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ABSTRACT:

The detection of traces is a main task of forensics. Hyperspectral imaging is a potential method from which we expect to capture more
fluorescence effects than with common forensic light sources. This paper shows that the use of hyperspectral imaging is suited for the
analysis of latent traces and extends the classical concept to the conservation of the crime scene for retrospective laboratory analysis.
We examine specimen of blood, semen and saliva traces in several dilution steps, prepared on cardboard substrate. As our key result
we successfully make latent traces visible up to dilution factor of 1:8000. We can attribute most of the detectability to interference of
electromagnetic light with the water content of the traces in the shortwave infrared region of the spectrum. In a classification task we use
several dimensionality reduction methods (PCA and LDA) in combination with a Maximum Likelihood classifier, assuming normally
distributed data. Further, we use Random Forest as a competitive approach. The classifiers retrieve the exact positions of labelled trace
preparation up to highest dilution and determine posterior probabilities. By modelling the classification task with a Markov Random
Field we are able to integrate prior information about the spatial relation of neighboured pixel labels.

1. INTRODUCTION

Detecting latent traces is a key field of forensics. Light illumi-
nation and screening by goggles form the public image of crime
scene investigation. The need for instant examination and clear-
ance of the crime clarifies the importance of efficient and compre-
hensive techniques. Chemical contrast enhancement techniques,
such as leucocrystal violet treatment and luminol searches, are
two of the main methods used to analyse crime scenes. A com-
mon contact free method for the task is the use of forensic light
sources (FLS), which combines illumination and detection of
light by established combinations of forensic lamps and camera
filters or goggles, specific for each expected latent trace.
We believe that the use of hyperspectral imaging (HSI) (1) allows
for analysis of several traces at once, (2) extends the classical
concept to the conservation of the crime scene for retrospective
laboratory analysis, and (3) leads to a tremendous reduction of
time effort. In this paper, we expose biological traces to light of a
wide range as well as record its reflectance in many different light
colors in infrared (IR) light spectrum (940 to 2543 nm). The goal
is to investigate, to what extent, methods from image processing,
pattern recognition, and hyperspectral remote sensing are appli-
cable in this domain and can be integrated into the investigation
of latent traces. This paper gives an overview of the current state
of research in forensic spectroscopic applications and presents an
approach to analyse forensic traces addressing criminal investi-
gators and researchers.

1.1 Task

Guided by the applications in forensics, we investigate two tasks:
First, the visualization of latent traces by spectroscopic examina-
tion, and second, the automatic detection of latent traces by pixel-
wise classification. The former aims at the enhancement of con-
trast of latent traces with respect to the background. For that, we
select suitable features or extract new features from hyperspec-
tral spectra, which are characteristic for each specimen. The lat-
ter aims at determining the positions of traces, i.e. a classification

procedure on the task of identification of specimen with unknown
trace positioning. We investigate different supervised learning
approaches, in order to distinguish trace and background or traces
among themselves. All of them result in a posteriori probabilities,
which allow to smooth the results by a post-processing step using
a Markov Random Field (MRF) to incorporate the dependency of
neighbouring pixels.
The work of Edelman (2014) serves as the main reference for de-
tection of latent traces using hyperspectral imaging. We adopt the
band and ratio method for contrast enhancement and additionally
provide the development of spectral indices for FLS similar to
Lee and Khoo (2010) and Edelman et al. (2012). For FLS and
spectroscopic properties of forensic traces, we refer to Stoilovic
(1991) dealing with the absorption behaviour of semen and blood
and its light sources for detection.
Our contribution is the proposal of important spectral regions and
indices (i.e. combinations of light colors) for the use of forensic
light sources and hyperspectral imaging each associated to the
responsible biological components, so that classification through
common pattern recognition techniques can be applied. Further-
more, we provide catalogue wavelengths for direct application in
forensic light sources. We evaluate the suitability of hyperspec-
tral imaging for crime scene application and provide an outlook
for further extensions.

Figure 1: Different traces on cardboard in the RGB-display of
the hyperspectral images. From left to right pure blood, diluted
blood (1:16), pure semen, pure saliva.
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Figure 2: Setting for the image acquisition. Two cameras are
located at center top edge of the image facing downwards. The
visible near infrared camera did not take part in the experiment.

2. TRACES AND DATABASE

A set of specimen is provided, which comprises the traces blood,
semen and saliva. Three cardboard substrates, one for each trace,
contain three stains in six dilutions each, thus arranged in three
columns and six rows depicting the dilution rates undiluted, 1:2,
1:16, 1:125, 1:1000 and 1:8000. The dilution liquid is water.
The visual detectability of the traces is strongly varying, cf. Fig-
ure 1. For example, blood is clearly visible in undiluted condition
as well as up to dilution rate of 1:125, semen up to 1:16. Saliva
is even barely visible in pure condition. To allow for supervised
classification, and evaluation of results, we realize ground truth
through a coordinate grid, indicated by markers on the border,
and depositing traces at the grid points.

For the data acquisition we use a SPECIM shortwave infrared
(SWIR) hyperspectral line scanning camera, in the spectral range
of 940 to 2543 nm, i.e. SWIR light and parts of NIR light. The
spectral range is captured within 256 wavelength bands. The cap-
turing setup, cf. Figure 2, therefore requires a one-dimensional
movable positioning system (drive unit). For image acquisition,
the camera and illumination system are moved with constant ve-
locity over the specimen. In advance of the recording, regarding
an optimal sensitivity of the camera sensor, we adjust aperture,
exposure time and height over the specimen beforehand.
The number of pixels, acquired for an image, depends on the res-
olution of the line sensor in one direction and on the scan distance
in the other, while the former additionally restricts the height of
the cameras above the specimen. The SWIR-camera samples 314
pixels arranged in the line sensor. The illumination is provided by
six lamps emitting a polychromatic white light of visible and ul-
traviolet (UV)-region, as it is comparable to sunlight, which emits
the whole spectrum. Using the camera system, we perform image
acquisition in emission mode under laboratory conditions, i.e. we
illuminate with a fixed excitation light, while recording the emis-
sion spectrum over the hyperspectral range. Finally, our database
are hyperspectral images showing each specimen separately. For
a multiclass application we can, however, handle pixels of differ-
ent images jointly, which makes image normalization necessary.

We denote Īλ the intensity captured at a certain wave length λ. If
it is clear from context we skip the index to denote any intensity
value I . As a data pre-processing step we aim at reflectance in-
tensity values I being normalized between minimal and maximal

intensity. In order to achieve this, we put a white reference into
the image, next to the specimen during the image scan. The ma-
terial, made of barium sulfate, is highly reflective over the whole
spectrum providing a 100% reflectance standard Īref. After the
image acquisition the aperture is closed and the dark response
Īdark is measured.Therefrom, we derive normalized reflectance in-
tensity values by

I =
Ī − Īdark

Īref − Īdark
. (1)

3. VISUALIZATION OF TRACES BY SPECTROSCOPIC
EXAMINATION

This section focuses on our first task, the visualization of latent
traces. We describe features derived from captured intensities,
which we will use to analyse spectroscopic properties of pure and
latent traces concerning absorbance and reflectance characteris-
tics, in order to make latent traces visible. Using these features,
we will investigate, in our experiments, which light colors (i.e.
detection wavelengths) cause an enhancement of contrast includ-
ing comparison to FLS.

3.1 Spectral Indices

Spectral indices, such as the normalized differenced vegetation
index (NDVI), used in remote sensing, are a common device for
deriving features from hyperspectral data. In contrast to single
wavelength bands, substraction and rationing of images is capa-
ble of suppressing background interference and variations in illu-
mination (Wagner, 2008; Bao et al., 2009). Ratio images describe
a pixelwise difference of intensity values of two wavelengths λi
and λj normalized by their sum

I(λi,λj) =
Iλi − Iλj

Iλi + Iλj

. (2)

A non-normalizing ratio of the form Iλi/Iλj and other calcula-
tions, such as bracketing an absorption peak by two wavelengths
are also reported to eliminate background influence and enhance
contrast (Wagner, 2008).

3.2 Fisher’s Ratio

Fisher’s ratio is a measure for the discriminative power of classes.
It is based on the assumption that maximal separation is obtained
when classes have a large inter-class variability while having a
low intra-class variability. The fraction of both is defined as
Fisher’s ratio (also F-ratio). Given the vectors fgx and bgx, con-
taining all 1D samples of the respective classes fg and bg, stand-
ing for foreground and background, we evaluate their means fg/bgµ
and standard deviations fg/bgσ, respectively, to obtain Fisher’s ratio
by

F
( fgx,bg x

)
=

( bgµ− fgµ
)2

fgσ2 + bgσ2 , (3)

which can be generalized for the multi-class case (Casella, 2008).
Please note, that the representation by mean and standard devia-
tion assumes Gaussian distributed data. The Fisher’s ratio is the
same as Fisher’s criterion, which gets applied in Linear Discrim-
inant Analysis.

For the task of contrast enhancement, we use Fisher’s ratio in two
ways, which are band and ratio method. Using the band method,
Fisher’s ratio is calculated for each wavelength with spectral data
gathered at the selected regions of interest. Given labelled image
data, using class labels y ∈ {fg, bg}, and pixel positions (r, c),
we collect intensities Iλi of band λi for all trace specific pixels
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{(r, c) | y = fg} in vector fgxλi = [Iλi ](r,c)|y=fg and all other
within bgxλi = [Iλi ](r,c)|y=bg . For each wavelength and each
class, we obtain means fgµλi and bgµλi and standard deviations
fgσλi and bgσλi from fgxλi and bgxλi and we obtain Fisher’s ratio
for each wavelength by

Fλi := F
(fgxλi ,

bg xλi

)
=

(fgµλi −
bgµλi)

2

fgσ2
λi

+ bgσ2
λi

. (4)

The Ratio image method uses spectral indices of two wave-
lengths λij = [λi, λj ], as given in (2), as features fgxλij =[
I(λi,λj)

]
(r,c)|y=fg

and bgxλij =
[
I(λi,λj)

]
(r,c)|y=bg

, respec-
tively. For each pair of wavelengths and each class we ob-
tain means fgµλij and bgµλij and standard deviations fgσλij and
bgσλij from fgxλij and bgxλij and estimate Fisher’s ratio of ratio
images by

Fλij := F
(fgxλij ,

bg xλij

)
=

(
fgµλij −

bgµλij

)2
fgσ2
λij

+ bgσ2
λij

. (5)

The Ratio image method requires two iterations over the spectral
dimension. Due to the commutative property if the ratio images,
we obtain (n2 − n)/2 combinations of wavelengths.

In order to identify single bands λi and pairs of wavelength
λij , which maximises the contrast between specimen and back-
ground, thus best class separability, we maximise the according
Fisher ratios

λmax = argmax
λi

Fλi (6)

λmax = argmax
λi,j

Fλij . (7)

Identified wavelengths, together with the respective maximal
Fisher-ratios, allow exposition of spectroscopically important
wavelength bands and indices and comparison of detectability be-
tween different cameras and traces.

4. CLASSIFICATION

This section aims at our second task, the automatic detection of
latent traces. As we are interested in identifying the positions of
the traces on the fabrics, we are dealing with the task of separat-
ing foreground and background and the question for each pixel
of the image whether it is trace or not, i.e. a classification pro-
cedure on the task of identification of traces. We shortly review
the methods for supervised classification we use and describe the
different procedures we choose for our experiments.

For evaluation we apply different classifiers partially based on
methods of dimensionality reductions. As classifiers we consider
maximum likelihood (ML) and Random Forest (RF). Principal
Component Analysis (PCA) provides dimensionality reduction
prior to Linear Discriminant Analysis (LDA), which itself re-
duces to one dimension, in the two-class case. All methods are
pixel-wise, solely dealing with the spectral feature space. Finally,
we smooth the classification results by a MRF, incorporating the
spatial arrangement of the pixels in a grid-structure and the evi-
dence for each pixel given by the probabilistic output the classi-
fier.
Again, we denote feature vectors by x, which may differ for vari-
ous contexts, and class labels by y ∈ {background, blood, semen,
saliva}. We collect feature vectors of all pixels within data matrix
X and their according labels within vector y.

4.1 Dimensionality Reduction

Dimensionality reduction methods are essential for a classifier
to extract important features of the data, on which the decision
function is based. PCA and LDA present an unsupervised and a
supervised method for dimensionality reduction. Due to a num-
ber of samples for training, which is lower than the number of
dimensions, we use PCA to reduce the dimensionality of the fea-
ture space. In the supervised approach, we intend to project data
to an one-dimensional subspace, in which thresholding serves as
classifier. Thus, PCA is optionally performed prior to LDA. In
the subspace estimated from LDA we use ML to obtain an opti-
mal threshold decision. We fit Gaussian distributions to the data
of each class, resulting in the Gaussians’ intersections as class
boundaries.

4.2 Random Forest

Random Forest is a classifier combining an ensemble of t =
1 . . . T decision trees using majority voting of the most popular
decision over all randomly subsampled trees (Breiman, 2001).
We obtain a posteriori probabilities for classified samples by
learning discrete distributions in the leaf nodes of each tree. Nor-
malized categorical histograms, i.e. frequencies of classes in
the leafs, build up the discrete probability distribution Pt(y|x),
which contribute to an average

P (y|x) =
1

T

T∑
t=1

Pt(y|x) (8)

over the leaf nodes of all trees T , which the sample x reaches
(Chawla and Cieslak, 2006).

4.3 Markov Random Field

To combine prior knowledge about the spatial relations between
neighboured pixels with our evidence about each pixels class,
given by the probabilistic output of the classifier, we model our
classification task as a MRF, which is given by

P (y|X ) = 1/Z · exp
(
−
∑
i logP (yi|xi)− w ·

∑
(i,m)∈Ni

δ(yi, ym)
)

.

(9)
The first, unary term is defined as the negative logarithm of the
posteriors P (yi|xi) obtained by the classifier. Since we assume
the final labelling of the pixels to be smooth within the image, we
introduce this prior knowledge by means of a Potts model in the
second, binary term. The term describes the interaction potential
over a 2D lattice penalizing every dissimilar pair of labels and
therefore heterogeneous regions utilizing the Kronecker function
δ. The set of spatial neighbours is denoted by Ni. The variable
w is the weight between both terms and the normalization con-
stant is given by Z. We use max-product to solve for the best
labelling ỹ = argmaxy P (y|X ), while weight w is empirically
determined, see (Bishop, 2006, Chapter 8.4.5).

5. EXPERIMENTAL RESULTS

In the experiments, we intend to show the results for the two
tasks, defined in Section 1. At first, we visualize stains of the hy-
perspectral images at wavelengths and wavelength ratios, which
distinguish trace and background best, determined by Fisher’s ra-
tio, including an overview of the applied wavelengths. Secondly,
we learn different classifiers from training data and apply them
to test data in order to visualize it as semantic segmentation. Fi-
nally, using the a posterior probabilities given by each classifier,
we smooth these results using the MRF model.
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Training and test data were collected by picking pixels within a
circle of fixed radius, at the grid positions, specified by markers
at the border of the specimen, and samples for background from
regions in between. We take two third as training data leaving
one third as test data. Please note, that capturing of foreground
pixel was done automatically, thus not as accurate as pixel-wise
labelling. To avoid false data for training, we choose the radius of
the circles for region of interest small, thus we expect real ground
truth to be larger as we labelled.

5.1 Visualization of Traces by Spectroscopic Examination

Figure 3 contains visualizations of the regions around the stains.
We display the images at band Iλi and ratio I(λi,λj), which were
identified as most discriminative by Fisher’s ratio Fλi and Fλij ,
respectively. We perform distinction with the respective dilu-
tion of each stain against background and indicate the resulting
maximal F-ratio (i.e. the measure for the detectability) under-
neath the images. Band and ratio image show the same stain for
each dilution. We observe that band and ratio images provide
enhanced differences between trace and background. Thus, we
make traces visible when RGB-view does not provide recogni-
tion. However, we realize that ratio images provide a better fea-
ture definition than single wavelength bands. We can clearly see
that the value of Fisher’s ratio is representative for the detectabil-
ity in the grayscale images.

Table 1 lists up all wavelengths and Fisher’s ratios allocated for
dilutions, while Table 2 contains a list of spectral peaks, in range
of SWIR, of several trace components as reported in the literature.
Bold values in Table 1 indicate correspondences to trace-specific
absorption peaks and italic notation signifies accordance to water
peaks. The dominance of water interference is clearly given.
Nearly each band and ratio contains at least one wavelength at
an established water peak. Consequently, we can attribute most
of the detectability of traces to the amount of water in the traces.
Even blood features more accordances with water peaks than with
hemoglobin influence.

5.2 Binary Classification

We show segmentation images as binary (black-white) images
for binary classification in Figure 4. We realize that the SWIR-
images provide good classification and reconstruction of the
stains. All traces are successfully classified up to highest dilu-
tion. Visually, the best classifier is ML based on PCA and LDA.
The Random Forest, however, exhibits connected misclassified
regions instead of noise.
The postprocessing step successfully achieves to reduce noisy

Table 1: Wavelengths with maximal Fisher’s ratios calculated
for different methods (band, ratio) and different dilution rates
of blood in SWIR-data, including accordances to established ab-
sorption peaks as given in Table 2. Bold values indicate corre-
spondences to trace-specific absorption peaks. Italic notation sig-
nifies accordance to water peaks.

Dilution undiluted 1:2 1:16 1:125 1:1000 1:8000 all

Band 1598 1573 1937 1906 1900 1900 1906

Ratio 1598 1573 1585 1944 1944 1919 1937

B
lo

od

1831 1862 1862 2188 2107 2169 2138

Band 2169 2232 1994 1894 1894 1900 1906

Ratio 1428 1453 1956 1950 1950 1497 1956

Se
m

en

1994 1994 2063 2113 2175 1900 2063

Band 1956 1950 1937 1925 1937 959 1937

Ratio 1440 1440 1503 1535 1535 1092 1535

Sa
liv

a

1956 1981 1956 1925 1956 1956 1937

Table 2: List of spectral peaks, in range of SWIR, of several trace
components as reported in the literature. The component blood
comprises hemoglobin, albumin, and globulin.

Wavelength [nm] Component Reference

970 Water Edelman et al. (2012)
1190 Water Curcio and Petty (1951)
1430 Water Jacquemoud and Ustin (2003)

1450/1454 Water Edelman et al. (2012); Curcio and Petty (1951)
1650 Water Jacquemoud and Ustin (2003)
1690 Blood Edelman et al. (2012)
1740 Blood Edelman et al. (2012)
1788 Water Jacquemoud and Ustin (2003)

1920-1940 Water Edelman et al. (2012); Curcio and Petty (1951)
1950 Water Jacquemoud and Ustin (2003)
2056 Blood Edelman et al. (2012)
2170 Blood Edelman et al. (2012)
2218 Water Jacquemoud and Ustin (2003)
2290 Blood Edelman et al. (2012)
2350 Blood Edelman et al. (2012)
2500 Water Jacquemoud and Ustin (2003)

classification. Nonetheless, the approach fails on the connected
misclassified regions of Random Forest. In case of ML based
on PCA and LDA, we can entirely retrieve the ground truth la-
belling mask. All images show that the identification of traces is
accomplished clearly beyond visual detectability.

5.3 Multiclass Classification

Next, we investigate the multiclass performances of the classi-
fiers. We show results for the multiclass approach in Figures
5 and 6. Next to the segmentation images we display the
RGB-image (true-color). Although each specimen is captured
in an own image, we can handle them jointly, due to performed
image normalization.
We observe that the RF outperforms the ML approach, cf. Figure
5. Blood and saliva are classified correctly up to the highest
dilution, semen can only be retrieved up to dilution 1:2. It is
noticeable that a fringe around a stain of blood is classified as
semen. The ML classifier assumes nearly all traces as blood and
exhibits higher noise in background regions. For both classifiers,
background is mostly confused with saliva. Traces tend to attain
blood labels if classified falsely.
A qualitative evaluation, in terms of confusion matrices, provides
the same result, cf. Table 3. Using Random Forest, Table 3 left,
93% of background, 66% of blood, 35% of semen and 75%
of saliva pixels are classified correctly. The overall accuracy
amounts to 76.2%. Semen is assigned to other classes in large
quantities. The accuracies of the ML, Table 3 right, approach
completely decline. Overall accuracy adds up to 65.5%. Classi-
fication of semen is particularly vague because 48% and 29% are
misassigned to blood and saliva leaving 21% correct allocations.
Nonetheless, confusion with background is partially lower than
for the RF classifier.

Table 3: Confusion matrix with classwise accuracies for multi-
class classification.

Prediction

RF ML / LDA / PCA

backg. blood semen saliva backg. blood semen saliva

backg. 0.934 0.009 0.009 0.049 0.881 0.000 0.000 0.119

blood 0.173 0.660 0.013 0.153 0.000 0.640 0.233 0.127

Tr
ut

h

semen 0.153 0.207 0.353 0.287 0.020 0.480 0.213 0.287

saliva 0.200 0.047 0.000 0.753 0.180 0.187 0.200 0.433
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1:125 1:1000 1:8000

RGB band ratio band ratio band ratio

B
lo

od

328.42 871.09 279.37 534.77 165.31 476.65

Se
m

en

292.32 346.37 202.94 424.77 301.88 454.69

Sa
liv

a

141.98 455.67 169.54 307.19 125.46 457.11

Figure 3: Best band and ratio images Iλi and ratio I(λi,λj), identified by maximal Fisher’s ratios Fλi and Fλi , respectively, given by
numbers under each image. According bands λi and wavelengths pairs λi,j are given in Table 1.

Blood

Semen

Saliva

(a) (b) (c) (d) (e) (f)
Figure 4: Results for binary classification. Traces on each speci-
men are provided, such that the fraction of dilution increases from
top to bottom. Columns: a) RGB, b) ground truth, c) RF, d)
PCA/LDA and ML, e) RF followed by MRF, f) PCA/LDA and
ML followed by MRF.

(a) Blood (b) Semen (c) Saliva

Figure 5: Results of multiclass classification. Columns for each
specimen: Left - RGB. Middle - RF. Right - PCA and LDA fol-
lowed by ML. Meaning of colours given in the colour bar. (Best
viewed in colour.)

For the mutliclass approach, MRF postprocessing does not yield
as accurate results as the binary case, cf. Figure 6. Despite reduc-
tion of noise, we now obtain stains entirely occupied by a false
class. Thus, we predominantly classify the water content of the
traces instead of the individual trace itself. The traces seem to
intersect due to dilution. We present a quantitative evaluation in
terms of confusion matrices in Table 4. By postprocessing we can
increase the classwise accuracies, mostly for blood. Confusion of
some traces is reduced to zero as a consequence of reduced noisy
misclassification. We can see that predominantly the strongest
class receives more classified samples. Thus, in case of PCA,
LDA, and ML the wrong classes get eliminated.

Table 4: Confusion matrix with classwise accuracies for multi-
class classification postprocessed by MRF.

Prediction

RF ML / LDA / PCA

backg. blood semen saliva backg. blood semen saliva

backg. 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

blood 0.167 0.773 0.000 0.060 0.007 0.820 0.127 0.046

Tr
ut

h

semen 0.333 0.053 0.353 0.260 0.047 0.833 0.000 0.120

saliva 0.260 0.000 0.000 0.740 0.260 0.520 0.000 0.220
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(a) Blood (b) Semen (c) Saliva
Figure 6: Results of multiclass classification postprocessed by
MRF. Columns for each specimen: Left - RGB. Middle - RF.
Right - PCA and LDA followed by ML. Colours as given in Fig-
ure 5. (Best viewed in colour.)

6. CONCLUSIONS

Latent traces have been successfully made visible exploiting hy-
perspectral data. The detectability can be significantly improved
towards single wavelength images by the calculations of bands.
A spectroscopic examination shows that detection of latent traces
is predominantly water based. However, not the same regions
of interference with water are relevant for the single traces. The
SWIR-region accounts for excellent visibility of traces in band
and ratio images up to the highest dilution (1:8000). We provide
various options of normalized differenced indices (ratio images)
and band images.
Besides visual detectability, a classification approach has shown
to what extent traces on fabrics can be labelled as such. We
have successfully retrieved the positions in a classification task
in SWIR-data up to maximal dilution (1:8000). Various classi-
fiers have presented different forces and weaknesses towards the
data. Random Forest and LDA in connection with a PCA pro-
vide the best classifiers. The evaluation from segmentation im-
ages favours LDA with PCA due to less connected regions and
few widespread misclassified pixels. This is a sign that Gaussian
distribution are appropriate for the data. For the multiclass case
Random Forest yields best results. In an additional modelling of
the classification task by a MRF we achieve smoother segmen-
tation images by reduction of noisy classification, which exactly
recovers the labelled regions.

Despite our encouraging results, there is further space for im-
provements. In order to achieve better results and an applica-
tion to arbitrary images and specimen an increased control over
background influences (i.e. inducing trace-specific interactions)
is recommended. Supervision by targeted initiation of only trace-
specific interference by appropriate illumination and variation
over single bandpass light colors (i.e. excitation measurement
mode) has to be considered. A possible extensions is the assimi-
lation of excitation-emission maps (EEM) providing a modelling
of the relation between excitation and emission as well as scatter
corrections.
This work has revealed the IR-region principal for biological
traces. For the SWIR-camera higher resolutions are essential.
Referring to Edelman et al. (2015) area scanning cameras with
tunable filters are preferable and achieve a proper spatial resolu-
tion as well as easier repositioning at the crime scene. Next to
that, they allow simpler live view (in situ) applications. Single
band images and ratio images can be directly visualized on an
external screen. Line-scanning cameras require on-the-fly image
normalization for this task. As a conclusion, the investigation
of the applicability of hyperspectral imaging for the detection of
latent traces has revealed to have reasonable potential.
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