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ABSTRACT: 

 

This paper presents the comparisons of three soft classification methods and three sub-pixel mapping methods for the classification 

of coastal areas at sub-pixel level. Specifically, SPOT-7 multispectral images covering the coastal area of Perth are selected as the 

experiment dataset. For the soft classification, linear spectral unmixing model, supervised fully-fuzzy classification method and the 

support vector machine are applied to generate the fraction map. Then for the sub-pixel mapping, the sub-pixel/pixel attraction 

model, pixel swapping and wavelets method are compared. Besides, the influence of the correct fraction constraint is explored. 

Moreover, a post-processing step is implemented according to the known spatial knowledge of coastal areas. The accuracy 

assessment of the fraction values indicates that support vector machine generates the most accurate fraction result. For sub-pixel 

mapping, wavelets method outperforms the other two methods with overall classification accuracy of 91.79% and Kappa coefficient 

of 0.875 after the post-processing step and it also performs best for waterline extraction with mean distance of 0.71m to the reference 

waterline. In this experiment, the use of correct fraction constraint decreases the classification accuracy of sub-pixel mapping 

methods and waterline extraction. Finally, the post-processing step improves the accuracy of sub-pixel mapping methods, especially 

for those with correct coefficient constraint. The most significant improvement of overall accuracy is as much as 4% for the sub-

pixel/pixel attraction model with correct coefficient constraint. 

 

 

1. INTRODUCTION 

Coastal image classification is important for the monitoring of 

changes of coastal features, such as shoreline position and the 

coverages of coastal water bodies, sandy beaches and 

vegetation. Compared with other data source such as aerial 

images and UAV-acquired images, satellite images have the 

advantage of large spatial coverage, which is efficient for large-

scale coastal monitoring. However, the biggest disadvantage for 

most satellite images is the relatively low spatial resolution 

which limits the accuracy of estimation of coverages and 

positioning of boundaries. Sub-pixel mapping technique may be 

a solution to relieve this limitation. Generally, to realise the 

classification at sub-pixel level based on the original pixel-level 

images, two main steps are implemented: soft classification 

which predicts the percentage of each class inside a pixel and 

the sub-pixel mapping which determines the distribution of sub-

pixel labels. 

 

Soft classification, also called sub-pixel classification, allows 

multiple class membership for each pixel, which is designed to 

overcome the mixed pixel problem (Mertens, 2008). The 

estimation of class proportions inside each pixel leads to the 

generation of multiple fraction/abundance images, which are 

required for the following sub-pixel mapping step. Based on 

multiple criteria, Heremans and Van Orshoven (2015) compared 

6 commonly applied machine learning methods, i.e. Multilayer 

Perception, Support Vector Regression, the Least-Squares (LS)-

SVM, Bagged Regression Trees, Boosted Regression Trees and 

Random Forests for sub-pixel land cover classification with 8-

day MODIS NDVI images based on multiple criteria. They 

found that SVMs outperform other methods when time and 

training data are not considered. Other soft classification 

methods not belonging to machine learning include linear 

spectral unmixing (Settle and Drake, 1993) and fuzzy 
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classification (Bastin, 1997). The soft classification step is very 

important in the determination of the final classification 

accuracy in sub-pixel level (Thornton et al., 2006, Mertens, 

2008). Therefore, the comparison and selection of soft 

classification methods is implemented in this paper. 

 

To date, considerable research effort has been spent on the 

development of sub-pixel mapping techniques. Based on the 

characteristics of each method, most sub-pixel mapping 

algorithms can be classified as two basic groups: regression 

based algorithms and spatial optimisation based algorithms 

(Atkinson, 2009). Among these algorithms, the first type 

includes geostatistical methods (Boucher and Kyriakidis, 2006, 

Boucher et al., 2008) , spatial attraction models (Mertens et al., 

2006, Mertens, 2008, Liguo et al., 2011, Wang et al., 2012), 

Artificial Neural Networks (ANN) (Frieke, 2003, Mertens, 

2008) and Wavelet Transform (Ranchin and Wald, 2000, 

Mertens et al., 2004, Mertens, 2008, Romberg et al., 2001). 

Algorithms falling into the second type include Genetic 

Algorithms (Mertens et al., 2003, Mertens, 2008, Michalewicz, 

2013), pixel swapping (Atkinson, 2001, Atkinson, 2005, 

Thornton et al., 2006, Ling et al., 2008), Hopfield Neural 

Networks (Tatem et al., 2001a, Tatem et al., 2001b, Tatem et 

al., 2002, Tatem et al., 2003) and Markov Random Field (MRF) 

(Kasetkasem et al., 2005, Li et al., 2012, Aghighi et al., 2015). 

The experiments of (Mertens, 2008) indicated that the 

performance of each sub-pixel mapping method varies for 

images with different feature content. Therefore, the selection of 

the most proper method for coastal areas is necessary. 

 

In this paper, Section 2 introduces the principle of selected soft 

classification methods and sub-pixel mapping methods. Section 

3 illustrates the conduct of the experiment with SPOT-7 

multispectral images and gives a comparison and discussion of 

results. Section 4 gives the conclusion and future work. 
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2. METHODOLOGIES 

2.1 Selected Soft Classification Methods 

In this paper, linear spectral unmixing, fully-fuzzy classification 

and SVM method are selected and compared for the soft 

classification. 

 

2.1.1 Linear Spectral Unmixing (LSU): Linear mixture 

model (LMM) involves representing any kind of spectral 

response as a linear combination of substances called 

endmembers orthogonal to or independent of each other. 

Assuming there are M endmembers, the LMM can be 

expressed as: 

 

1

M

i i

i

x a s w


                                     (1) 

 

Where x is the pixel spectrum vector,
is represents each 

endmember, 
ia is the fractional abundance vector and w is the 

noise vector. To be physically meaningful, two constraints are 

usually applied. Firstly, the fractional abundance vector should 

be no less than zero. Secondly, the sum of fraction values for 

each pixel should be one. More details of LSU can be found 

from the paper by Keshava and Mustard (2002). 

 

This method has been widely applied in the sub-pixel mapping 

especially for hyperspectral images with many spectral bands. 

The commonly used software ENVI even has the linear spectral 

unmixing tool to extract the endmembers. However, the main 

drawback of LSU is the definition of endmembers and the 

assumption of orthogonality (Tompkins et al., 1997, Maselli, 

2001). Nevertheless, this method has been tested considering its 

advantages of simplicity to understand and ease for 

implementation. 

 

2.1.2 Fully-fuzzy Classification (FFC): Bastin (1997) 

proved that fuzzy classification is more accurate than linear 

mixture modelling and maximum likelihood classification 

method for Landsat TM imagery. Further, the fully fuzzy 

classification method used by Zhang and Foody (2001) can 

relax the requirements for training pixels compared with 

partially-fuzzy classification, indicating that the training pixels 

do not need to be pure, which can be beneficial for images with 

relatively low spatial resolution. It outperforms the partially-

fuzzy classification method as it increases the degree of overlap 

between pure pixels. Their method is based on the fuzzy c-

means algorithm (Bezdek, 2013), while instead of the mean and 

covariance of the samples, the fuzzy mean 
iv  and fuzzy 

covariance matrix 
iC  for class i  are calculated as follows 

(Wang, 1990): 
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Where n  is the number of class, 
ijp represents the fuzzy 

membership of training sample 
jx to the class i . Then the 

Mahalanobis distance 
ikd  of each observation 

ky  to the fuzzy 

classification centre 
iv  will be calculated by equation (3): 

 

   2 1T

ik k i k id y v C y v                     (4) 

 

Then the optimisation is realised by minimising of the error 

function
mJ : 
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Where c  represents the number of classes, 
ik  is the 

membership of observation 
ky  to class i  and m  is the 

weighting exponent controlling degree of fuzziness. 

 

2.1.3 Support Vector Machine (SVM): Mountrakis et al. 

(2011) gives a review of the increasing numbers of recent works 

using SVM in remote sensing area and conclude that SVM has 

good generalisation ability even with limited numbers of 

training samples. SVM can be used not only for classification 

but also for regression. For soft classification SVM is used for 

regression. The basic principle is to fit a model to predict the 

possibility of each pixel belonging to each class based on the 

training samples (Heremans and Van Orshoven, 2015). The 

training samples are projected to a higher-dimensional feature 

space by applying an appropriate kernel function. Several kernel 

functions can be used including the linear, polynomial, radial 

basis function (RBF) and sigmoid function. In this paper, the 

RBF is applied. In the new feature space, a linear model is then 

fitted with maximal margin with minimal errors. Therefore, the 

non-linear regression problem is solved as a linear regression 

function in higher-dimensional feature space (Smola and 

Schölkopf, 2004). There are two parameters mostly affecting 

the performance of the soft classification, i.e. the parameter 

inherited from the kernel function and the error penalty 

parameter c . Details of the algorithm will not be illustrated in 

this paper and readers can refer to the tutorial by Smola and 

Schölkopf (2004). 

 

2.2 Selected Sub-pixel Mapping Methods 

Three popular sub-pixel mapping methods, i.e. sub-pixel/pixel 

spatial attraction model, pixel swapping, ANN predicted 

Wavelet Transform are tested and compared in this paper. The 

introduction of those selected methods follows. 

 

2.2.1 Sub-pixel/pixel Attraction Model (SAM): Spatial 

dependence, i.e. spatially close observations are more likely to 

be alike than spatially distant ones, is the basic assumption for 

sub-pixel mapping (Mertens et al., 2006). For spatial attraction 

sub-pixel mapping models, spatial dependence is expresses by 

the attraction of neighbouring pixel or sub-pixels. Based on the 

variation of attraction targets, different models such as the sub-

pixel/sub-pixel attraction model (Liguo et al., 2011), sub-

pixel/pixel model (Mertens et al., 2006) and pixel/pixel 

attraction model (Wang et al., 2012) were developed. The main 

advantages of these models are the simplicity and ease of 

understanding (Mertens et al., 2006). In this paper, the method 

proposed by Mertens et al. (2006) which involves the 

interaction between pixel and sub-pixel is used. For each sub-

pixel
,a bp with sub-pixel coordinates of ( , )a b , its attraction 

value for class c is calculated as: 
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                   (6) 

 

Where  ,i jP c is the fraction value of its neighbouring pixel 

with pixel coordinates of  ,i j . The distance between the sub-

pixel and its neighbouring pixels is illustrated as in Figure 1. 

For the definition of neighbouring pixels, there are three 

neighbourhood models (Mertens, 2008) and the ‘surrounding’ 

model where all the 8-connected pixels are considered in the 

calculation of attraction, is selected for this paper. 

 

 
 

Figure 1. Illustration of coordinates of pixel and sub-pixel and 

distance calculation between them (adopted from Mertens 

(2008)) 

 

After the calculation of attraction value for each class, one 

simple method to derive the sub-pixel mapping result is to 

directly label each sub-pixel with the class with largest 

attraction value. Alternatively, the correct fraction (CF) 

constraint which forces the number of sub-pixels for each class 

inside a pixel to be consistent with the fraction value of the soft 

classification result (Mertens et al., 2004) can be applied. In this 

paper, both SAM and SAM with CF constraint (SAM CF) will 

be tested. 

 

2.2.2 Pixel Swapping (PS): PS method was firstly raised 

and tested on simulated imagery by Atkinson (2001) and then 

developed by other researchers such as Thornton et al. (2006), 

Luciani and Chen (2011) and Yuan-Fong et al. (2012). Firstly, 

the binary classification image at sub-pixel level is generated by 

random allocation according to the fractions of classes. Then, 

the attraction value 
iA of each sub-pixel from neighbouring 

pixels for class k is calculated by a distance-weighted function: 

 

   
1

m

i k i ij k j

j

A A x z x


                              (7) 

 

Where m is the number of neighbouring sub-pixels,  k jz x

indicates whether the neighbouring sub-pixel 
jx is labelled as 

class k or not (1 or 0), 
ij is the distance-dependent weighting 

parameter calculated as: 

 

exp
ij

ij

h

a


 
  

 

                                       (8) 

 

Where 
ijh is the distance between sub-pixel 

ix and its neighbour 

sub-pixel
jx . Iteratively, in every pixel, the sub-pixel with 

minimum attraction value classified as ‘1’ and the sub-pixel 

with maximum attraction value classified as ‘0’ would be 

swapped if the spatial correlation is increased after the 

swapping (Atkinson, 2001, Atkinson, 2005). Since for PS, the 

proportion of each class inside each pixel is kept throughout the 

iteration (Thornton et al., 2006), it is a method with CF 

constraint. 

 

2.2.3 ANN Predicted Wavelet Transform (ANN WT): 
Wavelet transform (WT) for 2D image can decompose the 

source image into approximation images at different lower 

spatial resolutions and detail coefficients forming the difference 

between successive approximations (Ranchin and Wald, 2000). 

Inversely, with the approximation fraction image and the 

estimated detail coefficients, the higher-resolution fraction 

image can be reconstructed ideally without any information loss 

(Mertens, 2008, Mertens et al., 2004). Mertens (2008) 

introduced ANN to model the wavelet coefficients considering 

ANN’s noise-resistance and capability of modelling. Their 

experimental results indicate that ANN WT method generally 

perform better than Genetic Algorithm and spatial attraction 

method. To derive the fraction image 
1jF 

with higher 

resolution level of 1j   based on the input coarse fraction 
jF in 

resolution level of j , four steps are needed as shown in Figure 

2. Firstly, WT decomposition is applied to the fraction image 

jF to generate horizontal coefficient image
1jH 

, vertical 

coefficient image
1jV 
, diagonal detail coefficient image 

1jD 

and fraction image 
1jF 

with lower resolution level 1j  . 

Secondly, three ANNs are trained to model the relationship 

between fraction image 
1jF 

and coefficient images
1jH 
,

1jV 

and 
1jD 
respectively. Thirdly, the modelled ANNs are used to 

predict the coefficient images
jH , 

jV and
jD using the original 

fraction image 
jF with resolution level of j using as input. By 

this step, the coefficient images with the same resolution level 

with the input fraction image are generated. Finally, the fraction 

image 
1jF 
in higher resolution level 1j   is generated by WT 

reconstruction step. 
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Figure 2. Framework of ANN WT (adapted from Mertens et al. 

(2004)) 

 

Similar with the SAM and SAM CF methods, there are two 

methods, i.e. ANN predicted WT without or with the CF 

constraint, which will be abbreviated as ANN WT and ANN 

WT CF respectively in the following. 

 

 

3. EXPERIMENT RESULTS AND DISCUSSION 

3.1 Dataset 

A set of SPOT-7 pan-sharpened sample images over Port Beach 

in Perth, Australia was downloaded from the website 

http://www.geo-airbusds.com/en/23-sample-imagery. The 

images were acquired on 24 October 2014 with a spatial 

resolution of 1.5m and four spectral bands. A spatial subset of 

1024×512 pixels is selected and the location of the studied area 

is shown in Figure 3. To simulate the coarse-resolution image at 

pixel level, each of the four spectral bands is degraded to pixel 

size of 6m, which means the scale factor is 4. The reference 

classification map in sub-pixel level is manually created using 

the original multispectral images. The soft classification map in 

pixel level is then generated by calculating the percentages of 

each class inside the block of every 4×4 pixels. 

 

 
 

Figure 3. Studied area 

 

3.2 Feature Selection and Supervised Soft Classification 

For the studied area of interest, five classes are pre-defined, i.e. 

water, sandy beach, vegetation, high-reflection objects and low-

reflection objects. The high-reflection objects mainly include 

visually-bright buildings and man-made structures while the 

low-reflection objects are mostly roads, shadows and visually-

dark roofs. 30 training pixels assumed to be ‘pure’ for each of 

the pre-defined class are manually selected for LSU method; 

considering the large coverage of water body, 50 training pixels 

are selected. The training pixels are marked as crosses in 

different colours for different classes shown as Figure 4(a). 

Endmembers are extracted by simply averaging the training 

sample vectors belonging to the same class. 

 

For SVM, the same set of training pixels is selected. Apart from 

the intrinsic attributes of the original images, i.e. the pixel 

values corresponding to multispectral bands, other attributes 

including Normalised Difference Vegetation Index (NDVI) and 

Difference Water Index (NDWI) (Gao, 1996) are also selected 

and added to the input features vectors to improve the accuracy 

of the soft classification. Moreover, the position of the pixel, i.e. 

the row and column are selected as well considering the spatial 

distribution of different objects. All those features are scaled to 

the range of [-1, 1] to avoid the features with much larger 

numeric values dominating other features. The open source 

package LIBSVM developed by Chang and Lin (2011) 

distributed on the website 

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/ were 

downloaded and utilised for the processing. To find the optimal 

combination of parameter  and c , the parameter optimisation 

tool applying cross validation (CV) to the training samples is 

used. According to the optimisation result, the optimal 

parameters are 4.0 and 0.25 respectively. 

 

To be consistent with SVM and LSU method, the same number 

of training pixels with the SVM method is selected for FFC. 

However, some of those training pixels are changed to mixed 

pixels as shown in Figure 4(b) with fraction values all above 

0.9. The optimal value 2.3 of weighting exponent parameter m
is derived by initial analysis to minimise the mean root mean 

square error (RMSE) of the five classes. Table 1 gives the 

accuracy of the soft classification results including the RMSE 

and correlation coefficient (CC) for each class. 

 

     
(a)                                                (b) 

 

Figure 4. (a) Training pixels for LSU and SVM. (b) Training 

pixels for FFC. 

 
  water Sandy 

beach 

vegetat

ion 

High-

reflection 
objects 

Low-

reflection 
objects 

RMSE LSU 0.165 0.128 0.171 0.122 0.298 

FFC 0.052 0.174 0.205 0.373 0.445 

SVM 0.048 0.107 0.125 0.099 0.173 

CC LSU 0.953 0.874 0.783 0.769 0.812 

FFC 0.995 0.782 0.638 0.437 0.495 

SVM 0.997 0.917 0.835 0.858 0.922 
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Table 1. Accuracy assessment of soft classification methods 

 

It can be seen that the SVM performs best no matter whether 

judged based on RMSE or correlation coefficient. Specifically, 

it generates the most accurate result for the classification of 

water body with RMSE of 0.048 and correlation coefficient of 

0.997. LSU is generally better than FFC except for the 

classification of water body. This can be explained by the intra-

class variability between still water body and the nearshore 

water body with highly-reflective foams and waves. The 

selection of training pixels within this area can significantly 

affect the resultant spectrum of endmember. 

 

The FFC method is almost as accurate as SVM for the 

classification of water body with RMSE of 0.052 and 

correlation coefficient of 0.995, while for other classes it 

generates the poorest result. Although the FFC method does not 

generate as good result as SVM, it has the advantage of the 

relaxation of training pixels. This can be very crucial when it is 

difficult to choose pure pixels or even when there are no pure 

pixels for some classes, which does not satisfy the basic 

assumption of many algorithms. Since the soft classification 

result directly determines the final results, the SVM method is 

used in the following. 

 

3.3 Sub-pixel Mapping 

In order to compare the sub-pixel mapping techniques with 

pixel-level classification, the hard classification result of SVM 

at pixel level is resized to the same dimension as the sub-pixel 

result, which is abbreviated as HC for convenience. Besides, to 

improve the performance of PS method, the ANN WT CF result 

is used as initial input instead of random distribution. The 

results of the selected sub-pixel mapping methods are shown as 

Figure 5. It can be seen that for all the methods, some parts of 

the wet sandy beach are misclassified as low-reflection objects. 

Although for those methods without CF constraint many small 

objects are lost, especially for the SAM method; methods with 

CF constraint seem to be less accurate since they generate many 

scattered pixels or patches. 

 

 
(a)                            (b)                              (c) 

 
(d)                            (e)                              (f) 

 
               (g) 

 

Figure 5. Sub-pixel mapping results where blue, yellow, white 

and grey pixels represent water body, sandy beach, high-

reflection objects and low-reflection objects. (a) Reference map. 

(b) HC. (c) ANN WT. (d) ANN WT CF. (e) SAM. (f) SAM CF. 

(g) PS. 

 

The Cohen's Kappa coefficient and overall accuracy (OA) for 

those methods are presented in Table 2. Firstly, ANN WT 

generates the most accurate result with OA and Kappa 

coefficient of 91.3% and 0.867 respectively, followed by SAM 

method with OA and Kappa coefficient of 91.21% and 0.865. 

However, even for the most accurate two methods, i.e. ANN 

WT and SAM, the accuracy does not improve much compared 

with the hard classification result using SVM. The increase of 

OA for them is only 0.21% and 0.12% respectively. Secondly, 

as consistent with visual judgment, the methods without CF 

constraint generate more accurate results than those with CF 

and the HC. By applying CF constraint, the accuracy decreases 

considerably, which is even worse than HC. Taking the most 

accurate ANN WT as an example, after applying CF, the 

accuracy reduces to the lowest. Thirdly, among the three 

methods with CF constraint, PS is the most accurate one with 

OA and Kappa coefficient of 88.79 and 0.831 respectively. 

 
 OA (%) Kappa 

HC 91.09 0.864 

ANN WT 91.30 0.867 

ANN WT CF 87.41 0.809 

SAM 91.21 0.865 

SAM CF 87.44 0.809 

PS 88.79 0.831 

Table 2. Accuracy assessment of sub-pixel mapping methods 
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3.4 Post-processing 

To improve the final results, a post-processing step 

incorporating known geographic knowledge is implemented. 

Firstly, it is believed that the water body should be only one 

connected region and isolated water body areas are reclassified. 

While this might not hold for some special areas, it can reduce 

the misclassification for most cases of coastal areas. 

 

Secondly, very small patches are regarded as misclassified. 

Verhoeye and De Wulf (2002) used a smoothing filter to reduce 

the isolated sub-pixels in their sub-pixel mapping results, which 

is a reverse step of sub-pixel mapping (Mertens, 2008), while in 

this paper, filtering is avoided. Instead, they are re-labelled 

according to the available information. For ANN WT and ANN 

WT CF, each of these sub-pixels is reclassified to the class with 

second largest fraction value. Similarly for SAM and SAM CF, 

they are reclassified to the class with the second largest 

attraction value. For PS, since no information in sub-pixel level 

is available, each sub-pixel is reclassified to the class with 

largest number of sub-pixels shown in its neighbourhood 

window. 

 

Thirdly, the areas classified as high-reflection or low-reflection 

objects between sandy beach and the water body or inside the 

water body are assumed to be misclassified and are re-labelled 

as water or sandy beach. This misclassification might be caused 

by foam and waves which are highly reflective and more similar 

to high-reflection objects rather than water body or by wet sand 

which is dark and more similar to low-reflection objects. This 

phenomenon is hard to avoid even with some training points in 

those ambiguous areas. The sub-pixel mapping results after 

post-processing are shown in Figure 6.  

 

 
(a)                            (b)                              (c) 

 
(d)                            (e)                              (f) 

 
               (g) 

 

Figure 6. Post-processed sub-pixel mapping results. (a) The 

reference map. (b) HC. (c) ANN WT. (d) ANN WT CF. (e) 

SAM. (f) SAM CF. (g) PS. 

 

The accuracy and its improvement compared with the results 

without post-processing are shown as Table 3. 

 
 OA 

(%) 
Improvement of 

OA (%) 
Kappa Improvement of 

Kappa 

HC 91.51 0.43 0.870 0.007 

ANN 

WT 
91.79 0.48 0.875 0.008 

ANN 
WT CF 

91.36 3.95 0.868 0.059 

SAM 91.29 0.08 0.866 0.001 

SAM CF 91.44 4.00 0.869 0.060 

PS 91.27 2.48 0.867 0.036 

Table 3. Accuracy of post-processed results 

 

After post-processing, the ANN WT is still the most accurate, 

which is slightly better than HC. The accuracy of HC is also 

improved and is more accurate than other methods except for 

ANN WT. The methods with CF constraint are improved 

considerably and the improvement of SAM CF is the most 

significant with 4.00% and 0.06 of OA and Kappa coefficient 

respectively, which is even more accurate than SAM. SAM CF 

and ANN WT CF are comparable with HC result after post-

processing, which indicates that the methods with CF constraint 

can be potentially improved with proper post-processing. 

 

Since the waterline is a very important feature of coastal areas, 

the waterlines are extracted from the post-processed 

classification maps. The distance of each pixel in the extracted 

shoreline to the reference waterline is recorded. The mean value 

and RMSE of the distances for each extracted waterline are 

shown in Table 4. 

 
 HC ANN 

WT 
ANN 
WT 

CF 

SAM SAM 
CF 

PS 

Mean 
distance 

(pixels) 

0.74 0.47 1.06 0.80 1.11 1.07 

RMSE 

(pixels) 

0.98 0.67 1.42 1.03 1.50 1.41 

Maximum 

distance 

(pixels) 

3.16 2.68 5.00 2.68 4.92 4.92 

Table 4. Waterline accuracy assessment 
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From Table 5, we can find that ANN WT not only performs 

best at classification, but also generates the most accurate 

waterline with mean distance of 0.47 pixels, RMSE of 0.67 

pixels and maximum distance of 2.68 pixels. Other methods are 

still not as good as HC, which is consistent with the 

classification accuracy assessment. However, all the methods 

with CF constraint generate poorer results than those without 

CF constraint, which indicates the CF constraint is not 

beneficial for the mapping accuracy of boundaries between 

gradually changed classes such as the waterline along sandy 

beaches. The errors inherited from the soft map force the sub-

pixels to be assigned to classes and further result in many small 

patches around the boundary position. Therefore, it is expected 

that CF is more appropriate for areas with many small objects. 

Besides, the accurate soft classification map is crucial. 

 

In the future, real coarse-resolution images instead of simulated 

images will be used for the objective assessment of sub-pixel 

mapping techniques. Besides, MRF based methodologies such 

as the fully spatially adaptive sub-pixel mapping method 

(Aghighi et al., 2014) will be compared with the ANN WT 

method. Moreover, the soft classification accuracy is expected 

to be improved by incorporating other information such as the 

texture information. Finally, more factors should be considered 

in the future if we want to assess one sub-pixel mapping method 

objectively and comprehensively. For example, Ling et al. 

(2008) found that pixel swapping method generated very 

different results with different scale factors, while for this paper, 

only the scale factor of 4 is tested. 

 

 

4. CONCLUSIONS 

 

In this work, a set of SPOT-7 multispectral images is used to 

test the performance of soft classification methods and sub-pixel 

mapping methods for the classification of coastal areas in sub-

pixel level. Firstly, for the soft classification, LSU model, FFC 

and the SVM methods are used to generate the fraction map. 

The RMSE and correlation coefficient of the fraction values 

both indicate that SVM is the most accurate among the three 

methods. Then by using the soft map generated by SVM, SAM, 

SAM CF, ANN WT, ANN WT CF and PS methods are tested 

for their performance of sub-pixel mapping. A post-processing 

step according to the known spatial knowledge of coastal areas 

is then implemented to improve the results. By the accuracy 

assessment of the classification and waterline extraction results, 

ANN WT is found to be the most accurate sub-pixel mapping 

method compared with the other five methods. Specifically, the 

overall classification accuracy of ANN WT is 91.79% and 

Kappa coefficient of 0.875 after the post-processing step; the 

mean distance of the extracted waterline to the reference 

waterline is 0.47 pixels, i.e. 0.71m. Besides, it is found that the 

CF constraint decreases the classification accuracy of sub-pixel 

mapping methods and waterline extraction for the studied 

coastal area. Finally, the post-processing can be very important 

for some methods especially for those with CF constraint with 

the most significant improvement of overall accuracy is as 

much as 4% for the SAM CF method. 
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