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ABSTRACT: 

 

Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-

area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction 

accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the 

number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human 

resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired 

hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to 

instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology 

based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, 

which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem 

by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE) of 66.16 t/ha in the cross-

validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of 

spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis 

proves efficiency of fused lasso and image texture in biomass estimation of tropical forests. 

 

 

1. INTRODUCTION 

Tropical rain forests store large amount of carbon in plant 

material and soil (Jaenicke et al., 2008). Disturbance of those 

forest, such as deforestation, forest degradation, forest fire, and 

illegal logging, provides emission of carbon dioxide (CO2) which 

is a major driver of climate changes (Werf et al., 2009; Hansen et 

al., 2013). Especially tropical peatland forest is a notable carbon 

dioxide source, which sinks and stores huge amount of carbon 

consisted of dead and decomposed plant material accumulated 

over thousands of years (Jaenicke et al., 2008). Carlson et al. 

(2012) estimated that peatland carbon emissions amounted to 

35% of gross carbon emissions from 1990 to 2010. Therefore, 

successive monitoring tropical peat forests is important for 

controlling and/or mitigating the global climate changes (DeFries 

et al., 1999; Foster  et al., 2003; Patenaude  et al., 2005; 

Morehouse  et al., 2008). A key driver for those monitoring 

activity is the United Nations Reducing Emissions from 

Deforestation and Degradation (UN-REDD+) programme, which 

needs for the development of robust and replicable methods for 

net accounting of carbon emissions (Cutler et al., 2012). In 

practical cases, government and environmental scientists have 

depended on official forest statistics to calculate the gross 

emission, which has poor temporal coverage and various 

definitions of forest degradation (Grainger, 2010). However, 

those monitoring demands quantifying of the carbon emission 

with accurate and precise methods considering forest carbon 

dynamics (Brown, 2002; Le Toan et al., 2011).  

Forest inventory data, which is one of those quantified data, are 

collected by two types of activity: follow-up surveys of forest 

resources over large areas, such as at the national level, and the 
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accumulation of detailed forest data at the ground level. To 

achieve high accuracy, such detailed information has been 

mainly collected in visual field surveys by experts (Hyyppä, 

2001). However, considering the acquisition of large-area forest 

inventories, these field measurement activities require a large 

amount of time, money, and human resources (Segura et al., 

2005; Seidel et al., 2011; Wang et al., 2011). In contrast, since 

remote sensing data, which is obtained by wide-area observation 

at a single time, has become popular in the last few decades 

(Rosenqvist et al., 2003; Masek et al. 2008), estimating forest 

biomass from remote sensing is expected to contribute the 

monitoring activity. Several studies have already reported the 

benefits of remote sensing data in reducing the total survey cost 

and improving the estimation accuracy by frequent observation 

(Dalponte, 2014).  

Over the last decade, the remote sensing data used in many 

studies on biomass estimation were acquired from multispectral 

sensor, synthetic aperture radar (SAR), and LiDAR (Lu et al., 

2014). In recent years, airborne hyperspectral sensors with 

around 100–200 observation bands and high spatial/spectral 

resolution have become common. Those hyperspectral sensor 

data with continuous spectral information enable detailed 

analysis for distinguishing of tree species (Clark et al., 2005; 

Martin et al., 1998; Dalponte et al., 2009) and biomass estimation 

(Axelsson et al., 2013), with LiDAR data (Anderson et al., 2008; 

Clark et al., 2011; Vaglio et al., 2014). Furthermore, fusion of not 

only those spectral data but also spatial information, such as 

morphological profiles and texture information, has enough 

potential to improve the accuracy in case of non-parametric 

models (Fauvel et al., 2008; Feret et al., 2013; Fauvel et al., 2013). 
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To handle high-dimensional feature spaces of hyperspectral data, 

many studies have used support vector machines (SVM) as a 

classification method (Mountrakis et al., 2011) in the non-

parametric model and Partial Least Squares (PLS) regression  as 

a biomass prediction model (Vaglio et al., 2014); however, there 

is a concern about a small sample size problem which is widely 

exist as overfitting in using high dimensional data where the 

number of training samples is smaller than the dimensionality of 

the samples due to limitation of require time, cost, and human 

resources for field surveys in practical monitoring cases. 

Therefore, the prediction models often result in the poor 

generalization capability (Pappu, 2014). Considering sensor 

mechanism and practical measurement, energy acquired in each 

band is not enough to generate high signal-to-noise ratio (S/N) 

due to the very narrow band interval of typical hyperspectral 

imaging spectrometers (Gao et al., 2013). The noise in the 

hyperspectral data can be categorized in two types: periodic noise 

and random noise. The periodic noise can be removed using 

suitable procedures considering its fixed pattern. However, the 

random noise cannot be removed completely due to 

unpredictable pattern (Landgrebe et al., 1986; Corner et al., 2003) 

Therefore spectral features in hyperspectral imagery can provide 

the poor performance of the prediction model as a result of noise 

influence. Also, mass spectrometry data, in not only remote 

sensing but also other fields, usually have unwanted local or 

global shifts of peaks due to instrumental instability or small 

differences in experimental conditions. This peak shift may 

weaken the strength of rich information from hyperspectral data 

in statistical analyses. 

Our contribution of this study is three-fold: we 1) introduce a 

pixelwise biomass prediction model with hyperspectral data 

which have strength to the small-sample-size problem; 2) 

propose a biomass prediction methodology mitigating the effects 

of noise and peak shift; 3) apply combination of those spectral 

model and spatial information to the prediction models to 

improve the prediction accuracy. These proposed methodologies 

were applied to airborne hyperspectral data collected over 

Hampangen in Central Kalimantan, Indonesia. After pre-

processing consisting of atmospheric correction and mitigation 

of radiometric distortion, the corrected hyperspectral data and 

biomass data from field surveys are subjected to our proposed 

regression models to obtain a pixelwise biomass prediction 

model. To evaluate these performance, we compared the 

prediction accuracy with other ordinary regression model in 5-th 

fold cross-validation. 

 

2. STUDY SITE AND MATERIALS 

2.1 Study Area 

The study area is located in Hampangen in Central Kalimantan, 

Indonesia (113º 30’ 18” E, 2º 6’ 43” S) (see Figure 1), which has 

typical and many kinds of peat swamp forests. Hampangen also 

has disturbed forests damaged by wild fire in multiple years, 

especially in 1997 and 2002 when forest fire on a broad scale was 

occurred. The north part of Hampangen still has large non-

damaged forest area with high biomass in which many trees 

diameter at breast height (DBH) are much large-size with more 

than 50 cm. 

 

2.2 Remote Sensing Data 

Hyperspectral data were obtained by HyMAP on July 16th 2011. 

The HyMAP sensor comprised 124 bands covering wavelengths 

of 436–2485 nm, with average spectral resolutions of 15 nm 

(436–1313 nm), 13 nm (1409–1800 nm) and 17 nm (1953– 2485 

nm). The ground sampling distance (GSD) was 4.5 m. Figure 2 

shows an enlarged RGB image from the hyperspectral data. The 

study site was covered by five image strips. 

 

2.3 Field Survey Data 

Field surveys were conducted in the study area in 2011 and 2012 

to assist with the gathering of training and validation data for the 

biomass prediction. 31 plots were selected for survey of tree 

species, tree stem diameter at breast height (DBH), and tree 

height for every tree inside a small quadrat which has a 20m 

square. Coordinates of each quadrat were determined with a 

handheld Global Positioning System (GPS) unit. 

The total above biomass (t/ha) of each tree was estimated with 

using those observations, specific density of each tree species (S, 

g cm-3), and the appropriate moist life zone allometric equation 

provided by (Brown et al, 1989) as  

 

𝑌 = exp{−3.3012 + 0.9439 ln(𝐷2𝐻)}, (1) 

 

where 𝑌 (kg/tree) is biomass, 𝐷(cm) is DBH, and 𝐻(m) is tree 

height.  

 

3. METHODOLOGY 

3.1 Pre-processing 

The image strips acquired by HyMAP were atmospherically and 

geometrically corrected. The atmospheric correction was carried 

out using ATCOR-4 (Richter et al., 2002), which is based on 

MODTRAN code (Berk, 1989). However, there are still 

radiometric distortions along cross-track direction because of a 

sun-sensor-target geometry and airborne sensor with wide field 

of view, which can cause classification error and poor prediction 

in building statistical model (Galvão et al., 2013). There are some 

researches that solve the distortion (Müller et al., 1990). In this 

study, our proposed methods based on the former method 

(Palubinskas, 2003) combined with supervised classification. In 

a general radiation theory, the total radiance detected at sensor is 

shown as 

Figure 1. Location of test site 

500 km

Jakarta

Central
Kalimantan

20 km

Palangkaraya

Test Site

Hampangen

 
Figure 2. RGB image of test site from HyMAP data 
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 L𝑠(𝜑) = 𝑇𝜑𝐿𝐺 + 𝐿𝑝(𝜑),    (2) 

 

where L𝑠(𝜑) is the total radiance at sensor, 𝐿𝐺  is the radiance of 

the target, which is not depend on the view angle 𝜑 and is based 

on Lambertian surface, 𝑇𝜑 is an atmospheric transmittance and 

𝐿𝑝(𝜑) is the path radiance between the target and the sensor. 

In our assumptions, the equation (2) is valid in all classes (e.g. 

forest, bare soil) and the coefficient is depend on the each class. 

To normalize the radiance at the various viewing angles 𝜑 to the 

radiance at the reference angle 𝜑0 , the following equation is 

applied to the image shown as 

 

L𝑠(𝜑0) = 𝑚(𝜑, 𝜑0)𝐿𝑠(𝜑) + 𝑏(𝜑, 𝜑0),             (3) 

 

where 𝑚 and 𝑏 are unknown coefficients to be estimated. The 

equation (3) describes the linear dependence at some viewing 

angle. Since the coefficients are different between each class, we 

use supervised or unsupervised classification to the radiance 

image before finding out coefficients of each class. In 

considering capture condition from an airplane, nadir angle from 

the sensor position is not suffer from the radiometric distortion. 

Therefore, we assume that the reference angle 𝜑0 is set to nadir 

direction. Based on these theoretical conditions, we build the 

empirical image-based radiometric normalization method for 

correcting the radiometric distortion from sensor viewing angle 

effects and BRDF effects. 

This correction of the radiometric distortions consists of several 

steps. Firstly, support vector machine (SVM) is applied to the 

atmospheric corrected data for extracting only forest area which 

is our main target of the following statistical analysis. Then, both 

an average line profile and a variance line profile were calculated. 

Two polynomial regressions were built for fitting the average line 

profile and the variance line profile based on the equation (3). 

Acquired correction formula is applied to the atmospheric 

corrected data for mitigating radiometric distortion.  

 

3.2 Biomass Estimation 

3.2.1 Texture Information: Existing researches (Lu 2005; 

Fauvel et al., 2008; Feret et al., 2013; Fauvel et al., 2013) show 

that combination of spectral data and spatial data is effective for 

high accurate forest classification models and biomass prediction 

models. In this study, texture information from the HyMAP data 

is calculated with Grey Level Co-occurrence Matrix (GLCM) 

texture measures (Haralick et al., 1973) describing spatial 

dependences in which two neighboring pixels separated by a 

given distance and a given angle occur within a moving window. 

We select 9 x 9 pixels as window size for the GLCM and 8 kinds 

of GLCM (Mean, Variance Homogeneity, Contrast, 

Dissimilarity, Entropy, Second Moment, and Correlation) are 

applied to the first principal component of all the hyperspectral 

bands. 

 

3.2.2 Lasso Regression for Small-Sample-Problem: While 

high dimensionality of hyperspectral data includes a large 

amount of rich information for biomass estimation, the small 

sample size problem due to the limited number of field survey 

plots results in risk of estimation model being overfitted to the 

training data. The common approach to solving this problem is to 

reduce the dimensionality of the dataset. Several techniques have 

been proposed to reduce the number of dimensions high-

dimensional data, such as transformation of the dimensionality, 

compression, or feature selection maintaining original 

dimensional space. As the predictors for feature transformation, 

PLS regression has been previously used in spectral analysis of 

tropical forest for biomass estimation (Peerbhay et al., 2013). In 

contrast, band selection as a method of feature selection 

maintaining original dimensional space is preferable owing to not 

only avoiding the overfitting but also its interpretability from the 

view point of end-users. In this study, lasso regression 

(Tibshirani, 1996) as the band selection method is applied as a 

pixelwise biomass prediction model owing to its robust and 

accurate model as well as its interpretability.  

Given a set of training data 𝑫 = {(𝑥𝑖𝑗 , 𝑦𝑖), 𝑖 = 1,2, ⋯ , 𝑛, 𝑗 =

1,2, ⋯ 𝑝},  where x are spectral data, y are value of biomass 

acquired from field survey in this study, n is the number of bands, 

and p is the number of training data in this study. The ordinary 

least-squares (OLS) method is used to minimize the empirical 

error in the following least-squares to estimate the coefficient 

vector w: 

 

minimize𝑤  
1

2
∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

.                 (4) 

 

To decrease the dimensionality and obtain an interpretable model 

without sacrificing the prediction accuracy, sparse regularization 

is applied to the solution of the least-squares problem in (4) with 

a L1 penalty term attached as shown in (5), which is called lasso 

regression: 

 

minimize𝑤  
1

2
∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆 ∑|𝑤𝑗|

𝑝

𝑗=1

.      (5) 

 

Here 𝜆 is a non-negative trade-off parameter, and w is coefficient 

vector. The L1 penalty term, the second term in (5), introduces 

sparsity to the optimal coefficient w, where the increasing 𝜆 

shrinks the coefficient w towards zero. 

 

3.2.3 Fused Lasso Regression for Noise and Peak Shift: 

The lasso regression can select the limited number of important 

spectral bands for biomass prediction by increase coefficients as 

zero. Although those selected bands with sparsity have strength 

to the small-sample-size problem, the random noise due to the 

very narrow bandwidth of the hyperspectral sensor negatively 

affects to the prediction model. One simple noise estimation 

algorithm uses the mean of standard deviations of several 

visually homogeneous regions as noise estimate (Gao et al., 

2013). However, the homogeneous areas within an image need to 

be manually selected in this method. This is not suitable for large 

images, such as remote sensing data. In contrast, reflectance of 

neighbour bands can be distinguished as homogeneous spectral 

value in the same pixel because each bandwidth of hyperspectral 

data is very narrow. As another problem, peak shift due to 

instrumental instability or small differences in experimental 

conditions may have a risk of poor prediction performance in the 

case that the selected bands by lasso regression don’t cover the 

shifted peaks. Therefore, selecting successive bands for the 

biomass prediction have potential for contributing to increasing 

S/N and avoiding poor prediction from peak shift.  

In this study, fused lasso regression is applied for the prediction 

model to select those successive bands which has sparsity in both 

the coefficients and their successive differences (Tibshirani et al., 

2005). Also, the fused lasso regression simultaneously selects a 

group of strongly correlated adjacent covariates. In this fused 

lasso, sparse regularization is applied to the solution of the least-

squares problem:  
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minimize𝑤  
1

2
∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆1 ∑|𝑤𝑗|

𝑝

𝑗=1

 

+𝜆2 ∑|𝑤𝑗 − 𝑤𝑗−1|

𝑝

𝑗=2

.      (6) 

 

Here 𝜆1 is a non-negative trade-off parameter for L1 penalty term, 

and 𝜆2 is also a non-negative trade-off parameter for selecting 

groups of strongly correlated adjacent coefficient w and 

encouraging sparsity in differences of the coefficient w, in the 

third term of in (6). 

 

4. RESULTS AND DISCUSSION 

4.1 Preparation of Training and Validation Data 

Estimated biomass from field inventory measures in 31 field 

survey plots ranged from 11.57 to 349.69 t/ha. Since band 121-

124 of acquired hyperspectral data contained much noise, we 

used band 1-120 for our study. Figure 3 shows the comparison 

between without and with correction of radiometric distortion by 

our proposed method. The corrected image shows the enough 

performance for following processing. 

 

4.2 Comparison between Biomass Estimation Models 

Optimal band selection in lasso regression needs to be fix the 

parameter λ  in equation (5). 5th fold cross-validation was 

conducted to estimate optimal λ value. The effect of λ value on 

the overall prediction accuracy is shown in Figure 4(a), and the 

number of selected bands in each λ value shown in Figure 4(b). 

The minimum root-mean-square error (RMSE) was 68.24 t/ha 

when λ=2.57×10-4  was used. In that case, 13 bands were 

selected for the prediction model by the lasso regression. Table 1 

shows a comparison of the prediction performances between the 

lasso regression, multiple regression analysis (MRA) and PLS 

regression. The lasso regression provides much higher accuracy 

than other two methods, which confirms that the method of 

selecting bands have high performance in this case under the 

small-sample-size problem. 

To assess the selected spectral bands for biomass prediction 

model, we counted their appearances derived from the lasso 

regression in 50 times 5th fold cross-validation. Figure 5 shows 

the accumulated selected number of each band by the lasso 

regression in the 50 times cross-validation. Those selected bands 

had sparsity and the number was limited. This result indicates 

that the important bands for the prediction are limited and have 

sparsity. These sparsity has strength to the small-sample-size 

problem; however, it is susceptible to the effects of the peak shift 

and doesn’t have strength to the random noise. 

 

4.3 Successive Band Selection for the Biomass Estimation 

In the process of fused lasso regression for optimal band 

selection, the parameters 𝜆1 and 𝜆2 are necessary to be fixed to 

minimize the RMSE between prediction value and validation 

data value in equation (6). 5th fold cross-validation was 

conducted to estimate optimal 𝜆1 and 𝜆2 value. The effect of 𝜆1 

and 𝜆2  values on the overall prediction accuracy is shown in 

Figure 6(a), and the number of selected bands in each 𝜆1 and 𝜆2 

value shown in Figure 6(b). The minimum RMSE was minimum 

66.16 t/ha when λ1=2.68×10-4  and λ2=1.89×10-4  were used. In 

that case, 29 bands were selected for the prediction model by the 

fused lasso regression. The prediction performance of the fused 

lasso was higher than other methods, as shown in Table 1. This 

 
Figure 3. Reflectance data in this study site 

(a) without, and (b) with correction of radiometric distortion 

(a) (b)

 
Figure 4. Comparison of the results in lasso regression (a) 

effect of lambda on the overall prediction accuracy, (b) the 

number of selected bands in each lambda value 
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Figure 5. Accumulated selected number of each band by the 

lasso regression in 50 times cross-validation 
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Table 1 Comparison of prediction accuracy in 50 times cross-

validation 

 MRA PLS Lasso 
Fused 

lasso 

RMSE (t/ha) 204.96 121.20 68.24 66.16 

 

 
Figure 6. Comparison of the results in fused lasso regression  

(a) effect of 𝜆1 and 𝜆2 on the overall prediction accuracy,       

(b) the number of selected bands in 𝜆1 and 𝜆2 
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results proved that the fused lasso can provide high accurate 

biomass prediction model in considering practical use under the 

effects of the small-sample-size problem, the random noise, and 

peak shift. Figure 7 shows the accumulated selected number for 

the biomass prediction model in the 50 times cross-validation by 

the fused lasso to assess the selected bands. Comparing with that 

of the lasso regression, the selected bands by the fused lasso are 

successive and the values of coefficients are stable in neighbor 

bands. 

 

4.4 Comparison between Estimated Biomass Maps 

We evaluated the estimated biomass maps by applying our 

proposed methods with all the 31 samples to the hyperspectral 

data. Figure 8 shows the coefficient values of selected band by 

the lasso and the fused lasso regression, and Figure 9 is the 

estimated biomass map by each method (PLS, lasso, and fused 

lasso). Since this study site had limited area with very high 

biomass over 300 t/ha, the estimated map by PLS (Figure 9 (a)) 

is not reflected from local conditions. In contrast, the maps by 

lasso (Figure 9 (b)) and fused lasso (Figure 9 (c)) regression are 

very similar and describe the local condition accurately. 

Figure 10 shows spectral curves acquired from all the 31plots by 

the field survey plotted on spectral ranges of selected bands by 

the fused lasso and spectral bands of existing multispectral 

sensors. Although spectral ranges of the existing multispectral 

sensor don’t match the selected wavelength by the fused lasso, 

some spectral bands cover those selected wavelength excepting 

in 1200-1600nm. Therefore, the comparison of the prediction 

performance between the existing sensor and the fused lasso is 

important as the next steps. Qualifying the effect of absence of 

1200-1600nm for biomass estimation is also necessary for the 

future practical use with existing multispectral sensors. 

 

4.5 Fusion of Spectral and Spatial Data 

We carried out the fusion of spectral and spatial data for 

improving the performance of biomass prediction. GLCM 

indexes was applied to the hyperspectral images for calculating 

spatial information, and 5th fold cross-validation in 50 times was 

conducted for the prediction performance assessment. In case of 

the lasso regression, 120 spectral bands and 8 GLCM indexes 

were used as training and validation data. Figure 11 shows the 

accumulated selected number in each band and GLCM index. 

This result shows “Variance”, “Mean”, “Correlation”, and 

“Contrast” of GLCM indexes are important for biomass 

prediction. In the procedure of the fused lasso regression, the 

selected bands by the fused lasso with only spectral data shown 

in Figure 8(b) and the selected GLCM indexes by the lasso 

regression shown in Figure 11(b) were applied to MRA as 

training and validation data. 

Table 2 shows comparison of prediction performances between 

each method with fusion of spectral and texture information. This 

result proves the fused lasso with spectral and spatial information 

has enough potential to provide most accurate biomass prediction 

model. 

 
 

 

 
Figure 7. Accumulated number of each spectral bands selection 

in 50 times cross-validation by fused lasso regression 
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Figure 8. Coefficient values of selected band by (a) lasso and 

(b) fused lasso 
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Figure 9. Estimated biomass maps by (a) PLS, (b) lasso, and (c) fused lasso 
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Figure 10. Spectral curves acquired from all the field survey 

plots with spectral ranges of selected bands by fused lasso and 

spectral bands of existing multispectral sensors 
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5. CONCLUSIONS 

We presented the efficiency of the fused lasso regression for 

forest biomass prediction with spectral and spatial information 

from hyperspectral data. MRA, PLS, and lasso regression were 

used for comparison of prediction performance. The 

hyperspectral data were captured over the Hampangen in Central 

Kalimantan, Indonesia, which has typical and many kinds of peat 

swamp forest and diversity of forest biomass caused from 

disturbance by forest fire, logging, etc. Our results indicated that 

the lasso regression and the fused lasso regression had a high 

accuracy and generalization performance without overfitting 

from the small-sample-size problem. Especially the fused lasso 

proved most accurate prediction performance, which has strength 

against random noise and peak shift on hyperspectral data in 

considering practical use. The estimated biomass map by the 

fused lasso proved the high prediction performance and high 

consistency with local condition.  Moreover, addition of spatial 

information by GLCM to spectral data improved the prediction 

accuracy in all the methods. Especially, the performance of the 

fused lasso with combination of spectral data and GLCM indexes 

achieved highest accuracy (RMSE=62.62 t/ha).  

The number of samples acquired from the field survey in this 

study may not be enough for existing biomass prediction 

methods; however, our proposed method proved high 

performance under this condition. It seems that the prediction 

accuracy can be improved depending on the increasing the 

number of samples from field survey. Since hyperspectral data 

and field survey data may contain potential problems as 

discussed above for practical forest monitoring, the high biomass 

prediction methodology as shown in this study considering 

practical monitoring conditions has enough potential to be used 

widely for future monitoring activity of tropical rain forest and 

contribution to the REDD+ activities. 

Those selected bands by the fused lasso have some similarity to 

the sensor bands of WorldView-3 and other kinds of existing 

sensors. Therefore, fusion of those sensors and upcoming sensors 

may have possibility to provide high performance models for 

biomass estimation. Furthermore, the selected successive bands 

by the fused lasso can be important information for designing 

spectral configuration of new type multispectral sensors focusing 

on biomass estimation with limited number of spectral bands. 

Since this small number of spectral bands contributes to 

decreasing the total size and weight of sensor devices, it may 

enable to be mounted on small- and/or nano-satellites and light 

weight unmanned aerial vehicles (UAVs). The use of those 

satellites and UAVs with the new sensors, designed based on the 

information from the fused lasso focusing on biomass estimation, 

facilitates forest monitoring in terms of cost and accuracy. 

Therefore this high accurate monitoring method and devices can 

be deployed and used widely for contribution to conservation of 

forest condition. 
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