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ABSTRACT:

We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of Cercospora

leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsu-

pervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each

sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach

with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Sup-

port Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional

pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information

regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets.

One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary

approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.

1. INTRODUCTION

Hyperspectral images are an important tool for assessing the vi-

tality and stress response of plants (Fiorani et al., 2012; Mahlein

et al., 2012; Behmann et al., 2014). In recent time, sensor tech-

nology for hyperspectral plant phenotyping has significantly im-

proved in resolution, accuracy, and measurement time and is in-

tegrated into commercial phenotyping platforms.

The identification of disease symptoms using hyperspectral im-

ages is an established approach. Due to the unknown statis-

tical distributions of hyperspectral data and disease symptoms,

methods from the machine learning domain are used frequently.

Applications cover direct classification of spectra (Moshou et

al., 2004), combined analysis of multiple vegetation indices

(Behmann et al., 2014) and derivation of new, disease specific

indices (Mahlein et al., 2013). Supervised approaches like neural

networks (Wu et al., 2008), Support Vector Machines (Rumpf et

al., 2010) and LDA (Suzuki et al., 2008) and unsupervised ap-

proaches like Self-Organizing Maps (SOM; Moshou et al., 2002)

are used. Since label information for disease symptoms are hard

to obtain and oftentimes erroneous, one-class classifiers (e.g. ,

Schölkopf et al., 2001; Tax and Duin, 2004) and unsupervised

approaches are promising (e.g. , Wahabzada et al., 2015).

Simultaneously with the improvement of hyperspectral sensors,

sensor technology for the assessment of 3D geometry is consid-

erably improving. A common application for analyzing 3D point

clouds of plants is the segmentation of a plant into different or-

gans like leaves, stems and fruits like berries (Paulus et al., 2013b;

Roscher et al., 2014).

Combining both data types, hyperspectral images and 3D point

clouds, to a hyperspectral 3D plant model is the recent step
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(Behmann et al., 2015a). Based on the complementary charac-

teristics of both information layers several application using the

synergy of spectral and spatial features are possible.

Hyperspectral 3D plant models can be generated in multiple

ways. Liang et al. (2013) have generated hyperspectral 3D mod-

els by observing a plant from multiple viewpoints with a full

frame hyperspectral camera. These perspective images are com-

bined to a 3D model by detectors for homologous points and the

structure from motion principle. A similar approach was applied

to crop surfaces using a unmanned aerial vehicle and a full frame

hyperspectral camera that captures all bands simultaneously by

(Bareth et al., 2015). The resulting crop surface models allow to

extract plotwise height information and to integrate these into the

spectral analysis. The combination of separately sensed spectral

and spatial information was applied to solid objects in the context

of compressed sensing by (Kim et al., 2011). They combine a 3D

triangulation sensor with a multi-spectral camera and a rotating

table to generate spectral 3D models of solid objects.

Figure 1: Average hyperspectral plant signatures for specific in-

clination angles.

Sparse representation-based classifiers have been recently in-

troduced in the context of hyperspectral image analysis, show-
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ing e.g. state-of-the-art classification performance. A sparse

representation-based approach assumes that each pixel can be

reconstructed by a sparsely weighted linear combination of a few

basis vectors taken from a so-called dictionary. The weights of

the representation can be used as learned new data representation

and be fed into a classifier, which can be seen as the first level of

deep learning where a hierarchical representation is learned. The

dictionary is constructed from a set of representative samples, for

instance the training data, and is either directly embodied by these

samples (e.g. , Soltani-Farani et al., 2013; Chen et al., 2011) or

learned from them (e.g. , Yang et al., 2014; Charles et al., 2011).

More sophisticated approaches use structured sparsity in order to

integrate prior knowledge such as homogeneity assumptions into

the solution (Bach et al., 2012). In this way, actual structure in the

data can be modeled rather than unimportant effects from specific

samples leading to overfitted solutions.

Sparse representation has also been used for outlier/anomaly de-

tection by e.g. Adler et al. (2013). In this work an extra error

term is introduced into the optimization function to account for

all anomalies which cannot be explained well by a weighted lin-

ear combination of dictionary elements. Thus, this approach is

based on same assumption as one-class classifiers. We use a sim-

ilar strategy based on this assumption in our paper by using a

topographic dictionary in order to combine spectral as well as

prior information about the geometry of the plant. Topographic

dictionaries are dictionaries in which neighboring dictionary ele-

ments show similar weights to input signals (Kavukcuoglu et al.,

2009; Mairal et al., 2011). Their usage can promote rotation- and

translation-invariant features, which is especially useful for ro-

bust object recognition. Generally, the dictionary is learned from

data to be topographic and develops a typical structure. In our

work, the learning step is omitted, since we exploit the inclina-

tion information to construct a sorted dictionary, which can be

seen as an 1D topographic dictionary. Fig. 1 shows some of the

used dictionary elements with their respective inclination derived

from 3D information of the plant. As can be seen the signal show

a typical behaviour depending on the inclination.

The present paper is - to our knowledge - the first study that com-

bines plant geometry and spectral information for detecting dis-

ease symptoms in the close range. We apply our framework on

sugar beet plants which are partially infested by Cercospora leaf

spot disease. We employ prior knowledge about geometry and

spectral characteristics to build a topographic dictionary, which is

used within a sparse representation framework with group spar-

sity. Furthermore, we apply feature stacking within One-Class

Support Vector Machines (OCSVM; (Tax and Duin, 2004)) to

integrate the geometry to show its positive effect. This allows a

comparison of these different integration approaches and analysis

methods.

This paper is structured as follows: Sec. 2. describes the used

plant material, sensors and the combination of their geometry

and spectral information. Sec. 3.1 introduces sparse represen-

tation and its usage in our framework. OCSVM are introduced

and the application of these methods for disease detection is out-

lined in Sec. 3.1.2. In our experiments (Sec. 4.) we analyse dif-

ferent aspects for the detection of Cercospora disease symptoms

and compare sparse representation with topographic and standard

dictionary to OCSVM.

2. DATA

2.1 Biological material

The applications for hyperspectral 3D plant models are demon-

strated by a preliminary study with sugar beet plants partially in-

fected by the plant pathogen Cercospora beticola. The dicotyle-

don sugar beet is the main sugar producing crop in the European

Union and temperate climates. Characteristic are broad leaves

with a heterogeneous topography, characterized by leaf veins

and the intercostal tissue. The single leaves emerge rosette-like

with stalks from the center of the tap root, which is a thickened

hypocotyl. During vegetation periods sugar beet plants are ex-

posed to different kinds of biotic and abiotic stress. Thus the

identification of resistant genotypes is a relevant task in plant

phenotyping. For the experiments, plants, cv. Pauletta (KWS,

Einbeck, Germany) were cultivated for 8 weeks in a controlled

environment in a greenhouse. To demonstrate the ability of hy-

perspectral 3D plant models for a detailed and improved disease

detection, plants were inoculated with Cercospora beticola, the

causal agent of Cercospora leaf spot. Three plants, one healthy

and two infected, were observed by the sensor systems and hy-

perspectral 3D plant models were generated based on these mea-

surements.

2.2 Sensors

Hyperspectral cameras record the reflected radiation at narrow

wavelength bands with a high spatial resolution in a defined field

of view. The hyperspectral pushbroom sensor unit used in this

study was the VISNIR-camera ImSpector V10E with 1600 pixel

observing a spectral signature from 400 to 1000 nm (Specim,

Oulu, Finland) in nadir position. Its viewing plane is moved lin-

early across the plant. The measured images are radiometrically

normalized by subtracting the dark frame and by calculating the

ratio to a white reference panel. The assessment of plant shapes

requires 3D imaging techniques that handle the non-regular sur-

face and the non-solid characteristics of the plant architecture. In

this study, a Perceptron laser triangulation scanner (Perceptron

Scan Works V5, Perceptron Inc., Plymouth MI, USA) is used.

By coupling with a measuring arm (Romer Infinite 2.0 in 2.8m

version) it provides an occlusion-free option for close-up imag-

ing of plants with a point reproducibility better than 0.1 mm. It

is chosen due to its high resolution and accuracy and has been

successfully applied for 3D imaging of various plants (Wagner et

al., 2011; Paulus et al., 2013a).

2.3 Combination of hyperspectral image and geometry

For the combination of 3D point clouds and image data to hyper-

spectral 3D plant models, directions of the 3D ray for each pixel

of the hyperspectral image have to be calculated. Based on this

information, the corresponding surface point of the plant can be

determined. The calculation of the 3D rays is performed by a

camera calibration procedure specially designed for hyperspec-

tral pushbroom sensors in close range scenarios like plant pheno-

typing. The used camera calibration method is described in de-

tail in (Behmann et al., 2015b). It extends the linear pushbroom

model by a non-linear fraction using polynomials. The model

parameters are estimated by homologous points on a reference

object specifically designed for this purpose. Using the estimated

camera model, 3D information can be projected into the image

space resulting in a depth image with the same resolution as the

hyperspectral image. Based on this depth image, pixel-wise in-

clination can be derived by analyzing the local neighborhood (see

Fig. 2). In this study a hyperspectral image and local inclination

for each pixel of the image is combined to a hyperspectral 3D

model.
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(a) Image data of plant 1 (b) Inclination data of plant 1

(c) Image data of plant 2 (d) Inclination data of plant 2

Figure 2: RGB image of both data sets plant 1 and plant 2 and their respective inclination information in degree.

3. DETECTION FRAMEWORK

3.1 Methods for Anomaly Detection

As label information are erroneous and its generation is related to

great effort, the application of one-class classifiers and unsuper-

vised approaches is favorable for stress detection on plants. We

use four different approaches for detection of disease symptoms

comprising sparse representation with topographic and standard

dictionary and OCSVM with and without stacked inclination fea-

ture. For all approaches we only provide negative examples by

using an image of a healthy plant without desease symptoms.

Treating these healthy samples as normal allows to characterize

the anomaly of disease symptoms in the remaining images. In

the following the two methods are explained in more detail and

approach for the detection of disease symptoms is introduced.

3.1.1 Sparse Representation with Topographic Dictionaries

In terms of basic sparse coding a (V × 1)-dimensional test sam-

ple x can be represented by a weighted linear combination of a

few elements taken from a (V ×N)-dimensional dictionary D,

so that x = Dα+ ǫ with ‖ǫ‖ being the reconstruction error. The

parameter vector comprising the weights is given by α.

Assuming the dictionary elements were constructed using geom-

etry as well as spectral information, the whole dictionary is sorted

regarding the inclination. The dictionary is divided into overlap-

ping groups Gi, i = 1, . . . , I , where one group comprises the

indices of neighboring dictionary elements. The sparsity groups

should not be confused with inclination groups, since one sparsity

group can contain multiple inclination groups. The optimization

function L with group sparsity is given by

L = ||Dα− x||+ λ
∑

i

√

∑

j∈Gi

wjα
2

j (1)

The weights α are smoothed with Gaussian filter weights w,

where the width of the kernel is chosen to by around 1/3 of the

number of group elements. Since the groups are overlapping, the

weights α will vary smoothly over neighboring groups. We use

group orthogonal matching pursuit as an approximation to solve

for the minimization in (1) using the approach presented in Szlam

et al. (2012). The maximum number of dictionary elements is re-

stricted to W .

V × I V × N

N × I

x

=

D α

. . .

. . .

. . .

. . .

. . .

. . .
...

...
...

... ...
...

Figure 3: Schematic illustration of sparse representation. Differ-

ent inclination groups in the dictionary are illustrated in different

colors, whereas sparsity groups may contain multiple inclination

groups. Color intensity indicate the value of the weight.

3.1.2 One-class Support Vector Machines As second ap-

proach we use OCSVM Tax and Duin (2004), an established

anomaly detector. The used OCSVM classifier derives a spheri-

cal decision boundary separating a given sample set from the re-

maining feature space. As this decision boundary represents the

sample sets and provides a specific type of distribution model, the

used method is called Support Vector Data Description (SVDD).

Compared to density estimation methods, OCSVM deal well with

sparsity of high dimensional data, which generelly leads to the

curse of dimensionality.

3.2 Detection of Diseases

Both presented approaches yield different outcomes which can

be utilized for the detection of disease symptoms (Tab. 1). For

OCSVM the distance to the hyperplane is used as single output

to be analyzed. For sparse representation the following outcomes

can be qualified for analysis:

• Reconstruction error: We expect the reconstruction error for
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pixel with disease symptoms to be higher than for pixels in

other regions, since these pixels cannot be reconstructed by

the dictionary elements in a proper way.

• Sum of the weights α: We expect this value to by differ-

ent for pixels with disease symptoms than for other pixels,

which weights should be approximately sum to 1.

• Spatial analysis of dominant dictionary elements (i.e. , dic-

tionary element with largest weight): We expect that anoma-

lies with similar spectral characteristics to be reconstructed

by similar dictionary elements, since these pixels mostly

have the same nearest neighbor in feature space. As a post-

processing step for this outcome, we utilize morphological

operators to improve the spatial analysis of dominant dictio-

nary elements, e.g. by removing too small regions with the

same dominant dictionary element.

The outcomes can also be combined by e.g. multiplication.

Abbreviation Description

DVSVM Decision value of OCSVM

RESR Reconstruction error of sparse repre-

sentation

SumWSR Sum of weights α of sparse representa-

tion

DESR Dominant dictionary element used for

sparse representation

DE+RESR Dominant dictionary element combined

with RESR

Table 1: Abbreviations for the outcomes of the used disease de-

tection methods

The different outcomes are used to detect the center points of dis-

ease symptoms by the following workflow: First, the background

is automatically removed as 3D information is not available there.

Furthermore, we removed the leaf borders from the evaluation by

eroding the binary image of available inclination by 10px. At

last, we perform a peak detection with non-maxima suppression

for each pixel in the image (c.f. Section 4.1.3) . Since disease

symptoms of the plant can lie close to each other, the threshold

for the non-maxima suppression has to be chosen regarding im-

age resolution and prior information about the illness.

4. EXPERIMENTS

4.1 Experimental Setup

4.1.1 General Setup In our experiments we analyze two im-

ages (see Fig. 2) of plants with given data as described in Section

2.. One healthy plant with inclination information is used to build

the dictionary. For construction of the dictionary we randomly se-

lect 10 samples per inclination group, where on group is defined

by all samples with the same inclination after rounding. Samples

are discarded, which are too dissimilar regarding the standard de-

viation to the average in one inclination group. Generally, these

are samples from leaf veins, specular reflections and other out-

liers. The detection of disease symptoms is performed using the

criteria mentioned in Sec. 3.2, where several outcomes are com-

bined by multiplication. Since using the dictionary elements as

training data for OCSVM turned out to result in low accuracies,

we randomly choose 20 samples per inclination group. The train-

ing set need to include samples from leaf veins and specular re-

flections to ensure high accuracies. Before applying OCSVM, the

data set is Z-normalised, i.e. each feature is normalized to have

zero mean and a standard deviation of one to equalize the fea-

ture weight. We compare OCSVM with a sparse representation

approach with topographic and standard dictionary, i.e. no group

sparsity.

4.1.2 Parameter Settings of Used Methods For optimiza-

tion of (1), we use our own implementation of group orthogo-

nal matching pursuit and restrict the number of active groups to

W = 3. We choose 50 inclination groups and a large average

sparsity group size of |G| = 16 with an overlap of 14. We applied

OCSVM in two different setups, once without using inclination

and once with pixel-wise inclination as additional and weighted

stacked feature. The idea behind this feature stacking approach is

to define an anomaly in the geometric context when compared to

other spectra with similar inclination. The crucial factor in apply-

ing OCSVM is the specification of optimal values for the hyper-

parameters ν (cost on number of support vectors) and γ (kernel

width). In the absence of labeled training data of two classes, we

specify an outlier rate of 1% as expected leading to reasonable re-

sults. Using the SVDD implementation in LIBSVM 3.18 (Chang

and Lin, 2011), we optimized the two parameters using cross val-

idation with a grid optimization leading to the parameter values

C = 1 and γ = 1.2 · 10−4 for the spectral data set and C = 0.46
and γ = 6.1 · 10−5 for the data set that utilizes also inclination.

The feature weight w = 0.3 is used for the inclination, which

leads to visually optimal results.

4.1.3 Evaluation Criteria Due to the error-prone labeling of

the exact area of the symptoms, we decided to exclude this effect

from the analysis by relying only on the symptom centers which

are labeled more robust. Therefore, the detected symptom centers

and the corresponding strengths of the prediction are the analysis

output and the base for the result evaluation.

In order to evaluate our proposed framework, we use precision-

recall curves and receiver operating characteristics (ROC). For

this, the true positives rate (tp), false positives rate (fp) and false

negatives rate (fn) is computed to derive precision, which is de-

fined as
tp

tp+fp
, and recall, which is defined as

tp

tp + fn
. As evaluation

measure we compute the area under curve (AUC). The higher the

value the better performing the algorithm.

4.2 Results and Discussion

In our experiments we could observe that all outcomes presented

in Sec. 3.2 could serve as indicator for disease symptoms. Fig. 4

shows the reconstruction error of the sparse representation-based

approach with topographic dictionary and the decision value ob-

tained by OCSVM. Both outcomes may serve as indicator for a

detection of disease symptoms. As expected, the reconstruction

error of the sparse representation approach as well as the deci-

sion value obtained by OCSVM is higher for pixel with disease

symptoms than for healthy pixels. While OCSVM show a high

variability within each leaf and only small differences between

leafs, the sparse representation approach shows a small variabil-

ity within a leaf but large differences between leafs. Fig. 5 show

a larger part of each test image for sparse representation with to-

pographic and standard dictionary. Both approaches show the

similar weakness to detect leaf veins as potential anomaly, how-

ever they are more visually robust to specular reflections than

OCSVM.

As illustrated in Fig. 6, we could observe that most of the pixels

with disease symptoms are reconstructed by the same dictionary

element or a common set of dominant dictionary elements. These

dominant elements can be identified by the average roundness

factor of specific areas with the same dictionary element index.
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(a) Decision value obtained from OCSVM for of plant 1 (b) Decision value obtained from OCSVM for of plant 2

(c) Reconstruction error of plant 1 obtained from sparse

representation with topographic dictionary

(d) Reconstruction error of plant 1 obtained from sparse representa-

tion with topographic dictionary

Figure 4: Indicator of disease symptoms obtained by sparse representation with topographic dictionary and OCSVM with inclination

information. Blue color indicate a low value and yellow colors a high value.

Also, leaf veins are reconstructed by mostly one, dominant dic-

tionary element, however, in most cases a different one compared

to pixel with diseased symptoms. Thus, using the dictionary ele-

ment as indicator for diseases, leaf veins and potential areas with

disease symptoms can be distinguished from each other. This is

advantageous over using the reconstruction error or the sum of

the weights, which show a similar behavior for disease symp-

toms and leaf veins. However, the identification of the dominant

element can be challenging, e.g. as soon as single, round disease

areas conflate to larger areas. We could further observe that the

usage of a topographic dictionary result in smoother results, so

that grouping of dominant dictionary elements yield more reli-

able regions (see Fig. 6). A descrease of the group size results in

more used dominant dictionary elements.

Fig. 7 as well as Tab. 2 show quantitative results. The sparse rep-

resentation approach reached in most cases better results when

compared to OCSVM. Detection of disease symptoms with re-

construction error only results in most cases in the lowest accu-

racies, because false negatives arising from leaf veins or other

anomalies cause a loss in accuracy. Although the sum of the

weights tend to be higher for pixels with disease symptoms, also

this criteria yield worse results especially for topographic dic-

tionaries and thus, is not distinctive enough for the detection of

the symptoms. Although the usage of the dominant dictionary

elements sometimes achieve the highest accuracy of 100%, this

result must be critically examined because this criterium tend to

underestimate diseases. I.e. , all detected disease symptoms are

correct, but only about 3/4 of all disease symptoms were de-

tected. In most cases the usage of a topographic dictionary lead

to a gain in accuracy. The reason for this is, as indicated earlier,

the outcomes are smoother when using a topographic dictionary

and thus, the results are less effected by noise.

OCSVM achieves in both configurations and on both data sets

a competitive detection accuracy of Cercospora symptoms as

anomalies, however, OCSVM need more training than sparse

representation-approach to achieve good results. As sparse rep-

resentation, OCSVM without inclination information sometimes

fail in separating leaf regions with specular reflections from the

disease symptoms. Therefore the precision of the OCSVM with-

out inclination is reduced. An interfering problem was the er-

roneously detection of leaf veins as symptoms. As this is not

related to a specific inclination it cannot be compensated by the

additional inclination information. As counter measure, the train-

ing set from the healthy plant should be sampled in a way that

samples of leaf veins are included sufficiently.

As can be seen in Tab. 2, the OCSVM experiment shows clearly

that the integration of spatial knowledge by feature stacking im-

proves the prediction quality. In all cases the AUC is improved.

The reason for this is the definition of ”anomaly” now in a spa-

tial context, meaning that a spectra is compared to spectra with

similar inclination information. For horizontal leaf parts, a strong

reflectivity is normal due to the specular reflection whereas such

a high reflectivity for leaf parts with higher inclination would be

certainly an ”anomaly”. In this way OCSVM takes the effect of

geometry into account that is able to cover the important pro-

cesses of interest. Further improvements in prediction quality

may be achieved by the construction of more informative fea-

tures or feature combinations. The inclusion of spatial features

that use the spectral characteristics of the neighboring pixels may
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(a) Standard dictionary, plant 1 (de-

tail)

(b) Topographic dictionary, plant 1

(detail)

(c) Standard dictionary,

plant 2 (detail)

(d) Topographic dictionary,

plant 2 (detail)

Figure 5: Detailed illustration of reconstruction error obtained by sparse representation with topographic and standard dictionary (i.e. ,

no group sparsity). Blue color indicate a low value and yellow colors a high value.

(a) Standard dictionary, plant 1 (de-

tail)

(b) Topographic dictionary, plant 1

(detail)

(c) Standard dictionary,

plant 2 (detail)

(d) Topographic dictionary,

plant 2 (detail)

Figure 6: Color coded indices of dominant dictionary elements for sparse representation with topographic and standard dictionary (i.e. ,

no group sparsity).

also improve the result quality.

5. CONCLUSION

We could show the benefit of combining hyperspectral informa-

tion and geometry in terms of inclination angles for the detection

of disease symptoms on plants. Our experiments confirmed for

One-Class Support Vector Machines as well as a sparse represen-

tation based approach with group sparsity prior a gain in accu-

racy when incorporating geometry information in terms of incli-

nation. However, the sparse representation-based approach only

needs inclination information for building the dictionary and not

for spectral reconstruction of the plant image of interest, whereas

One-Class Support Vector Machines also need inclination infor-

mation for training and classification to achieve a good result.

As it become visible in our experiments, the investigated anomaly

detection methods have different strengths. OCSVM cope rel-

atively well with leaf veins but shows artefacts of the specular

reflectance of horizontal leaf parts. These are reconstructed by

the sparse representation-based approach in a better way but in

contrast this apporoach has rather problems in differentiating leaf

veins and disease symptoms. Since both approaches show such

different characteristics underlines that the analysis and interpre-

tation of hyperspectral 3D plant models is still in its infancy. Fu-

ture analysis methods specifically designed for the interpretation

of this specific data type could combine the strengths. Ensemble

based methods or meta classifiers are promising approaches in

this context.

Future research will also consider the influence of the size of

groups in the sparsity term as well as the more detailed analysis of

false positives, which may be correctly detected symptoms which

are not yet visible. This effect is not regarded here but future ex-

periments with time series of hyperspectral 3D plant models will

allow to include such effects into the analysis.
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(a) ROC curve with standard dictionary for plant 1 (b) ROC curve with topographic dictionary for plant 1

(c) ROC curve with standard dictionary for plant 2 (d) ROC curve with topographic dictionary for plant 2

(e) PR curve with standard dictionary for plant 1 (f) PR curve with topographic dictionary

(g) PR curve with standard dictionary for plant 2 (h) PR curve with topographic dictionary for plant 2

Figure 7: Receiver operator characteristics (ROC) and precison-recall (PR) curves for plant 1 and plant 2. For comparison, the

same curves of the OCSVM were added to the figures with and without topographic dictionary.
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