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ABSTRACT:

With the advent of the innovative techniques for generating high temporal and spatial resolution terrain models from Unmanned Aerial
Systems (UAS) imagery, it has become possible to precisely map overland flow patterns. Furthermore, the process has become more
affordable and efficient through the coupling of small UAS (sUAS) that are easily deployed with Structure from Motion (SfM) algo-
rithms that can efficiently derive 3D data from RGB imagery captured with consumer grade cameras. We propose applying the robust
overland flow algorithm based on the path sampling technique for mapping flow paths in the arable land on a small test site in Raleigh,
North Carolina. By comparing a time series of five flights in 2015 with the results of a simulation based on the most recent lidar derived
DEM (2013), we show that the sUAS based data is suitable for overland flow predictions and has several advantages over the lidar data.
The sUAS based data captures preferential flow along tillage and more accurately represents gullies. Furthermore the simulated water
flow patterns over the sUAS based terrain models are consistent throughout the year. When terrain models are reconstructed only from
sUAS captured RGB imagery, however, water flow modeling is only appropriate in areas with sparse or no vegetation cover.

1. INTRODUCTION

Mapping hydrological pathways by which water moves over and
through the Earth surface is essential for explaining hydrologi-
cal, geomorphological, ecological and geochemical phenomena
(Hyväluoma et al., 2013; Bevington et al., 2016). Precise and
detailed representations of terrain are needed to accurately pre-
dict overland flow. Therefore the acquisition of high resolution
digital elevation data is necessary for accurately mapping over-
land flow paths (Leitão et al., 2015). Lidar – a technology that
measures the distance to a target based upon the travel time of
reflected light – is still at the forefront of high-resolution 3D data
collection methods (Hodgetts, 2013). Novel methods for photo
based 3D surface reconstruction, however, have opened a new
pathway for developing solutions to affordably and efficiently
generate very high resolution digital terrain models. Photogram-
metric techniques have long been used to derive topographic data
from analogue imagery such as stereo aerial photographs. Re-
cent advances in computer vision computer algorithms coupled
with the availability and affordability of digital cameras, how-
ever, have lead to dramatic improvements in the collection and
processing of terrain data using photogrammetry. The novel pho-
togrammetric approach called Structure-from-Motion (SfM) en-
ables fully automatic generation of high resolution digital terrain
models using multi-view stereo techniques to derive 3D data from
imagery taken with consumer grade cameras. This approach can
be used to examine objects captured with terrestrial photographs
as well as aerial imagery (Bemis et al., 2014). The rising number
of applications and innovations is driven by the increasing acces-
sibility of Unmanned Aerial Systems (UAS) technology. Until
recently, most UAS applications were military. In the last decade,
however, the emerging market for small (sUAS), light and easy
to use systems led to UAS applications in industry, research and
entertainment. Geoscientists have taken advantage of the integra-
tion of sUAS and the SfM approach; numerous geoscience stud-
ies have demonstrated the relevance, cost-effectiveness and effi-
∗Corresponding author

ciency of this approach. Procedures for obtaining imagery using
unmanned platforms and processing acquired data in photogram-
metric software no longer require expert knowledge and experi-
ence. The high degree of automation in photogrammetric flight
planning and execution and the availability of numerous software
packages utilizing SfM algorithms make the extraction of three-
dimensional coordinates from sufficiently overlapping photogra-
phy possible (Tonkin et al., 2014) even without camera location
and orientation data (Snavely et al., 2008; Westoby et al., 2012).
It has been demonstrated that this approach produces terrain mod-
els with resolution and data quality equivalent to or better than
lidar (Carrivick et al., 2013; Fonstad et al., 2013). Legal pro-
cedures, however, currently limit UAS data collection as regu-
lations are still being adapted to this new, rapidly growing field
(Summary of North Carolina Regulations concerning Unmanned
Aircraft Systems, 2015).

It is clear that the photographs cannot replace lidar’s capability
of obtaining the bare ground surface by filtering the vegetation
cover. On the other hand the high cost of laser scanning surveys
makes the acquisition of time series expensive. Cost may limit
temporal resolution, a disadvantage when a study area undergoes
frequent or sudden terrain changes. Arable land, for example, is
subject to seasonal changes, crop rotation, and soil redistribution
by intense tillage (Su et al., 2012; Ferreira et al., 2015). Further-
more, arable land is susceptible to intensive erosion, which can
modify its terrain and cause the formation of gullies (Ferreira et
al., 2015).

Several studies have investigated the impact of digital elevation
model (DEM) resolution on change detection (Wheaton et al.,
2010 (Wheaton et al., 2010; Brasington et al., 2012) and flow
modeling results (Fewtrell et al., 2011; Leitão et al., 2015). Leitão
et al. (2015) demonstrated that high resolution terrain models
generated with SfM techniques from aerial photographs produce
satisfactory results for urban overland flow modeling. This phe-
nomenon is of particular significance for agricultural land. A
study by Hyväluoma et al. (2013) demonstrated that tillage can
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significantly modify overland flow in cultivated areas, but also
highlighted the DEM limitations in representing the flow pattern.

In this paper we propose a robust approach for analyzing micro-
topography controls on surface water flow, drainage and ponding
in agricultural landscape based on sUAS derived high-resolution
elevation models. The objectives of this paper:

• to assess the suitability of digital surface models (DSMs)
produced by sUAS photogrammetry for overland flow sim-
ulation in the context of precision agriculture applications,

• to develop a workflow for overland flow pattern simulation
using high spatial and temporal resolution DSMs derived
from sUAS data, and

• to investigate the differences between flow patterns based on
sUAS derived DSMs and lidar based DEMs.

The rest of the paper is organized as follows: first we introduce
the data acquisition techniques and materials and we characterize
the study area features. The next section is dedicated to method-
ology of geoprocessing sUAS derived data and description of the
algorithm used for overland flow modeling. After presenting re-
sults of the research we summarize them in the last section that
contains conclusions, discusses possible issues and suggests is-
sues that are worth further investigation.

Figure 1: The targeted area, Lake Wheeler Road Field
Laboratory of North Carolina State University, Raleigh, NC

2. STUDY AREA

The study area (Figure 1) is located within the jurisdiction of
the City of Raleigh and Wake County, in the central region of
North Carolina, USA at the Lake Wheeler Road Field Labora-
tory of North Carolina State University (NCSU). Although lo-
cated within the city limits, the farm is a part of delimited Special
Area that has been identified by the local authorities as protec-
tion area for maintaining water quality in the Swift Creek Wa-
tershed (The 2030 Comprehensive Plan for the City of Raleigh,
2002). Current policy limits future development within the area.
The majority of this protected area is now used for agricultural
research.

Legal regulations regarding sUAS flights in North Carolina limit
sUAS activity (Summary of North Carolina Regulations concern-
ing Unmanned Aircraft Systems, 2015). The farm is located in
one of the six areas in North Carolina for which NextGen Air

Transportation Group (NGAT) was granted the Certificates of
Waiver or Authorization (COA). This authorization issued by the
Air Traffic Organization to a public operator allows the holder
specific legal UA activity within its borders.

The 11.82 ha area (35◦43′44′′N, 78◦41′54′′W) was selected based
on the terrain features, changing land cover and presence of stable
features such as roads. The elevation within the area varies from
105 to 120 m a.s.l. Most of this area is arable land maintained by
the Lake Wheeler Road Field Lab of North Carolina State Univer-
sity. Soils within the area range from fine sandy loam to sandy
loam and are classified are eroded due to intensive agricultural
exploitation (City of Raleigh iMap portal, 2015).

3. DATA ACQUISITION

The time series of elevation data used for the analysis of sur-
face water flow patterns was derived from imagery collected by
repeated sUAS surveys of the study area over the time period
of eight months. Airborne lidar data acquired for a 2013 Wake
county survey were used to generate the reference DEM and DSM.

3.1 Unmanned Aerial System

The Unmanned Aerial System used in this study is UX5 pro-
duced by Trimble. This system consists of a fixed wing aircraft
and a designated tablet controller. The manufacturer provides a
software for flight planning and control – Trimble Access Aerial
Imaging application. This allows for an automated workflow and
semi-autonomous flight. The airframe wingspan of 1 m and the
weight of only 2.5 kg make the system suitable for a rapid deploy-
ment, thus it can be used for monitoring post-storm landscape re-
sponse. It cannot be used for observation during a storm, because
the system is not able to operate in heavy rain and winds exceed-
ing 65 km/h (Trimble, 2015). The onboard sensor is a consumer
grade camera Sony NEX-5T capturing RGB imagery. In order to
achieve the desired imagery resolution of about 3 cm, the flight
ceiling during the executed flights was set to about 100 m (Ta-
ble 1). The 14.8 V, 6000 mAh battery allows for 50 minute flight
that can cover up to 19 km2 in one mission (Trimble, 2015). The
flight mission can be prepared beforehand, with the full control
of the desired quality of output products and the flight path.

3.2 Flight missions

The data were collected during five flights (Table 1) executed
by NGAT in 2015 between the months of March and October
to capture the changes in the fields during the growing season.
There is a 225 days timespan between the first and last flight.
All flights were executed after several days of significant rainfall
except for the flight on September 21st flown after a dry period
(Figure 2). In order to ensure the accuracy of the final results,
multiple Ground Control Points (GCPs) were set in the field and
the overlap of the photos was set to 80 % in all the flights. De-
pending on the visibility, 6 to 11 GCPs were identified during
data processing.

3.3 Lidar data

Due to the rapid development of the Raleigh metropolitan area
and the need of sustainable land management, high resolution el-
evation data were recently acquired to support conservation plan-
ning, design, research, floodplain mapping, and hydrologic mod-
eling. This airborne lidar survey was the result of a project com-
bining varied interests of Wake County, City of Raleigh and Town
of Cary resulting in detailed multiple return and ground eleva-
tion data covering approximately 2500 km2. The acquisition was
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Figure 2: Flight dates and daily precipitation between Mar 1,
2015 and Oct 31, 2015 for Lake Wheeler Rd. Field Lab Station

date resolution GCPs error density altitude
[cm/px] [px] [pts/m2] [m]

Mar 18 3.11 6 0.047 64.73 88
Jun 20 3.31 11 0.080 63.75 100
Sep 21 3.12 6 0.091 63.88 100
Oct 06 3.12 9 0.125 63.80 100
Oct 29 3.18 9 0.135 61.63 100

Table 1: Properties of sUAS surveys performed in the year 2015:
date, ground resolution of the photos, number of GCPs, GCPs

error, point densities and flight altitude. All surveys were flown
after significant rainfall period, except for Sep 21.

completed in February 2013 using ALS70 HP at 2750 m a.g.l.,
40◦field of view, 11 % minimum sidelap, 0.82 m average point
spacing. All deliverables met or exceeded standards for both ver-
tical and horizontal accuracy of 95 % confidence for 0.623 m (2
ft) contours, according to NDEP Guidelines for Digital Elevation
Data (NDEP, 2004). The classified point cloud from this survey
was used to generate reference DEM and DSM for the study area.

4. METHODS

To perform the high resolution surface flow analysis a series of
0.3 m resolution DSMs was generated from the lidar and sUAS
derived point clouds. The DSMs were evaluated for accuracy
and geometric distortions using the GCPs and lidar based DSM.
Overland flow was then simulated for a given design storm using
path sampling method for solution of bivariate shallow water flow
equations. The processing of sUAS imagery was performed in
PhotoScan Professional by Agisoft (Agisoft, 2013), computation
of DSMs and flow analysis was carried out using GRASS GIS
(Neteler et al., 2012).

4.1 Photogrammetric UAS data processing

The images acquired by UAS were processed using structure from
motion (SfM) to derive orthophotography and 3D point clouds.
This technique – designed for extraction of 3D coordinates from
sufficiently overlapping photography adjusted to the needs of UAS
data – has been implemented in several photogrammetric soft-
ware packages. After evaluation of several proprietary and open-
source solutions, the software PhotoScan Professional by Agisoft
was chosen for UAS data processing in this study. This system
provides a semi-automatic, intuitive workflow and supports cus-
tom settings in each step of geoprocessing. It is widely used in
the research, i.e. (Gonçalves and Henriques, 2015; Leon et al.,
2015; Javernick et al., 2014; Uysal et al., 2015), because of its
solid performance and relatively efficient processing.

Agisoft PhotoScan is a proprietary package, thus the algorithms
utilized during geoprocessing are not fully documented (Gonçalves
and Henriques, 2015). The final products of the standard work-
flow, described by manufacturer (Agisoft, 2013) are an orthomo-
saic and a Digital Surface Model (DSM).

After the visual inspection of the photographs, the relevant im-
agery is loaded to the program and the preliminary adjustment is
executed using the camera orientation log. Image feature points
(geometrical similarities) and their movement throughout the se-
quence of multiple images is monitored and based on this infor-
mation feature points are rendered as a 3D sparse point cloud.
This procedure can be executed also without the information about
the external orientation of a camera that is included in the flight
log. The correct values of localization (coordinates, altitude)
and orientation (pitch, yaw, roll) parameters of a sensor at the
moment of photo capture are determined in the aerial triangula-
tion process, but the processing is faster if approximate values
for these parameters are known. This procedure is coupled with
camera self-calibration, which resolves the issue of using a non-
photogrammetric camera, although the inaccuracy of these esti-
mates together with the algorithms used by the software cause
the deformation known as a doming error (James and Robson,
2014). The issue can be resolved by performing optimization
based on ground control data. The GCPs are identified on each
photo, where the marker is visible and the optimization is carried
out based on the known, pre-measured and accurate positions of
the ground points.

The construction of dense point cloud is performed by calculating
depth maps for every image. PhotoScan determines the quality
of the generated point cloud, but the more accurate the camera
position estimates are, the more time and memory intensive the
process will be. For our study the medium quality setting was
chosen based on the memory required for the number of photos
included in the processing. Efficient processing was possible only
in a special height-field mode available in PhotoScan, which is
highly optimized for aerial imagery (Agisoft, 2013).

Further steps recommended by the manufacturer – meshing and
texture generation – are necessary for generating DSMs and or-
thophotos in the software. We, however, decided to export the
raw, georeferenced point cloud from PhotoScan and generate all
DSMs with the same technique as the lidar based point cloud in
order to compare the results of overland flow simulations based
on data acquired by lidar and UAS. The orthophoto, produced
with default values in PhotoScan was used for the validation pur-
poses.

4.2 Classification and interpolation of point clouds

In order to model and compare water flow on raster DSMs from
two completely different sources of elevation data – lidar and
sUAS SfM – we derived all the DSMs from raw points clouds
using the same technique, giving us control over the desired res-
olution and level of detail captured in the resulting DSMs. The
process consists of removing tree crowns from the point clouds
and interpolating the DSMs using regularized spline with tension
(Mitasova et al., 2005).

The sUAS based point clouds captured several large trees in the
south-east part of our study area. The tree crowns were repre-
sented as clusters of points with many outliers, often with points
below the ground indicating the high uncertainty and large errors
associated the reconstructed trees. To minimize the impact of the
tree crowns represented in the raster on water flow modeling, we
classified high vegetation and removed it from the point clouds
using a modified multiscale curvature classification method (Evans
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Figure 3: Overland flow pattern simulated for the lidar based DEM and DSMs based on the sUAS derived data in 5 flights in 2015

.

Figure 4: Differences in elevation between the lidar and sUAS based terrain models from the March flight. Figure A shows in blue
areas where sUAS based DSM is higher than lidar. In B we show the difference after applying the shift correction and the inset shows

the differences higher than 1 cm of overland flow depth simulated on these two DSMs.

and Hudak, 2007) implemented in v.lidar.mcc tool (Blumentrath,
2014) available in GRASS GIS. Although originally designed for
lidar data, this method is suitable for sUAS based point clouds be-
cause it doesn’t require point return type. We successfully identi-
fied and filtered high vegetation from the point clouds, however,
not surprisingly, it was not possible to distinguish low vegetation
such as crops and bushes due to their high density and small num-
ber of ground points. Lidar data were already classified by the
vendor and therefore we used bare ground class for further pro-
cessing. We derived all sUAS based DSMs and lidar bare earth
surface at 0.3 m resolution. Since we want to compare the flow
patterns at the same resolution, we chose this resolution as it is
still suitable for sparser lidar data and at the same time we do not
loose too much detail of the dense sUAS data. The lidar data were
interpolated using regularized spline with tension implemented in
GRASS GIS as v.surf.rst module (Mitasova et al., 2005). We used
a relatively low tension value of 20 and with smoothing value set
to 1 to suppress the pattern of the scan lines while preserving the
tillage surface geometry. The sUAS data were then processed in
the same way.

To assess the possible influence of spatial distortion of the SfM
reconstruction on water flow patterns, we analyzed the differ-
ences between sUAS DSMs and lidar data. For each DSM, we
computed a corrected DSM by extracting a trend surface from
the difference to lidar and subtracted it from the original DSM.
We derived the trend surface by computing median of the dif-
ference using moving window with large size (100 m). Prior to

that we removed areas of difference higher than 10 cm to not in-
fluence the trend by vegetation. The original and the corrected
DSM were then compared in regard to water flow patterns, to see
whether DSMs’ distortions of such magnitude matter for water
flow pattern.

4.3 Overland flow simulation

Flow modeling at sub-meter resolutions is challenging due to
high complexity of the terrain surface, including extensive nested
real depressions. Surface flow modeling methods that rely on a
depressionless DEM require substantial modification of this type
of high resolution DEM, limiting the capability to capture the
impacts of microtopography on the flow pattern or on ponding in
the depressions. The path sampling technique, also referred to
as Green’s function Monte Carlo, has been proposed as a robust,
mesh-free alternative for solving the shallow water flow conti-
nuity equation on complex surfaces (Mitasova et al., 2004). The
technique is based on duality between the particle and field repre-
sentation: in this concept, the density of particles in space defines
a field and vice versa, a continuous field is represented by parti-
cles (path samples) with corresponding spatial distribution. Us-
ing this duality, processes can be modeled as evolution of fields
or evolution of spatially distributed particles.

To capture the spatial and temporal variability of surface water
flow over tilled agricultural fields and across unpaved service
roads, we solve the following bivariate continuity equation (see
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more details in Mitasova et al. (2004)):

− ε

2
∇2h5/3 +∇ · (h v) = ie (1)

where h is the depth of overland flow [m], v is flow velocity vec-
tor v = (vx, vy) [m/s], ie is rainfall excess (rainfall− infiltration
− vegetation intercept) [m/s], and ε is a spatially variable dif-
fusion coefficient. The diffusion term, which depends on h5/3

instead of h, makes the Equation (1) linear in the function h5/3

which enables us to solve it by the Green’s function path sam-
pling method. The solution is then described as a function with
statistical error proportional to 1/

√
M where M is the number

of walkers. Incorporation of the spatially variable diffusion term
ε supports approximate simulation of water depth evolution in
locations with flat topography and depressions. By defining the
diffusion term as a function of water depth and the velocity of
flow as a function of an approximate water flow momentum, wa-
ter fills the depressions and flows out in the prevailing flow direc-
tion. The method was implemented in GRASS GIS in the module
r.sim.water.

We used path sampling to simulate shallow overland water flow
and ponding in depressions for a design storm, assuming uniform
rainfall excess rate of 30 mm/hr and a uniform surface roughness
coefficient 0.15. For each DSM in the time series we ran the
simulation at 0.3 m resolution for 40 minutes until steady state
was reached in most of the modeled area.

Figure 5: Areas of a special importance, enlarged on figures 6, 7,
8, and 9

5. RESULTS AND DISCUSSION

In this section we present the results of the overland flow sim-
ulation based on sUAS and lidar derived data. We focus on the
differences in the generated terrain models that are the source
of the discrepancies between final simulations. We analyze the
generated overland flow patterns and validate them based on the
orthophotos depicting actual conditions of terrain during sUAS
data acquisition.

5.1 Assessment of DSM time series accuracy and spatial pat-
tern of distortions

The assessment of the 2013 lidar DEM accuracy based on the 12
available GCPs (installed in 2015) confirmed its high accuracy
with mean difference of 5 cm and RMSE of 8.7 cm.

Figure 6: Enlarged area A from Figure 5, with the visible gully

The mean differences between DSMs derived from aUAS surveys
ranged from −0.1 cm in March to 36.6 cm in June (Table 2)
and RMSE ranges from 1.3 cm in March to 39.2 cm in June and
the spatial distribution of differences varies between the flights.
The differences between the example SUAS derived DSM from
March and lidar based DEM is shown in Figure 4.

To examine the impact of spatial distortions of the SfM recon-
struction on flow pattern, we computed water flow on the original
DSMs and on the DSMs corrected using the method described in
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Figure 7: The puddle on the service road (enlarged area C from
Figure 5) captured on the orthophoto from Mar 18 (A and B),

Jun 20 (C), Oct 06 (D) and Oct 29 (E) with displayed results of
overland flow simulations on lidar based DEM (A) and DSMs
based on sUAS data collected Mar 18 (B), Jun 20 (C), Oct 06

(D) and Oct 29 (E)

Section 4.2. The comparison of the result on March DSM shows
that spatial distortions of such magnitude can slightly alter the
distribution of water on the landscape. They do not, however,
significantly affect the patterns of water flow. Based on these
finding we show here the water flow simulation results computed
on the original DSMs.

The DSMs were generated using the same parameters (see the
methods) but the accuracy of the results varied (Table 1) based
on the flight conditions and availability of GCPs. The second
flight in October produced relatively low quality images due to
windy conditions and trouble placing GCPs.

Comparison of DSMs with lidar based DEM revealed spatially
variable pattern of geometric distortions (Figure 4). As predicted,

date RMSE mean
Mar 18 11.5 -0.1
Jun 20 62.6 -36.7
Sep 21 20.0 8.3
Oct 06 15.7 1.6
Oct 29 19.3 13.9

Table 2: Comparison of lidar based DSM and sUAS derived
DSMs, RMSE – root-mean-square error [cm], mean – mean

difference between lidar DSM and sUAS DSM [cm],

Figure 8: Enlarged area B from Figure 5, with the visible gully

the presence of the mature corn plants made it impossible to cap-
ture the bare ground with the sUAS camera and resulted in cre-
ating an artificial surface at the height of the plants. The DSM
based on the June data shows the greatest differences compared
to the lidar DEM with the mean of absolute values of differences
as high as (see Figure 4 and Table 1) −36.7 cm. This will signif-
icantly influence the simulated flow pattern described below. The
other area with substantial differences is located at the foothill
and therefore does not influence the flow pattern.

5.2 Evolution of the overland flow pattern

The results of the overland flow simulation show a persistent, rel-
atively stable flow pattern in spite of changes in the field due to
tillage, crop growth and harvest (Figure 3). Small gullies were
observed in the fields (Figure 5 A, B) and water ponded in de-
pressions on the service roads (Figure 5 C, D). sUAS data cap-
tured the redirection of flow and accumulation of water caused
by tillage with greater detail than the lidar data. It is clearly vis-
ible in the areas not covered by vegetation. The growing crops
significantly disturb the flow pattern, creating an artificial pond-
ing effect caused by representing the height of the corn as the
elevation surface.

We observed two small gullies in the study area. Over the 9
months covered by our UAS surveys the location, shape and ex-
tent of these gullies did not change significantly in spite of several
storms and crop rotation. The gully A depicted in Figure 6 is vis-
ible on lidar and sUAS data. It shows consistent pattern through
the seasons, with the exception of the June DSM, where the dense
vegetation being part of the terrain creates an artificial ponding
pattern. The smaller plants are not occluding the ground surface
and their influence on the flow pattern is negligible. The second
gully in the NW corner of the study area is not clearly visible on
the lidar data (Figure 8). It is captured on all the sUAS DSMs,
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Figure 9: The puddle along the service road (enlarged area D from Figure 5) captured on the orthophoto from Jun 20 (A and B), Oct
06 (C) and Oct 29 (D) with displayed results of overland flow simulations based on lidar based DSM (A) and sUAS data collected Jun

20 (B), Oct 06 (C) and Oct 29 (D).

however during September and October the gully is disrupted by
the presence of vegetation resulting in less clear but still recog-
nizable shape. There are two explanations for the absence of the
gully in the lidar data. Since the lidar survey was conducted two
years before capturing the sUAS imagery, the gully could have
developed after the lidar data collection. It is also possible that
due to the lower detail of lidar based data the micro changes in
the terrain are not well represented (similar to the tillage pattern)
and the simulation reflects this simplified micro relief. While li-
dar data can be helpful for identifying areas vulnerable to erosion,
sUAS based data is needed to identify and monitor gully forma-
tion.

5.3 Prediction and validation of water ponding on service
roads

As there has not been any direct monitoring of runoff during
storms, we validated the prediction of water flow patterns by
comparing ponding on service roads predicted in the simulation
with the actual situation in the field known from the orthophotos
generated as part of the SfM reconstruction. In the orthopho-
tos from June and both October missions several puddles appear
along the unpaved road in the southern part of the targeted area
(Figure 5 C, D). Despite the fact that puddles of turbid water are
interpreted as ground surface by the SfM algorithm and thus we
cannot accurately represent the local depressions, we hypothe-
sized that the sUAS derived data still provide more accurate rep-
resentation of the overland flow pattern than lidar data. Simula-
tion based on the lidar DEM1 (Figure 9, A) does not predict the
water accumulation along the road (Figure 5 D), while the shape
of the puddle aligns with the sUAS based simulations in all cases
(Figure 9, B, C, D). This is also confirmed for the smaller pud-
dle (Figure 5 C), where the water is visible additionally after the
March rainfall (Figure 7). Our results show that sUAS derived
data allow for accurate spatial prediction of surface water on ser-
vice roads which provides valuable information for road mainte-
nance and assessment of accessibility after storms. It can improve
delineation of the potentially inundated areas and thus enables

1There was no orthophoto available for the time of lidar data survey.

landowners to adjust water management practices and prevention
procedures.

6. CONCLUSIONS

Agricultural areas are characterized by frequent changes in mi-
crotopography that influence the surface water flow. It is there-
fore crucial to obtain the most recent and detailed representation
of terrain surface for overland flow modeling. This study investi-
gated the possibility of using high spatial and temporal resolution
data acquired by small Unmanned Aerial System for mapping
flow paths. The results have been compared with the simulations
based on the lidar derived DEM and the following conclusions
have been drawn:

• sUAS derived data can improve the quality of the flow pat-
tern modeling due to the increased spatial and temporal res-
olution. It can capture preferential flow along tillage that is
represented by capturing the changing microtopography.

• Overland water flow modeling based on data from airborne
lidar surveys is suitable for identifying potentially vulnera-
ble areas. sUAS based data, however, is needed to actually
identify and monitor gully formation.

• Due to the high resolution of obtained data, vegetation sig-
nificantly disrupts the flow pattern. Therefore densely vege-
tated areas are not suitable for water flow modeling.

Future work will concentrate on eliminating the artificial ponding
effect by replacing parts of the sUAS derived data covered with
dense vegetation with the bare earth lidar point cloud. These sim-
ulations extended by new data from future flight will be used for
designing a validation experiment.
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