applied Sci-
ences, Engineering and Technology 4(11), pp. 1557–1565.

Sobrino, J. e., 2008. Desirex 2008 final report - dual-use euro-
pean security ir experiment 2008 (desirex 2008). Technical re-
port, ESA.

Tuia, D., Volpi, M., Dalla Mura, M., Rakotomamonjy, A. and
Flamary, R., 2014. Automatic feature learning for spatio-spectral
image classification with sparse svm. IEEE Transactions on Geo-
science and Remote Sensing 52(10), pp. 6062–6074.

Yang, H., Du, Q. and Chen, G., 2012. Particle swarm
optimization-based hyperspectral dimensionality reduction for
urban land cover classification. IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing 5(2),
pp. 544–554.

Zhang, L., Zhong, Y., Huang, B., Gong, J. and Li, P., 2007.
Dimensionality reduction based on clonal selection for hyper-
spectral imagery. IEEE Transactions on Geoscience and Remote
Sensing 45(12), pp. 4172–4186.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-7-33-2016

 
40




