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ABSTRACT: 

 

Mangrove is located in the tropical and subtropical regions and brings good services for native people. Mangrove in the world has been 

lost with a rapid rate. Therefore, monitoring a spatiotemporal distribution of mangrove is thus critical for natural resource management. 

This research objectives were: (i) to map the current extent of mangrove in the West and Central Africa and in the Sundarbans delta, 

and (ii) to identify change of mangrove using Landsat data. The data were processed through four main steps: (1) data pre-processing 

including atmospheric correction and image normalization, (2) image classification using supervised classification approach, (3) 

accuracy assessment for the classification results, and (4) change detection analysis. Validation was made by comparing the 

classification results with the ground reference data, which yielded satisfactory agreement with overall accuracy 84.1% and Kappa 

coefficient of 0.74 in the West and Central Africa and 83.0% and 0.73 in the Sundarbans, respectively. The result shows that mangrove 

areas have changed significantly. In the West and Central Africa, mangrove loss from 1988 to 2014 was approximately 16.9%, and 

only 2.5% was recovered or newly planted at the same time, while the overall change of mangrove in the Sundarbans increased 

approximately by 900 km2 of total mangrove area. Mangrove declined due to deforestation, natural catastrophes deforestation and 

mangrove rehabilitation programs. The overall efforts in this study demonstrated the effectiveness of the proposed method used for 

investigating spatiotemporal changes of mangrove and the results could provide planners with invaluable quantitative information for 

sustainable management of mangrove ecosystems in these regions. 

1. INTRODUCTION 

Mangrove grows in river deltas, estuarine complexes and coasts 

in the tropical and subtropical regions throughout the world. It 

also inhabits on the shorelines and islands in sheltered coastal 

areas with locally variable topography and hydrology (Lugo & 

Snedaker, 1974). The total mangrove area accounts for 0.7% of 

total tropical forests of the world. The largest extent of mangrove 

is found in Asia (42.0%) followed by Africa (20.0%), North and 

Central America (15.0%), Oceania (12.0%) and South America 

(11.0%) (Giri et al., 2011). Mangrove is one of the most 

threatened and vulnerability ecosystems. Based on the 

importance and vulnerable of mangrove ecosystems faced, many 

studies on mangrove have been conducted to solve these issues 

in difference scales, long-term monitoring and detecting 

mangrove by using remote sensing techniques (Blasco et al., 

2001; Everitt et al., 2008; Giri et al., 2007; Green, 1998; Seto & 

Fragkias, 2007; and Vaiphasa et al., 2006).  

 

The earth observation satellite data (such as Landsat) is useful for 

change detection applications. The distribution and abundance of 

mangrove in different regions of the world have been assessed 

with a variety of techniques. The local variability of studies spans 

all continents. Several studies have been carried out to investigate 

and compare the suitability of various classification algorithms 

for the spectral separation of mangrove. Change detection is a 

powerful tool to visualize, measure, and better to understand a 

trend in mangrove ecosystems. It enables the evaluation changes 

over a long period of time as well as the identification of sudden 

changes due to natural or dramatic anthropogenic impacts (for 

example: tsunami destruction or conversion to shrimp farms). 

Thus distribution, condition, and increase or decrease were the 

measured features used in the change-detection applications of 

mangrove. Monitoring change in mangrove was adopted by 

many researchers throughout the world (Giri et al., 2011; Giri et 

al., 2007; Ruiz-Luna and Berlanga-Robles, 2002; Concheddaa et 

al., 2008; Selvam et al., 2003; Chen et al., 2013) and the 

application of the supervised Maximum Likelihood Classifier 

(MLC) was the most effective and robust method for classifying 

mangroves based on traditional satellite remote sensing data.  

 

African mangrove was widespread along the west coast from 

Senegal to Congo that was interlinked with highly productive 

coastal and tidal estuaries (UNEP, 2006). Regional conditions 

enabled mangrove to grow as far as 100 kilometer inland, due to 

strong tidal influences on rivers such as the River Gambia, the 

Sine-Saloum delta in Senegal, and Guinea Bissau. The overall 

trend for the region using area estimated from 1980 to 2006 

indicated a moderate decline of mangrove covers. In the other 

side, mangrove in the Southeast Asia (Sundarbans delta) is 

located at the latitudes 21º30´N to 22º30´N, and longitudes 

89º00´E to 89º55´E. They consist of about 200 islands, separated 

by about 400 interconnected tidal rivers, creeks, and canals. The 

Sundarbans declared as a Reserve Forest in 1875 and became the 

UNESCO World Heritage Site in 1999. The mangrove of the 

Sundarbans is dependent on natural regeneration for its existence. 

The most important value of the Sundarbans lies in its protective 

role. It helps hold coastlines, reclaim coastal lands, and settle the 

silt carried by rivers. For this reason, the research was adopted to 

detect spatial and temporal change in mangrove during the past 

three decades, from 1988 to 2014 in two sites of study (West and 

Central Africa and Sundarbans) by using a supervised 

classification approach.   
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2. MATERIALS AND METHODS 

2.1 Study area  

The study area included mangrove areas in coastal estuaries, 

rivers in the West Africa (Senegal, Gambia, and Guinea Bissau) 

and the Sundarbans delta (Bangladesh and India) (Figure 1). 

 

2.1.1 West and Central Africa 

 

African mangrove provided these areas with essential organic 

nutrients as well as critical breeding grounds and nurseries for 

larval and juvenile stages of important fishery species. From past 

three decades, mangrove cover areas moderately decreased, 

especially in West and Central Africa (Figure 3). Rivers were 

dammed, their waters were diverted and the intertidal zone were 

extensively developed for agriculture or aquaculture, resulting in 

the destruction of mangrove. Large tracts of mangrove have been 

also converted to rice fields, fish and shrimp ponds, industrial, 

urban and tourism development and other non-forest used. In 

overpopulated and acute fuelwood-deficient areas, even small 

branches and saplings were removed primarily for domestic fuel. 

On a larger scale, salt was harvested from evaporation ponds or 

shallow brine filled pits, usually built in cleared mangrove areas.

  

 
 

Figure 1. Two sites of study in West and Central Africa and Sundarbans delta. 

 

2.1.2 Sundarbans, Bangladesh and India  

 

The Sundarbans delta is located on both sides of the border 

between Bangladesh and India (Figure 4). There was the largest 

continuous mangrove in the world. The area height ranged from 

0.9 to 2.1 m above the mean sea level. Mangrove was gradually 

increasing in area. The mangrove was located in a zone of 

cyclonic storms and tidal bores that originate from the Bay of 

Bengal and periodically strike the coastal areas. At the beginning 

of the colonial era (1757) in India, the Sundarbans mangrove 

occupied approximately twice as much as its current extent 

(Islam et al., 1997). To prevent further deterioration, the 

Bangladesh government has adopted several strategies such as 

the sustainable ecosystem management for both production and 

protection purposes.   

 

2.2 Data collection 

Landsat imageries in 1988, 2001, and 2014 were collected from 

the USGS via the website. Image acquisition date is important 

because vegetation and crops reflect differently at the beginning 

and the end of the rainy season due to phenological and 

temperatures disparities, and their reflectance varies from the dry 

season to the rainy season. The Landsat TM and ETM+ have 7 

spectral bands with a spatial resolution of 30 m for bands 1-5 and 

7. The TM and ETM+ band 6 (thermal infrared) is acquired in 

120 m and 60 m resolution but is resampled to 30 m pixels, 

respectively. The Landsat 8 data have 9 spectral bands with a 

spatial resolution of 30 m for bands 1-7 and 9, while band 8 has 

a spatial resolution of 15 m (panchromatic band).   

 

Moreover, DEM with a 30-m spatial resolution collected from 

National Aeronautics and Space Administration (NASA) was 

used to remove regions of elevation higher than 30 m and the 

ocean (elevation of zero). The mangrove map of USGS in 2011 

was downloaded from the Ocean Data Viewer website for 

validating interpreted mangrove maps. In addition, this research 

used Google Earth and other reference maps, reports and 

literatures on the states of the mangrove distribution for 

additional information in the study area. 

 

2.3 Methods 

The methodology was adopted for four main steps: (1) data pre-

processing including atmospheric and geometric corrections, and 

reflectance normalization, (2) image classification using Support 

Vector Machine (SVM), (3) accuracy assessment, and (4) change 

detection analysis. 

 

 
 

Figure 2. Flow chart of the methodology used for extract 

mangrove in the study area.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-8-109-2016

 
110



2.3.1 Image pre-processing 

 

This research used all spectral bands and NDVI (an additional 

band) to perform image classification. Remotely sensed data 

acquired showed some forms of distortion or shift in geometric 

location from one sensor to the other. Thus, image registration 

was necessary to fix this problem. Image registration can be 

defined as the transformation of an image or a map with respect 

to another so that the properties of any resolution elements of the 

object image addressable by the same coordinate pair in either 

one of the images (Cideciyan et al., 1992). Ground control points 

were used to correct geometric and a root mean square error 

(RMSE) of 0.58 and 0.81 pixels were obtained in the West and 

Central Africa and in the Sundarbans delta, respectively.  

 

Landsat TM and ETM+ used Climate Data Records (CDR) 

products. The surface reflectance CDR generated from 

specialized software called Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS). The software applies 

MODIS atmospheric correction routines to Level-1 Landsat TM 

or ETM+ data. Water vapor, ozone, geopotential heights, aerosol 

optical thickness, and digital elevations were input with Landsat 

data to the Second Simulation of a Satellite Signal in the Solar 

Spectrum (6S) radiative transfer models to generate the top of 

atmosphere (TOA) reflectance, surface reflectance, brightness 

temperature, and to mask clouds, cloud shadows, adjacent 

clouds, land, and water.  Therefore, the atmospheric correction 

only performed for Landsat 8 using Actor 2 (flat terrain, two 

geometric degrees-of-freedom (DOF)) software. The detailed 

parameters applied for the atmospheric correction presented in 

Table 1.  

 

 
Table 1. Parameters used for atmospheric correction model.  

As the results of image acquisition, the date determined image 

quality. They had different imageries on different dates in one 

period. Thus, reflectance normalization was performed with a 

histogram matching model which was developed by using 

ERDAS IMAGINE. The result of reflectance normalization is 

shown in Figure 3. Furthermore, two sites of the study were a 

very big size. It covered by two images in the Sundarbans and 

four images in the West and Central Africa. Hence, the subset 

study area was reduced the bulk and the size of information was 

processed. This reduced the time consumed for the analysis of 

satellite images and also speeded up processing due to small 

amount of processed data.  

 

2.3.2 Masking out non-vegetation and height  

 

Because of consideration on mangrove areas, non-vegetated 

areas (such as water bodies, urban, and bare land) and heights 

should be masked out. Non-vegetated areas were masked out by 

using Normalized Difference Vegetation Index (NDVI). The 

areas with its value less than 0.2 were masked out. This selected 

a threshold to check by comparing the masking results with the 

ancillary map, and reliable excluded for separating vegetated and 

non-vegetated areas in Landsat images. Furthermore, mangrove 

in two areas were mainly distributed in the coastal estuaries. 

Based on the characteristics, the distribution of mangrove and the 

ground reference map in 2011, mangrove was normally located 

in areas where the elevation was lower than 30 m (Chen et al., 

2013). Therefore, the research was eliminated the areas higher 

than 30 m in both two sites of the study (Figure 4). In the other 

hand, buffer zone from the coastlines were generated. The buffer 

distance was different in each continental, depending the spatial 

distribution of mangrove on that region. In this case, 18-km, and 

5-km buffers were used for West and Central Africa and the 

Sundarbans delta.  

 

2.3.3 Image classification  

 

Training samples selection  

 

From the training samples, they identified examples of land cover 

types of interest on the image. The image processing software 

system was then used to develop a statistical characterization of 

the reflectance each class. The image was classified by 

examining the reflectance each pixel and made a decision for 

which of the signatures it resembled the most (Eastman, 1995). 

For each study period, the Region of Interest (ROI) tool that 

provided in ENVI was used to select the training samples. 

Totally, there were six selected ROIs, including mangrove, 

cultivation, vegetation, forest, bare land and water. Each ROI 

represented a land cover category.
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Figure 4. Study area after performing pre-processing and masking out non-vegetation area. a) Study area, b) Landsat image in 1988, 

c) Landsat image in 2001, and d) Landsat image in 2014 (band combination: R=NIR, G=R, R=B). 

 

Evaluation training samples   

 

A separability test is one of methods to determine how similar 

the distributions for two groups of pixels are. The Jefferies-

Matusita (JM) distance was a function of separability that directly 

related to the probability of how good a resultant classification 

will be (Swain et al., 1971). As the results of training data 

selection, they were evaluated for agreement to classify the 

images by using the JM from the following form: 

  

 

In which  is the Bhattacharya Distance and is given by  

 

 

 

where i and j are the two signature classes,  

            is the mean vector signature for class  , 

            is corresponding class covariance matrix signature, 

            is the transposition function. 

The JM distance had values 0 to 2. If JM value was greater than 

1.9, then the classes show good separability. If values are 

between 1.7 - 1.9, the separation between the classes was fairly 

good below 1.7, the classes were poorly separated (Jensen, 1996).   

 

Image classification 

 

The Support Vector Machine (SVM) algorithm was a non-

parametric classifier. The method based on statistical learning 

theory using a kernel function to non-linearly project the training 

data in the input space into a higher dimensional space, where the 

classes were linearly separable. The SVM has been widely 

applied in remote sensing for classification of land uses or land 

cover types. It has been demonstrated to give better classification 

results among the maximum likelihood, univariate decision trees, 

and back-propagation neural networks (Huang et al., 2002). 

Nevertheless, it was also claimed that using the SVM for 

classifying high-dimensional datasets can produce more accurate 

results comparing with the traditional classifiers, but the outcome 

greatly depends on the kernel types used, the choice of 

parameters for the chosen kernel and the method used to generate 

the SVM. 

 

Chen and Ho (2008) provided an excellent general reference for 

statistical learning in remote sensing. For linearly not separable 

cases, the input data were mapped into a high dimensional space, 

using so-called a kernel function. A training data set of samples, 

in a d-dimensional feature space d, was given by xi with their 

corresponding class labels:  

 

 
 

The linear hyperplane f(x) was given by the normal vector w and 

the bias b, with  as a distance between the hyperplane and 

the origin, where  was the Euclidean norm of w, given by 

next. 

fl(x) = wx + b 

 

The margin maximization leaded to the following optimization 

problem: 

 
 

where ζi: denoted the slack variables, and  

           C: the regularization parameter, which is used to penalize 

training errors.  

 

The SVM decision function for a non-linear separable case was 

described by 

 
 

where αi was Lagrange multipliers.  

 

The kernel function k(xi,xj) performed a mapping operation and 

enabled us to work within the newly transformed feature space, 

only knowing the kernel function. A common kernel function in 

remote sensing applications was the Gaussian radial basis 

function (RBF), defined by 

 

 
 

The training of an SVM classifier required the adequate 

definition of the kernel parameter γ and the regularization 

parameter C. The constant C was used as a penalty for training 

samples that are located on the wrong side of the hyperplane. It 

controlled the shape of the solution. Thus, it affected the 

generalization capability of the SVM. However, the use of 

inadequate parameter values might result in a less accurate 

classification. Often the kernel parameters were determined by a 

grid-search, using n-fold cross validation. Potential combinations 

of C and γ were tested in a user-defined range and the best 

(1) 

(2) 
(5) 

(3) 

(4) 

(6) 

(7) 
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combinations for C and γ were selected based on the results of 

the cross validation.  

 

Image filtering 

 

Classified images often manifested a salt-and-pepper appearance 

due to the inherent spectral variability encountered by a 

classification when applied on a pixel-by-pixel basis. Therefore, 

it was desirable to “smooth” or “filter” the classified output. The 

median filtering in Convolution and Morphology tools in ENVI 

was used for post classification filtering by using a kernel size of 

3x3. The median filtering to smooth an image, while preserving 

edges larger than the kernel dimensions in removing salt and 

pepper noise or speckle by replacing each center pixel with the 

median value within the neighborhood specified by the filter size 

(Castro & Donoho, 2009).  

 

Accuracy assessment  

 

In a statistical context, accuracy regarded to the degree of 

correctness of a classified map, and it is comprised of bias and 

precision. A thematic map derived with classification may be 

considered as accurate if it provided an unbiased representation 

of the land use and land cover in the region it portrays. Therefore, 

classification accuracy means the degree to which the derived 

image classification agrees with reality or conforms to the truth 

at that particular location and epoch. The accuracy check was 

done by comparing the classification result with reference data 

that were believed to reflect the true land cover accurately. In this 

work, user’s, producer’s, and overall accuracies together with 

kappa statistics were derived from the error matrix. The 

producer’s accuracy referred the fraction of correctly classified 

pixels with regards to all pixels of that ground truth class. The 

user’s accuracy, referred to the reliability of classes in classified 

images. The kappa statistic incorporated the diagonal elements of 

the classification error matrix, and represented agreement 

obtained after the elimination of the proportion of agreement that 

could have occurred by chance. According to Landis & Koch 

(1977), Kappa values were grouped into several categories. 

Values less than zero (0) indicated no agreement, 0-0.20 were 

regarded as slight agreement, 0.21-0.40 were considered fair, 

0.41-0.60 were considered moderate, 0.61-0.80 were substantial, 

and 0.81-1.00 represented an almost perfect agreement.  

 

2.3.4 Change detection  

 

The post-classification change detection algorithm was used to 

determine the change in mangrove from the three different 

classified images. It was comprised of comparative analysis of 

independently produced classification maps on different dates, 

via a mathematical combination of pixel by pixel. The output of 

this algorithm was in the form of a matrix showing the initial 

parameter values of different land covers on the columns, and 

their final state parameters along the rows, together with their 

respective spatial representation images. The procedure was 

carried out at two different intervals, for example, the change that 

occurred during 1988-2001, 2001-2014, and finally from 1988 to 

2014. This was perhaps the most common approach to change 

detection (Jensen, 1996). It was successfully used by many 

researchers.  

 

3. RESULTS 

The classification results presented two major classes (mangrove 

and non-mangrove) mapped. Spatial distribution showed that 

mangrove areas were concentrated in the coastal estuaries, rivers 

where interlinked between land and the sea. The real distribution 

of mangrove in two study sites were mapped and presented the 

areas of mangrove regeneration and degradation. Mangrove 

change analysis was performed using mangrove map results in 

1988, 2001 and 2014.  

 

3.1 The West and Central Africa 

3.1.1 Spatial distribution of mangrove and accuracy 

assessment  
 

Spatiotemporal distribution of mangrove showed for three 

particular years of 1988, 2001 and 2014 in Figure 5.

 

 
 

Figure 5. Spatial distriution of mangrove in the West and Central Africa derived from Landsat imagery in a) 1988, b) 2001, and c) 

2014. 
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Mangrove was generally located in the coastlines, rivers bank, 

and estuaries. The mangrove was more concentrated in the 

western of the area, especially in the upper part of the region 

(northwest). This area was strictly managed by the local 

governments as natural reserves for biodiversity conservation. 

Mangrove in the lower part was relatively fragmented due to the 

development of cultivation land. The study area showed 

significant rates of mangrove loss in the upstream parts of the 

rivers, largely due to overexploitation and conversion to 

agriculture and other uses, and to sedimentation and hydrological 

changes.  

 

The result of classified maps in 1988, 2001, and 2014 showed 

that the total mangrove areas were 5,506.4 km2 (18.7%), 5,505.1 

km2 (18.7%), and 5,186.0 km2 (17.6%), while the non-mangrove 

area were 23,915.7 km2 (81.3%), 23,917.1 km2 (81.3%), and 

24,236.1 km2 (82.4%), respectively.  

 

For accuracy assessment, random points were generated by using 

reference map (10,000 points for mangrove and 10,000 points for 

non-mangrove) to validate with the 2014 classification map. The 

accuracy check was generated an overall accuracy of 84.1% with 

kappa coefficient 0.74. Of 10,000 pixels checked to measure the 

accuracy each class, the non-mangrove forest class had a higher 

producer accuracy level (96.7%). The producer accuracy of the 

mangrove forest class was 73.54%, which included a corollary 

omission error of 26.46%.  

 

3.1.2 Mangrove change detection  

 

Mangrove has been subjected to enormous pressures and threats 

within the past three decades. The loss of mangrove from 1988 

to 2014 was approximately 16.9%, while only 2.5% was 

recovered or newly planted at the same time. The conversion of 

mangrove to non-mangrove was sharply reduced during the 

period 2001-2014, when approximately 9.8% of the mangrove 

changed to non-mangrove. Mangrove recovered in the region 

about 3.4%. 

 
 

Figure 6. Changes in mangrove forests in the study area from 1988 to 2014. a) Changes in 1988-2001, b) Changes in 2001-2014, and 

c) Changes in 1988-2014. 

 

 
 

Figure 7. Mangrove deforestation based on native communities’ 

activities and drought and salt intrusions. 

 

These threat factors appeared to be regional from natural to 

human-made factors with mangrove in the upper Western coasts, 

and exploitation activities along the coast were also increasingly 

threatening these mangroves (Figure 7). 

 

3.2 Southeast Asia – Sundarbans delta 

3.2.1 Mangrove extraction results in the Sundarbans delta 

and accuracy check 

 

According to the classification maps and statistical data derived 

by Figure 8, the real estimate of mangrove in the study were 

6,635 km2 (75.0%), 5,993 km2 (68.7%), and 5,883 km2 (69.3%) 

in 1989, 2001, and 2014, respectively, while 2,212 km2 (25.0%), 

2,727 km2 (31.3%), and 2,613 (30.8%) of non-mangrove were 

estimated in 1989, 2001, and 2014. The rate of change was not 

uniform. These changes were non-significant in the context of 

errors associated with classification and the dynamic nature of 

mangrove ecosystems. These changes were well within the error 

margin. For example, selected areas in flooded areas, barren land, 

and water bodies could easily be misclassified from one class to 

another.
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Figure 8. Spatial distriution of mangrove forest in a) 1988, b) 2001, and c) 2014 in the Sundarbans delta derived from Landsat 

imagery. 

 

Table 2 presented the error matrix comparing the ground 

reference map with 2014 classification map. The table showed 

that the overall accuracy was 87.0% and the Kappa coefficient 

was 0.73. The result explanted that mangrove class had a higher 

producer accuracy level (91.0%). The producer accuracy of the 

non-mangrove class was 76.0%, which included a corollary 

omission error of 24.0%. 

 

Reference data Classification result (2014) 

Mangrove Non-Mangrove Total 

Mangrove 881 100 981 

Non-Mangrove 84 330 414 

Total 965 430 1,395 

Producer accuracy 91% 76%  

User accuracy 89% 79%  

Overall accuracy 87% 

Kappa coefficient 0.73 

 

Table 2. The error matrix for classification results in 2014 

comparing with ground reference map in 2011 with some 

modifications by the author. 

 

3.2.2 Change in mangrove in the Sundarbans delta in 

three past decades 

 

The change of mangrove in three periods, 1989-2001, 2001-

2014, and 1989-2014 presented that the overall change of 

mangrove in the Sundarbans delta dramatically increased by 

approximately 15.3% (900 km2) of the total mangrove area from 

non-mangrove areas and nature effected.  

Similar patterns of change were observed 18.9% (1,253 km2) and 

9.4% (563 km2) from the 1989 to 2001 and from 2001 to 2014 

(Table 3), respectively. The classification results presented that 

more than 90% of mangrove, and 75% of non-mangrove areas 

did not change. But from 2001 to 2014, about 87% of mangrove 

did not change. The large change between mangrove and non-

mangrove may possibly be due to variation in tidal inundation at 

the time of satellite data acquisition. Non-mangrove areas were 

found in the outer periphery in the Sundarbans. Due to 

aggradation, land continues to be new in the Sundarbans. This 

process had increased the land and mangrove areas. The most 

dramatic and undeniable areas of change were found along 

waterways in the Bay of Bengal, and some inland areas showed 

evidence of change as well. 

 

 
 

Table 3. Changes in the three past decades in Sundarbans.
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4. CONCLUSIONS 

This research successfully applied to extract mangrove forests 

based on characteristics, singularities, and distribution as well as 

reflectance values and spectral properties of mangrove forests in 

the images.  The classification results indicated satisfactory 

agreement with the ground reference data with overall accuracy 

of 84.1% and Kappa coefficient of 0.74 in the West and Central 

Africa and 83.0% and 0.73 in the Sundarbans, respectively. In the 

West and Central Africa, the largest conversion of mangrove to 

non-mangrove was observed during the period of 1988-2001. 

The loss of mangrove from 1988 to 2014 was approximately 

16.9%, while only 2.5% was recovered or newly planted. 

Besides, the overall change of mangrove in the Sundarbans delta 

increased approximately by 15.3% (900 km2). Similar patterns of 

change were observed by 18.9% (1253 km2) and 9.4% (563 km2) 

from the 1989 to 2001 and from 2001 to 2014, respectively. 

These threat factors appeared to be regional in two cases of the 

study from natural to human-made factors with mangroves in the 

upper western coasts, from natural factors mainly of drought and 

salt intrusions, and wood for construction. In addition, these 

changes were mainly attributed to the development of 

aquaculture. Shrimp culture was especially identified as a major 

cause of direct and indirect loss of mangrove ecosystems due to 

deforestation for pond construction. 
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