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ABSTRACT:

Crop phenology is dynamic as it changes with times of the year. Such biophysical processes also look spectrally different to remote
sensing satellites. Some crops may depict similar spectral properties if their phenology coincide, but differ later when their phenology
diverge. Thus, conventional approaches that select only images from phenological stages where crops are distinguishable for classifica-
tion, have low discrimination. In contrast, stacking images within a cropping season limits discrimination to a single feature space that
can suffer from overlapping classes. Since crop backscatter varies with time, it can aid discrimination. Therefore, our main objective
is to develop a crop sequence classification method using multitemporal TerraSAR-X images. We adopt first order markov assumption
in undirected temporal graph sequence. This property is exploited to implement Dynamic Conditional Random Fields (DCRFs). Our
DCRFs model has a repeated structure of temporally connected Conditional Random Fields (CRFs). Each node in the sequence is
connected to its predecessor via conditional probability matrix. The matrix is computed using posterior class probabilities from asso-
ciation potential. This way, there is a mutual temporal exchange of phenological information observed in TerraSAR-X images. When
compared to independent epoch classification, the designed DCRF model improved crop discrimination at each epoch in the sequence.
However, government, insurers, agricultural market traders and other stakeholders are interested in the quantity of a certain crop in
a season. Therefore, we further develop a DCRF ensemble classifier. The ensemble produces an optimal crop map by maximizing
over posterior class probabilities selected from the sequence based on maximum F1-score and weighted by correctness. Our ensemble
technique is compared to standard approach of stacking all images as bands for classification using Maximum Likelihood Classifier
(MLC) and standard CRFs. It outperforms MLC and CRFs by 7.70% and 6.42% in overall accuracy, respectively.

1. INTRODUCTION

Food security is a matter of concern globally. Shortage of food
can lead to socio-economic consequences. Foresight by the
world bank estimates that since 2010 demand for food has in-
creased resulting into extreme poverty of about 44 million peo-
ple (World-Bank, 2011). Estimated rise in population and diets
will require significant increase in food production (Tilman et al.,
2011). Therefore, current efforts by farmers, agronomist and re-
lated stakeholders is to ensure that food production is optimal
and sustainable. This demands regular update of spatial and tem-
poral information on agriculture activities to aid monitoring and
sustainable food policy decision making. Such information is to
be derived from a dynamic phenomenon over a vast area. Thus,
methods of data collection that can match this scale are necessary.

Remote sensing satellites capture spectral, spatial and temporal
attributes of phenomena on the earth surface. This is because of
their specific electromagnetic spectrum sensitivity, synoptic view
and temporal capability. Mapping agriculture activities requires
insights on crop dynamics, e.g. phenology1 states and seasonal
growth. Spectral trend of agricultural parcels is constantly chang-
ing. Different crops may at a given time be in the same pheno-
logical state, depicting similar spectral attributes, but differ sig-
nificantly in another time (Siachalou et al., 2015). According to
Siachalou et al. (2015), crop mapping using single-date remote
sensing images, even if acquired in critical growth stages, can not

∗Corresponding author.
1In remote sensing we can consider phenology as the appearance of a

crop at a particular instance in its life cycle.

offer optimal results in case of crops with similar phenology. A
sequence of multitemporal images and phenological information
can be integrated using a robust statistical framework to improve
crop discrimination.

This study adopts a sequence of Synthetic Aperture Radar (SAR)
images from TerraSAR-X satellite for crop classification. Radar
satellites are daylight and weather independent. Signals from
radar can penetrate vegetation canopy and dry soil thus bearing
volumetric and subsurface information. These attributes renders
SAR a good medium to deliver a sequence of images of high-
est temporal density suitable for crop classification regardless
of climatic zones. In contrast, complexity, e.g. speckle inter-
ference, accompanying SAR data challenges conventional pixel
based approaches. Spatial context can be employed to over-
come it (Kenduiywo et al., 2014). However, crops in the same
phenology exhibit correlated SAR backscatter. Conventional
approaches stack multitemporal images as bands for classifica-
tion (e.g., Bargiel and Herrmann (2011); Forkuor et al. (2014);
Sonobe et al. (2014)). By doing so, significant temporal informa-
tion from satellite observed crop phenology is limited to a sin-
gle feature space. Discrimination in such feature space can suf-
fer from overlapping class boundaries due to large class variance
from spectral variation. In addition to spatial context, integra-
tion of temporal context in a principled manner can help resolve
classes over time.

Studies like Leite et al. (2011); Siachalou et al. (2015) incorporate
crop phenology via Hidden Markov Models (HMM). They used
HMM to model temporal context among crop phenology stages
but lack a proper spatial context framework. Mono-temporal crop
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classification adopting spatial context also exist (Ozdarici-Ok et
al., 2015; Roscher et al., 2010). Efforts to use both spatial and
temporal context to classify crops from optical images is done
in (Hoberg and Müller, 2011). The study models temporal con-
text via a global transition matrix determined from training data.
A global matrix assumes similar phenology transitions over all
pixels neglecting changes that may exist in the image. In our
previous study (Kenduiywo et al., 2015), pixel-wise temporal in-
formation exchange between grouped crop classes in two epochs2

are considered. Here, the approach is extended to a dynamic tem-
plate that classifies each crop type over a sequence of multitem-
poral SAR images.

The contributions of this study are threefold: (1) to develop a
spatial-temporal classification framework to discriminate crops
using a sequence of multitemporal TerraSAR-X images, (2) de-
sign a suitable spatial interaction model, modified from contrast
sensitive model suggested by Shotton et al. (2009), to moderate
changes in class labels based on data evidence and (3) to design
an ensemble framework to generate an optimal season crop map.
We used dynamic conditional random field(s) (DCRFs) for se-
quence crop classification. The framework allows reasoning via
Bayesian theory in a principled statistical manner under uncer-
tainty. We incorporate DCRF into standard conditional random
fields (CRFs) as a temporal classifier template. This forms a ro-
bust spatial-temporal sequence crop classifier termed as DCRF
because: (a) of a changing probabilistic relational model between
nodes in the sequence, (b) the model captures time-changing phe-
nomena, encodes complex interactions over the set of all possi-
ble classes and data and uncertainty in a principled manner, and
(c) the model is a conditional distribution that factorizes accord-
ing to an undirected graphical model whose structure and param-
eters are repeated over a sequence (Sutton et al., 2007).

The rest of the paper is organized as follows. Section 2 intro-
duces the approach we adopted and illustrates how CRF is de-
signed for spatial-temporal crop sequence classification. Section
3 describes selected study area, crops considered for classifica-
tion, data and features used, details of experiments conducted by
our design and other methods. In Section 4, a description of re-
sults from our technique compared to others is made leading to
a discussion in Section 5. Conclusions from the study and future
tasks are provided in Section 6.

2. METHODS

2.1 Conditional Random Fields

Conditional Random Fields were introduced by Lafferty et al.
(2001) for one-dimensional text classification and extended to
two-dimensional image classification (Kumar, 2006). They are
undirected graphs which represent conditional probability distri-
bution over a set of data/data sequence. The conditional probabil-
ities are represented in non-negative functions, potentials, defined
over a subset of fully connected variables known as cliques3. In
CRFs, posterior probability of a distribution is computed as a
product of potentials through inference techniques.

Definition Consider a sequence of images x = xt modelled over
corresponding discrete labels y = yt, from a given set of class
labels l ∈ m, acquired at different times t where t = 1, . . . , T .
Let G = {S,E} be a graph with spatial edges E defined over a
pair of cliques i and j in a neighbourhood set N such that y =
(yi)i∈S where y is indexed by nodes (vertices) S of the Graph

2An epoch is an image date within a sequence of acquired images.
3A clique is a fully connected subgraph.

G. In mono-temporal classification, the random variable (y, x)
is a CRF only if, when conditioned on x, the random variable
yi obeys the Markov property with respect to G: P (yi|x, y\i) =

P (yi|x, yNi
), where y\i is the set of all nodes in the G except

node i and Ni is a set of neighbours of node i in G.

Following Hammersley and Clifford basic theorem, the joint dis-
tribution over the labels y given the data x can be written as:

P (y|x) =
1

Z(x)
exp

∑
i∈S

A(yi, x) +
∑
i∈S

∑
j∈Ni

I(yi, yj , x)


(1)

where Z(x) is a normalizing constant referred to as partition
function, and A and I are the association (unary) and interaction
(pairwise) potentials respectively.

2.2 Dynamic conditional random fields

Sequence classification requires determination of posterior prob-
abilityP (y1,...,T |x1,...,T ). The computation is intractable and ex-
ponential in time as it involves estimation of ST functions in a 2-
D space. Since satellite observation of crops is unique in each in-
stance, we assume that their evolution is independent. In this way,
the conventional class conditional independence (Swain, 1978)
can be attained: P (y1,...,T |x1,...,T ) = P (y1|x1), . . . , P (yT |xT ).
This simplifies the classification problem to an independent esti-
mation of class posterior probabilities P (yi) for each node i in
t. Spatial interactions are also considered at each epoch by I in
Eq. (1).

To exploit crop phenological information, we extend DCRFs pro-
posed by Sutton et al. (2007) for text sequence classification to
3-D image sequence classification. A DCRF is a conditionally-
trained undirected graphical model whose structure and parame-
ters are repeated over a sequence. We developed an undirected
DCRF graph template that factorizes according to first order
Markov assumption. In the design, each node i at time t can
depend on node data from the previous (if t 6= 0) and subsequent
(if t 6= T ) epochs. The objective is to connect a set of all possi-
ble temporal cliquesC of nodes S using a conditional probability
matrix distribution P (y|yt−1, x, xt−1). This set-up gives a DCRF
sequence template model, considering crop phenology, such that
a node can have at least one or two temporal neighbours (Fig. 1).

Definition Let c, c ∈ C, be a temporal clique index of a node k
in epoch ∆t = t− 1 of a label vector y∆t which corresponds to
another node i in label vector yt at time t such that c = {k,∆t}.
In this case, a set of random variables yi,t,c ≡ {yi,t|(k,∆t) ∈ c}
is the set of variables of the evolving clique index c at time t in
the sequence T . Then, our spatial-temporal DCRF template can
be expressed as:

P (y|x) =
1

Z(x)
exp

{∑
i∈S

A(yi, x) +
∑
i∈S

∑
j∈Ni

I(yi, yj , x) +
∑
t∈T

∑
i∈S

∑
c∈C

TP (yi,t,c, x, x∆t)
} (2)

where TP is temporal potential.

2.2.1 Association Potential determines how likely an image
site i takes a label yi given the data x: A(yi, x) = P (yi|fi(x)),
fi(x) is a site-wise feature vector (Kumar, 2006). We used ran-
dom forest (RF) (Breiman, 2001) to determine A by independent
classification of different epochs assuming that evolution of crops
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t = 1

t = 2

t = 3

t = T

Figure 1. First order temporal neighbours of a node at different
times t of a sequence T . Spatial and temporal edges are

indicated by solid and dashed lines respectively.

are unique over the sequence. A RF conducts classification by
casting votes from a number of decision trees DT generated dur-
ing training. If the number of votes cast for a given class label y
by RF is Vy , then our A at site i is P (yi = y|fi(x)) =

(
Vy

DT

)
.

We set DT = 250 because over 200 trees RF stabilizes (Hastie
et al., 2011) and set tree depth as 25.

2.2.2 Interaction Potential measures the influence of data
and neighbouring labels on site i. It ensures that site i, as ini-
tially determined by association potential, is labelled to its corre-
sponding ”true class” given data evidence x and neighbourhood
dependency N where j ∈ Ni. We set N = 8, second order
neighbourhood structure, as shown in Fig. 1. This study modelled
I by comparing two models: contrast sensitive model suggested
in (Shotton et al., 2009),

I(yi, yj , x) =

{
β · exp (−η · dij) if yi = yj

0 if yi 6= yj
(3)

and a new version of contrast sensitive Potts model:

I(yi, yj , x) =

{
β · exp (−η · dij) if yi = yj

β · (Max[1− exp(−η · dij), ε])−1 if yi 6= yj

(4)

where β is a spatial interaction parameter that regulates smooth-
ness, parameter η weights and controls inclusion (η > 0) or ex-

clusion (η = 0) of data interactions dij =

√∑R
i=1|fi(x)−fj(x)|2

R
of adjacent node features fi and fj , R is the number of fea-
tures/elements in vectors fi and fj ,Max is a function that returns
a maximum between two values and ε is a value close to zero (it
prevents division by zero). Since data interactions are considered
in CRF, by default η > 0. Division by R ensures identical influ-
ence of I over the sequence of images T . Therefore, the model is
different from contrast sensitive Potts model because transitions
of adjacent labels are now moderated based on data evidence both
when initial labels from A are similar or dissimilar. In this man-

ner, the model regulates smoothing while preserving edges.

2.2.3 Temporal Potential models interactions between nodes
in the sequence of images T . This potential can be considered
as a classifier that ensures mutual information exchange between
nodes i and k in epoch t and ∆t. Since the posterior probabilities
P (yi = l) and P (yk = l) are determined by A, our TP can be
expressed as:

TP (yi,t,c, x, x∆t) = P (yi = l|yk = l) (5)

To solve Eq. (5), Bayesian formula is used to compute conditional
probability matrix of TP as:

P (yi = l|yk = l) =
P (yi = l, yk = l)∑
yi
P (yi = l, yk = l)

(6)

Eq. (6) determines the probability of a crop label l ∈ m being
assigned to a node i given data from the two epochs t and ∆t. It
is used to compute a pixel-wise conditional probability matrix as
shown in (Kenduiywo et al., 2015).

2.3 Optimal crop mapping with DCRF

In most cases farmers, governments, and other stakeholders are
interested in the quantity of a certain crop in a given season. Our
DCRF approach incorporates phenological information exchange
between each epoch given a preceding one and vice versa. At
each epoch we obtain posterior class probabilities incorporating
phenological information in images. For this reason, we develop
an ensemble classifier to generate an optimal seasonal crop map.

Consider our classification problem where each node i ∈ S is to
be assigned a discrete class label y from l ∈ m possible classes
(y1, . . . , ym) in each epoch t from the sequence T . Now given
that posterior probabilities P (yl|x, t) have been determined, then
for each class l we select a probability with maximum F1-score
from the sequence T and weight them with correctness accuracy.
Then, a discrete class for node i can be determined by maxi-
mizing over probabilities selected from the sequence. Since the
same training sites are used throughout the sequence (crop sea-
son), then prior probability are assumed equal:

ŷi =
m

arg max
l=1

{
T

max
t=1

F1 [P (yl|x), t] ∗ Corr
}

(7)

where F1 [P (yl|x), t] is a probability corresponding to class l
with maximum F1-score (Sokolova et al., 2006), i.e. F1 =
2(correctness×completeness)
correctness+completeness

, at time t, Corr is the correctness
accuracy measure and ŷi the estimated class label. Correctness
and completeness correspond to recall and precision respectively.
This approach, Eq. (7), is compared to the following classifier
combinations rules in (Kittler et al., 1998):

Max rule: ŷi =
m

arg max
l=1

{
T

max
t=1

P (yl|x, t)
}

(8)

Majority vote: ŷi =
m

arg max
l=1

{
T∑

t=1

∆lt

}
(9)

Median rule: ŷi =
m

arg max
l=1

{
medTt=1P (yl|x, t)

}
(10)

Product rule: ŷi =
m

arg max
l=1

{
T∏

t=1

P (yl|x, t)

}
(11)

2.4 Training and Inference

Solution to Eq. (2) is obtained by maximizing probabilities, spec-
tral (A), spatial (I) and temporal (TP ) using Bayes’ Maximum
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A Posterior (MAP) estimate. This requires an inference algorithm
to determine posterior probabilities P (y|x) and a maximization
algorithm to estimate optimum labels ŷ. We apply sum-product
Loopy Belief Propagation (LBP) (Murphy et al., 1999), a stan-
dard inference algorithm in graphs with cycles. To estimate class
labels, we design a maximization algorithm. The association po-
tential probabilities used in both I and TP are trained using RF
implemented in OpenCV (OpenCV, 2014).

3. EXPERIMENTS

3.1 Study area and data

The study area is located in Northern Germany (52.26◦N,
9.84◦E), see Fig. 2. The average annual precipitation and tem-
perature are 656 mm and 8.9◦C respectively (Deutscher Wetter-
dienst, 2012). The region is characterized by intensive agriculture
with large farms. Crops in the area include: 1) barley, 2) canola,
3) grassland, 4) maize, 5) oat, 6) potato, 7) rye 8) sugar beet
and, 9) wheat. These crops go through different phenological
stages within a season, a fact that can enhance discrimination.
Four phenology phases, preparation, seeding, growing, harvest-
ing and post harvest, are considered (Fig. 3). Preparation phase
involves ploughing and soil grooming processes before seeding.
In seeding phase, crop seeds are placed in the soil. Growing phase
includes the period between crop germination to ripening. After
ripening, harvesting starts by gathering mature crops from the
fields. The last stage is post harvest phase, where the field could
be fallow or with some remaining ripe crops.

´

0 450
Km

Legend

study site

agricultural areas

non agricultural areas ´
0 1 2 3 4

Kilometers

´

Figure 2. Study area.
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Oat
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Rye

Grassland

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Preparation Seeding Growing Harvesting Post Harvest

Figure 3. Phenology stages of crops considered for
classification.

The temporal sequence consists of six dual polarized (HH and
VV) TerraSAR-X High Resolution Spotlight images acquired on:
11th March, 13th April, 22nd May, 18th June, 10th June and

17th October in the year 2009. All are acquired at an incidence
of 34.75◦ with range and azimuth resolutions of 2.1 m and 2.4
m except for the month of May which has an incidence angle of
43.65◦ with range and azimuth resolutions of 3.4 m and 2.9 m.
The images were delivered as ground range products (MGD) with
equidistant pixel spacing. They are radiometrically calibrated to
σ0 according to Fritz and Eineder (2009). All images are co-
registered to an extent of 7.1 × 11.8 km2 using WGS 1984 da-
tum on UTM Zone 32N coordinate projection system. Our ex-
periment site covers an extent of 5.4 × 5.4 km2.

Reference data campaign was conducted concurrently with image
acquisition during the year. The reference parcels were separated
into training and validation sets using stratified random sampling
design tool in ArcGIS 10.0 (Buja and Menza, 2013). Distribu-
tion of each crop type (training set / validation set) in hectares is:
barley (38.54 / 41.30), canola (38.60 / 40.87), grassland (69.97 /
55.10), maize (27.63 / 33.10), oat (10.11 / 17.39), potato (55.76 /
66.45), rye (97.23 / 79.04), sugar beet (52.49 / 47.51), and wheat
(34.88 / 34.84).

3.2 Feature selection

Gray Level Co-occurence Measures (GLCM) were computed us-
ing a 3× 3 matrix. Eight features — mean, variance, correlation,
homogeneity, contrast, dissimilarity, entropy and 2nd moment —
were computed in directions 0◦, 45◦, 90◦, and 135◦ giving rise
to a total of 32 features in each polarization. Random Forest vari-
ance importance was used to select 4 significant features from
the 8 GLCM features in each direction and polarization (a total
of 32 features per epoch). Important GLCM features as per RF
include: correlation, homogeneity, variance and mean. For each
selected feature, a super pixel/block was generated from a mean
of 3× 3 pixels. Block size selection was done in consideration to
the minimum mappable unit. The shift from pixels to block seg-
ments classification is advocated in (Blaschke and Strobl, 2001).

3.3 Parameter determination

Selection of a model for I and its parameters is an important step
in CRF classification. Thus, we conducted classification tests us-
ing models in Eqs. (2) and (3) over a range of β and η param-
eter values in 2-D logarithmic scale. Epochs in growing season
(June and July) are adopted to compute average overall classifi-
cation accuracy for each set of parameters. These epochs were
chosen because within the period, returned radar backscatter are
dominantly from crops. A suitable model of I including β and η
parameters are then selected using initial 2-D logarithmic scale
search results.

3.4 Classification

We adopt the technique in Eq. (2) for crop sequence classifica-
tion. The approach classifies each epoch integrating first order
temporal information and spatial information from 8 neighbour-
ing nodes. We compare this approach to MLC, RF (association
potential) and mono-temporal CRF (CRF-mono), Eq. (1), in sin-
gle epoch classification.

Posterior probabilities from each epoch were combined to gener-
ate an optimal map. Different methods introduced in Section 2.3
were tested and compared to our new approach in Eq. (7). More-
over, studies like Bargiel and Herrmann (2011); Forkuor et al.
(2014); Sonobe et al. (2014) stacked temporal images/features
as bands for multitemporal classification. Therefore, we also
stacked a sequence of amplitude images for classification us-
ing MLC (MLC-stack) and CRF (CRF-stack). This technique is
compared to optimal sequence classification method introduced
in Eq. (7). We term the approach DCRF max F1-score.
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4. RESULTS

4.1 Feature selection results

Results of GLCM features selection are described here. Four fea-
tures were selected using RF variable importance criteria. Fig. 4
shows RF importance computed from an average of four di-
rections, 0◦, 45◦, 90◦, and 135◦, for each feature and subse-
quently their average over epochs. Generally with the exception
of HH-polarized correlation features, features computed from
VV-polarization backscatter have a higher importance compared
to features computed from HH-polarization.
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Figure 4. Average random forest variable importance for
different GLCM features.

4.2 Parameter determination results

Selection of a data interaction model for I and its correspond-
ing parameters was guided by results in Fig. 5. The new ex-
panded contrast sensitive model, Eq. (4), outperforms standard
contrast sensitive, Eq. (3), in overall accuracy (OA) with most
parameters. Our new model gives high classification accuracy
for 101 ≤ beta ≤ 103 and 10−2 ≤ eta ≤ 5. In contrast, accu-
racy for contrast sensitive Potts model reduces if beta > 0.1 in
combination with any eta parameter values. This search, with a
compromise between high accuracy and over-smoothing, guided
our choice of β = 10 and eta = 1 for our new data dependent in-
teraction model in Eq. (4). We use these parameter values across
the sequence for comparability.

4.3 Classification results

Results from DCRF epoch classification compared to other ap-
proaches are illustrated in Fig. 6. The results show that DCRF
approach outperforms CRF-mono, RF and MLC. In all epochs
MLC has the least accuracy followed by RF and CRF-mono re-
spectively. The addition of temporal information also improved
classification accuracy in each epoch since DCRF outperformed
CRF-mono which considers only spatial information. Spatial in-
formation also improved classification as demonstrated by CRF-
mono performance compared to RF and MLC which have lower
accuracy.

An optimal crop map is generated from epoch-wise DCRF poste-
rior probabilities using different classifier combination strategies
as depicted by results in Table 1. The technique we introduce,
DCRF max F1-score, outperforms max rule, majority vote, prod-
uct rule and median rule by 33.92%, 10.04%, 7.91% and 7.85% in
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Figure 5. Comparison of our new spatial interaction model
Fig. 5a and contrast Potts model Fig. 5b over a logarithmic scale.
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Figure 6. Epoch-wise classification results, overall accuracy and
kappa, from different approaches.

overall accuracy respectively. Thus, max rule has the least overall
accuracy followed by majority vote, median rule and product rule
respectively.

Method OA Kappa

Max Rule 40.61% 33.59%
Majority Vote 64.49% 59.41%
Median Rule 66.68% 61.80%
Product Rule 66.62% 61.71%
Max F1-Score 74.53% 70.98%

Table 1. Comparison of different strategies of integrating DCRF
posterior probabilities to produce an optimal classification map.

Designed DCRF max F1-score classifier ensemble is compared
to the conventional approach of stacking multitemporal images as
input bands to a classifier. Table 2 illustrates that DCRF max F1-
score outperforms MLC and CRF methods adopting stacked im-
ages by overall accuracy of 7.70% and 6.42% respectively. Fur-
ther comparison of DCRF max F1-score and MLC-stack using
correctness and completeness of each class is made in Table 3.
This exposes in detail how each crop is recognized by the clas-
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sifiers as opposed to a limited view on overall accuracy in Ta-
ble 2. It is only grassland that has a lower classification accuracy
in our approach (correctness -16.4% / completeness -2.3%) com-
pared to MLC-stack approach. All other classes were classified
better or comparable to MLC-stack approach. This is especially
true for barley (+17.05% / +2.01%), maize (+24.33% / +18.58%),
oat (+19.99% / +13.45%) and sugar beet (+45.83% / +21.93%).
Rye and wheat also slightly improved (+5.58% / +2.03%) and
(+5.65% / +5.80%) respectively, while canola and potato exhibit
a lower correctness of -5.88% and -3.40% but a higher complete-
ness of +2.70% and +10.70%.

Method OA Kappa

MLC-stack 66.83% 61.67%
CRF-stack 68.11% 63.33%
DCRF max F1-Score 74.53% 70.98%

Table 2. Comparison of DCRF max F1-score to stacking
multitemporal images together as input bands for classification.

Correctness Completeness

Class
DCRF

max F1-score
MLC
stack

DCRF
max F1-score

MLC
stack

Barley 73.49% 56.44% 70.61% 68.60%
Canola 91.11% 96.99% 97.78% 95.10%
Grassland 77.88% 94.34% 86.49% 88.79%
Maize 47.55% 23.22% 50.32% 31.74%
Oat 61.11% 41.12% 89.91% 76.46%
Potato 74.78% 78.18% 63.45% 52.80%
Rye 75.24% 69.66% 65.05% 63.02%
Sugar beet 87.09% 41.26% 89.87% 67.94%
Wheat 66.93% 61.28% 70.13% 64.33%

Table 3. Crop correctness and completeness accuracy measures
from DCRF max F1-score and MLC stack.

We further analyzed the grassland class where our approach has
the lowest correctness compared to MLC-stack. Fig. 7 depicts
completeness computed from each grassland validation parcel.
Parcel numbers 8, 43, 49, and 51 have higher accuracy in MLC-
stack compared to DCRF max F1-score. However, observations
from ground referencing photos in Fig. 8 demonstrate that errors
encountered by DCRF max F1-score in those parcels are true pos-
itives. Hence, inhomogeneous grassland maps from DCRF max
F1-score technique reflect true changes on ground not anticipated
in ground reference data, see Fig. 8. Remaining parcels have
comparable completeness accuracy in both methods.

A map of selected crops as classified by both MLC and DCRF
max F1-score is shown in Fig. 9. It can be seen from the maps that
DCRF max F1-score technique produces homogenous parcels
compared to MLC-stack. This emphasizes the contribution of
temporal phenological information inherent in images and spa-
tial context in crop classification. The final map generated from
DCRF max F1-score classification is illustrated in Fig. 10.

5. DISCUSSION

This study developed a DCRF crop classification technique from
a sequence of TerraSAR-X images. In any classification, feature
selection reduces computation demands. We selected four im-
portant features according to RF for crop classification. Features
from VV-polarization were found important in crop discrimina-
tion compared to HH-polarization as also established in Bargiel
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Figure 7. Scatterplot of DCRF max F1-score against MLC-stack
completeness computed each grassland validation parcel.

Figure 8. Grassland parcels as classified by MLC-stack and
DCRF max F1-score and corresponding ground referencing

photos. Top to bottom row corresponds to parcel numbers 49, 8,
and 11 respectively as shown in Fig. 7. Grey and white areas
correspond to grasslands and misclassifications respectively.

and Herrmann (2011). We exploited their synergy for crop clas-
sification. Our DCRF framework introduces spatial and temporal
interactions. To enhance better data dependent spatial interac-
tions we developed a new interaction term expanded from con-
trast sensitive model. Experimental results established that our
new model is robust and suitable for crop classification. We set
β = 10 and eta = 1 based on a trade off between high classifi-
cation accuracy and over-smoothing. Compared to contrast sen-
sitive model proposed in (Shotton et al., 2009), the new model
moderates smoothing given data evidence in two scenarios. First
scenario, when adjacent labels are similar and data evidence sup-
port it, smoothness weight is increased. If data evidence does
not support label similarity, smoothness weight is reduced pro-
portional to difference in data. The second scenario considers
dissimilar adjacent labels by reducing smoothness weight if sup-
ported by data evidence. When label dissimilarity is contrary to
data evidence, smoothness weight is increased inversely propor-
tional to the magnitude of data evidence. This design realized a
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Figure 9. Maps of selected crops: top to bottom row represent
oats, sugar beet, and maize parcels respectively. Correctly

classified regions are illustrated in grey colour.

±
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Zone:          32N
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Legend
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Figure 10. Crop map of Fuhrberg, Germany, from DCRF
Max-F1 approach . Crop legend adopted from Ebinger (2012).

discontinuity adaptive model that moderates smoothing consider-
ing data evidence as suggested by Li (1995). Our model is differ-

ent from contrast sensitive model which only favours smoothing
similar adjacent labels.

The novel interaction potential model is adopted in CRF to de-
sign a DCRF sequence template classifier that considers inherent
phenology in images. We established that including spatial and
temporal phenological information improved classification accu-
racy in all epochs. Moreover, our technique still outperformed
MLC and CRF classification methods utilizing merged multitem-
poral images as bands for classification (Table 2). To avoid a
limited judgement using overall accuracy, we further compared
our approach, DCRF max F1-score, with MLC using stacked im-
ages. Analysis of correctness and completeness exposed a de-
tailed distribution of how each crop is recognized. DCRF max
F1-score poorly classified grassland parcels compared to MLC-
stack. However, errors encountered by the method correspond
to true ground changes that were not detected by MLC-stack for
two reasons. First, MLC-stack classification places all features in
one feature space which leads to a large variance that dominates
small variations in a class. Two, DCRF max F1-score considers
data and label dependent spatial interactions. This is supported
by the fact that in a homogenous parcel, e.g. parcel number 11
in Fig. 8, DCRF max F1-score completely recognizes the parcel
with higher accuracy than MLC-stack method, see Fig. 7. In ad-
dition, artificial changes or natural changes , e.g. due to different
variety of grassland and changes in farm management as depicted
by parcel number 49 and 8 in Fig. 8 respectively, are detected in
DCRF max F1-score. In contrast, MLC-stack is a pixel based ap-
proach that ignores context. Thus, classification results from it
are accompanied by ”salt and pepper” effect (Fig. 9). All other
grassland parcels were classified comparably well in MLC-stack
and DCRF max F1-score because they are managed in a common
and unique way, and driven by economic preconditions.

The advantage of our ensemble classifier is that it can be used
with any number of available images at any time of a season to
get an estimate of crop coverage. Moreover, compared to other
classifier combination strategies, the weighting we introduced to
the ensemble improved classification. Therefore, it guarantees an
optimal map in terms of accuracy. This is essentially beneficial
to governments and related stakeholders in food security policy
formulations and seeking alternative preventive measures. In ad-
dition, agricultural stock market and traders can anticipate good
years while insurers can accurately compute premiums and deter-
mine compensations where necessary.

6. CONCLUSION AND OUTLOOK

Our aim was to show that spatial-temporal information from a se-
quence of images improves crop classification. This was achieved
by designing a DCRF classifier that realized spatial context and
temporal phenological information exchange between nodes in
a temporal neighbourhood. Spatial interaction significantly en-
hanced spatial dependency minimizing ”salt and pepper” effect
witnessed in MLC. The introduced data interaction term enforces
a discontinuity adaptive model that moderates smoothing given
data evidence.

On the other hand, stakeholder are not interested in several maps
generated at each epoch in the same area. For them, statistics
from one optimal map may be more relevant. Therefore, we de-
signed a new ensemble approach based on F1-Score selection cri-
teria and correctness weighting. The weighting schedule proved
useful during integration of different classifier results.

So far, we let the DCRF model to automatically learn pheno-
logical information from data. The consequence of phenology
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is that a crop appears different at different times in satellite im-
ages. However, in some instances like preparation and post har-
vesting the backscatter is not entirely from the crops. Our future
study will introduce phenological information from other exter-
nal sources.
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