
COMPARISON OF HIGH AND LOW DENSITY AIRBORNE LIDAR DATA FOR 

FOREST ROAD QUALITY ASSESSMENT 
 

 

 

K. Kiss a*, J. Malinen b, T. Tokola c 

 

University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111 (Yliopistokatu 7), 

FI-80101 Joensuu, Finland. 
a katalin.kiss@uef.fi 

b jukka.malinen@uef.fi 

c timo.tokola@uef.fi 

 

Comission ThS 2 

 

 

 

 

 

 

KEY WORDS: forest road, road quality, forestry, LiDAR, ALS 

 

 

ABSTRACT: 

 

Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality 

detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne 

laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the 

surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, 

satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were 

derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the 

topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the 

standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre 

resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. 

The classification was more precise (31–92%) than on low-density data (25–40%). However, ditch detection and classification can be 

carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality 

information on forest roads. 

 

 

1. INTRODUCTION 

Forest roads enable easy access to harvesting sites, allowing the 

use of efficient harvesting machinery and shorter forest 

transportations. Forest roads offers also possibilities to 

mechanized silvicultural operations, recreation, the collection of 

non-wood products and access for protective services, such as 

firefighting and rescue operations.  The road condition is 

essential; roads with higher bearing capacity can be used by 

heavier vehicles without causing further damage. Uneven road 

surfaces, ruts and holes require a slower driving speed, may 

damage the vehicles or accumulate water in them (Haavisto et al. 

2011).  

 

In Finland, the forest road network has been built to a great extent 

from the 1970s to the 1990s, and the level of new road 

construction has since diminished to under 20 per cent of the top 

years. At the same time, the forest road network is ageing, leading 

to increased maintenance and renovation needs. The currently 

used inventory methods for forest road quality demand visits to 

the site, and most often the inventory is based on subjective 

classification of visible road condition. The forestry applications 

of Airborne Laser Scanning (ALS) are mainly focused on forest 

inventories. Low resolution ALS data (less than 1 pulse per m2) 

is used in the Area-Based Approach to estimate forest variables 
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using ALS-based predictors (Næsset 2002; Maltamo et al. 2014; 

Peuhkurinen et al. 2011). The method is widely used in practice, 

although tree species recognition is not totally solved. 

 

The Individual Tree Delineation (ITD) uses dense laser scanning 

data. Dense data is at least 5 pulses per m2, but often 10 pulses 

per m2 data are used. The dimensions of trees can be measured 

from the ALS data and aggregated to the desired level 

(Vauhkonen at al. 2011). It allows individual trees and tree 

species to be identified, and its accuracy is similar to the previous 

method (Maltamo et al. 2014).  

 

Studies concerning road construction (Ghajar et al. 2013), 

maintenance (Coulter et al. 2006) and environmental concerns 

affecting the placement of roads in forests (Grayson et al. 1993; 

Rummer et al. 1997; Forsyth et al. 2006; Jordán and Martínez-

Zavala 2008.) show big variety. Forest road condition can be 

evaluated using remote sensing technology. Zhang (2008) was 

working on a system in the United States that can evaluate 

unpaved roads without field surveys. 

 

Airborne Laser Scanning is widely applied in forestry, especially 

in Northern Europe, but a relatively new field of study for roads 

and for unpaved forest roads. 
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Recent studies focus on road extraction from LiDAR data. White 

et al. (2012) extracted roads in forested areas which were 

partially covered with different dense canopies. Azizi et al. 

(2014) worked on automatized road extraction, and could locate 

roads with 63% accuracy. Road quality (Kiss et al. (2015), 

geomatics and grade of forest roads have been studied as well 

(Craven and Wing 2014). Haavisto et al. (2011) and Uusitalo et 

al. (2012) were testing how to calculate the bearing capacity of 

peatlands from ALS data. Bearing capacity was calculated for 

quite large pixel sizes based on the volumes of the trees and their 

relative elevations. The method requires further development, but 

it could be useful in future for gathering information relevant to 

wood harvesting and transportation. 

High-density ALS data is still expensive, but multiple-use of the 

data can reduce its cost. In forest inventory for individual tree 

delineation and species recognition (Vauhkonen et al. 2012) or in 

geomorphological modelling (Höfle and Rutzinger 2011) the 

required datasets have a similar density to the ones for road 

assessment. Another possibility for cost-reduction is the use of 

unmanned aerial vehicles (UAVs) (Wallace et al. 2012). UAVs 

can fly above roads and map them more efficiently than laser 

scanning inventories which cover the whole forest area. These 

provide the opportunity for future economic use. 

 

The current work was testing the applicability of different pulse 

density ALS data so as to assess forest road conditions, focusing 

on the structural condition, surface wear, flatness and drying of 

the roads. Both ALS data have been recorded for forest inventory 

purposes. Laser scanning can lead to cost reduction in the road 

inventory by locating problematic sections on the roads without 

spending time and money on field inspection of the roads. 

 

2. MATERIALS 

2.1 Field data 

The field data was collected based on the accepted Finnish road 

quality standards. Two study areas have been inventories. The 

first data was collected in August 2013 at Kiihtelysvaara, the 

second dataset in July 2014 at Tuusniemi, Finland.  

 

The first study area has slight topographic differences, the roads 

steepness does not exceed 1.7° per 10 m, and the total length of 

forest roads in the area is 9.7 km. No recent road maintenance has 

been observed. The second study area has greater elevation 

differences (up to 20% of road steepness) and recent road 

maintenance has been carried out in certain locations. 

Respectively thirteen and fifty field plots sampled the roads (2–3 

plots per road sections) and 10 m on either side of them. 

 

Based on the Finnish national road quality standards (Metsätehon 

raportti 2008), the following categories were included in the 

inventory: structural condition, seasonal damage, drying 

(including surface wear, ditches and side bumps), geometry, 

design and visibility, coppicing, bridges, and flatness. For each 

of these categories, each observation was placed in one of three 

quality classes: good (3), satisfactory (2), or poor (1). Note that 

poor category roads have been inventoried only in the second 

study area. 

 

Road surface quality and the ditching system were at the focus of 

the research; therefore, the structural condition, drying, surface 

wear and flatness categories were taken for further analysis. 

 

2.2 Airborne laser scanning data 

The high-density ALS data for the first study were collected on 

26 June 2009 using an Optech ALTM Gemini laser scanning 

system, and the scanning took place from 600 m above ground 

level. The scanner had a field of view of 26°, a pulse repetition 

frequency of 100 kHz, which resulted in a sampling density of 

about 12 measurements·m2. The scanning strip had a width of 

approximately 320 m and 55% of side overlap. The time gap 

between the field data and LiDAR data has been acknowledged, 

as it can affect the road condition, and this will be discussed later. 

 

The low-density ALS data for the second study area was 

collected on 23 July 2014 by Leica ALS50-II laser scanning 

system from about 2000 m above ground level. It had a 20° to the 

field view,114 kHz pulse repetition frequency, the average 

sampling density was 1.1 pulses per m2 with a 20% or side 

overlap. There is no significant time gap between the ALS and 

field data. 

 

Digital elevation models (DEMs) were created for further 

analysis. DEMs have been interpolated in resolutions 2 m, 1 m, 

0.5 m, 0.25 m and 0.10 m. The last of many echoes and only 

echoes were used during the interpolations of surface, while the 

first of many echoes and only echoes were used in vegetation 

modelling, which was useful mostly to map ditches. 

 

3. METHODS 

The research focused on road surface and ditch system 

conditions. The road surface condition is determined by different 

factors: surface wear, structural condition, seasonal damage and 

flatness. Tyre tracks, holes or improper drying can be observed if 

any or all of these are in poor condition. Secondly, the ditch 

systems were identified and assessed. Road-side vegetation can 

obstruct proper drainage if it grows in the ditches. 

 

Currently, there are no existing accepted methods for road quality 

assessment using ALS data. This paper discusses how to use 

various existing tools in order to assess road quality. Several 

different indices have been calculated and compared using the 

ALS point cloud and the different resolution DEMs. The road 

centrelines data was available from the Finnish Transport Agency 

(2013). The widths of the roads were obtained from field 

measurements. 

 

The elevation values were assessed to determine topographic 

variations in the roads. To assess the road surface, 3m by 3 m 

squares were defined around the field data point to cover the road 

surface. The indices were calculated to these squares, compared 

and validated by using the field data about structural condition, 

seasonal damage, surface wear and flatness. 

 

An ArcGIS extension, Land facet corridor analysis (Jenness 

Enterprises 2013) was used for the surface analysis. The 

following indices can analyse landscape conditions. The 

topographic position index (TPI) and standardized elevation 

index (SE) can be calculated from the DEMs. It provides a simple 

and repeatable method for classifying the landscape into slope 

position and/or landform categories. The original application of 

the index was to determine positive landforms like peaks, 

mountains, neutral landforms such as plains or plateaus, and 

negative landforms such as valleys or canyon. In this research, 

we applied the index on a smaller scale due to the available ALS 

data. 

 

The index values are calculated for each cell of the DEMs. The 

TPI value of a cell equals the difference between its elevation and 

the mean elevation of all the cells in the neighbourhoods. The TPI 

is expressed in elevation units; therefore, a cell with 1 TPI means 

that this particular cell is 1 unit higher than the mean elevation of 
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the neighbourhoods (Equation 1). The SE index is very similar to 

the TPI index; it divides the TPI by the standard deviation of the 

neighbourhoods (Equation 2). The SE index is expressed in 

standard deviations, which means that an SE index of 1 of a cell 

would mean that this particular cell is 1 standard deviation higher 

than the mean elevation in the neighbourhoods. While positive 

values mean higher locations, negative values mean the cells are 

lower than their neighbourhoods. 

 

 𝑇𝑃𝐼𝑖 = 𝑥𝑖 −
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
  (1) 

 

 𝑆𝐸𝑖 =
𝑥𝑖−

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 

𝜎
  (2) 

 

where  𝑥𝑖 = height 

 𝑛 = cells in the neighbourhood 

𝜎 = standard deviation of the selected neighbourhood 

  

When the TPI and SE index were used for road quality 

assessment, they were applied on a small scale, making it 

possible to locate small unevennesses in the road as being lower 

(e.g., holes) or higher (e.g., stones, vegetation) than their 

environment. 

 

The most important property of the indices is their 

neighbourhood. The calculated indices depend on the size and 

shape of the neighbourhoods taken into consideration. Setting the 

proper scale is essential. Smaller neighbourhoods can show 

smaller differences, whereas broader neighbourhoods will map 

large landform efficiently, but do not show the smaller 

depressions or peaks. The neighbourhoods can be in several 

different shapes, for example circle, square, ring, etc. A three-

metre square shape has been chosen for the analysis of the road 

quality. 

 

The surface can be assigned to various categories based on its 

degree of slope and index values. It has been used for ditch 

detection. Ditches and non-ditches were classified in 3 m wide 

and 20 m long corridors parallel with the central line of the road 

on both sides. This categorization has been used for ditch 

detection.  

 

4. RESULTS 

The spatial resolution of DEMs highly depends on the density of 

the available ALS point cloud. In the second study area, the 

interpolated DEMs were in poorer resolution due to the sparse 

dataset. 

 

The neighbourhood size for the indices had been tested between 

up to 20 cells. Bigger neighbourhoods mean longer calculation 

times and their usability for road quality was reduced as well, 

because the bigger neighbourhoods averages the smaller 

differences on the surface. It is possible to use bigger 

neighbourhood sizes only for ditch detection purposes; there is 

no need to increase calculation times if the detection can be done 

on a smaller neighbourhood as well. Considering these, a two 

metre radius neighbourhood have been used, which meant more 

cells at better resolution, and fewer cells at lower resolution. 

 

The TPI index reflects more the original differences (for example 

slope) of the road than does the SE index. The latter index is less 

dependent, and therefore showed better results in road surface 

condition and ditch detection as well. 

 

4.1 Locating ditches 

Ditches and the surrounding vegetation can be clearly detected 

visually from the high resolution ALS data. The classification of 

ditches in the low pulse density dataset was least successful. 

Figure 1 and Figure 2 show the difference between the DEMs 

generated from the two datasets in different resolutions. Figure 2 

shows that a ditch was identified only on one side of the road. If 

the laser pulse did not hit the bottom of the ditch, the ditches 

cannot be identified or they are classified as poor quality ditches, 

which hinders the classification results. 

 

TPI index was calculated to detect the ditch systems. Negative 

TPI values define negative landforms compared to their 

neighbourhood; therefore, by setting a threshold value it was 

possible to classify the landscape into ditches and non-ditches 

using the index. 

 
Figure 1. Road cross-section of DEMs interpolated from high-

pulse density ALS dataset. All resolutions represent the same 

cross section. 

 
Figure 2. Cross-section of DEMs interpolated from low-pulse 

density ALS dataset on resolutions 1 m  

 

DEM resolution 

(m) 
Good Ditch (m2) Poor Ditch (m2) 

0.10 0.58 0.78 

0.25 0.56 0.82 

0.50 0.53 0.94 

1.00 0.49 0.62 

2.00 4.85 4.72 

Table 1. The standard error of mean ditch sizes in different 

resolutions.
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Figure 3 Ditch and non-Ditch classification at several resolutions 

Ditch systems were successfully detected in all resolutions up to 

1 metre. 2-merer resolution did not result in continuous ditches 

even if the ditch quality was good (Figure 3). Ditches were 

classified into two categories: good and poor ditches. The latter 

included both satisfactory and poor quality ditches. The 

percentage of the ditch area has been evaluated based on the 

different resolutions to determine whether the section has a good 

ratio of ditches or not. The standard error of mean was low in all 

cases except in the 2 m resolution. (Table1) The 0.25 m cells 

provided the best detection results. Leave-out-out cross-

validation confirmed that 69% of the ditches were classified 

correctly, and the difference between the ditch sizes was 

statistically significant on the assumption of equal variance. 

 

4.2 Road surface analysis 

TPI and SE indices were calculated and verified against the field 

data of structural condition, surface wear quality and flatness. 

The assessment of road surface quality gave essentially different 

results for the two datasets. 

 

Figure 1 shows that at the resolution of 2m and 1m the 

inequalities of the road surface are not easily detectable, only the 

general profile of the road. Table 2 shows the mean values for 

good and satisfactory surface wear at each resolution. The 

standard error of mean (SEM) was high for 1 m and 2 m 

resolutions. In the case of higher resolutions, SEM was low and 

also the difference between the quality classes were statistically 

significant based on T-test. The difference between the quality 

classes at 0.1 m and 2m resolution did not show statistical 

significance. 

 

Resolution 

of DEM 

(m) 

Surface wear 

classification 
Mean 

Standard error of 

mean 

0.10 Good  0.0035 0.0043 

0.10 Satisfactory  0.0049 0.0068 

0.25 Good  0.0106 0.0112 

0.25 Satisfactory -0.0064 0.0061 

0.50 Good -0.0399 0.0222 

0.50 Satisfactory -0.0541 0.0244 

1.00 Good  0.1241 0.1204 

1.00 Satisfactory -0.0516 0.1145 

2.00 Good -0.1440 0.2322 

2.00 Satisfactory -0.0423 0.2266 

Table 2. Evaluation of SE index to determine the surface wear 

condition. 

The cross-validation (Table 3) confirms that the classification 

was more successful at bigger resolutions and on the high pulse 

density dataset. The low point density dataset has lower success 

in classification as the dataset contained three quality classes 

inventoried during the field work, while the other data contained 

only two classes. At higher resolutions, the SE index showed 

better classification than the TPI; however, it was the opposite in 

case of low resolution data. 

 

The index values have greater variance when the road quality is 

poorer. The standard deviation of the index values gave better 

results than their mean value at most moving window sizes. This 

means that the good quality roads have fewer or smaller elevation 

differences than the satisfactory quality roads, and the poor 

quality roads have the biggest or most elevation differences. The 

surface wear was classified with the best results by using the 

dense dataset. The quality classes were determined correctly up 

to 92% at a resolution of 0.25 m. The structural condition was the 

best mapped at resolutions of 0.5 m and 1 m, and the flatness at 

0.5 m. The 0.1 m resolution did not lead to better classification 

than the lower resolutions. 

 

Index type TPI SE TPI SE SE SE SE 

Point density 

of ALS data 
low low high high high high high 

Resolution 

(m) 
1.00 1.00 1.00 1.00 0.50 0.25 0.10 

Structural 

condition 
40% 25% 69% 69% 69% 46% 46% 

Surface wear 30% 25% 62% 31% 69% 92% 54% 

Flatness 40% 25% 62% 54% 77% 69% 54% 

Table 3. Cross-validation of the classification of road surface 

quality shows the percentage of sections has been correctly 

classified. The classification was based on TPI and SE indices 

in resolutions from 0.1 m to 1 m. The high pulse-density and 

low pulse density ALS data were both tested. 

 

5. DISCUSSION 

The research assessed two airborne laser scanning datasets, each 

with a different point density, in order to determine which can be 

used for road quality evaluation. The three-year gap between the 

data collection and the field inventory is a weakness of the high 

density ALS data. The road conditions could have changed 

during that time period. At the current location, the change only 

means that the road condition could have deteriorated, because 

there was no road maintenance carried out. 

 

The calculated indices evaluated the surface wear, structural 

condition and flatness for the road surface condition. The ditches 

were mostly related to the drying conditions of the roads. 

The road surface quality was related to surface wear, structural 

condition and flatness as well. The TPI and SE indices both 

described the surface wear and flatness the best at 0.25 m 
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resolution; however, they provided information about the 

structural condition as well at smaller resolutions. 

 

The sparse dataset had limited resolution possibilities, and it had 

lower precision in classifying the road surface parameters 

compared to the dense dataset. On the other hand, the sparse 

dataset could provide information about the ditch systems by 

detecting its presence. The detection of ditches worked well in 

both datasets up to 1 m resolution. 

 

It is important to note that bigger size ditches are not always 

better than the smaller sized ones. Different soil types or 

geomorphological condition may require ditches of different size 

and depth to obtain good dryings of the roads. The size and depth 

of the ditches are determined by the slope of the ditch, the area to 

be drained, the estimated intensity, the volume of run-off and the 

amount of sediment that can be expected to be deposited in the 

ditch during periods of flow (FAO, 1989). 

 

Choosing the proper resolution for the road quality assessment is 

challenging. According to James et al. (2007), 12 pulse per m2 

dense data was required to determine the depth of gullies, but 

sparser data can be used in locating them. This research shows 

similar results: the ditches were mapped more precisely at higher 

resolutions. The resolution of DEMs is also critical in case of 

road extraction from LiDAR data (White et al. 2010 and Azizi et 

al. 2014). Road curves and grades can be assessed even from 

sparse (1.12 pulse per m2) airborne scanning dataset (Craven and 

Wing, 2014). 

 

Dense canopy cover would limit the proposed method. The laser 

pulses cannot penetrate through dense vegetation or canopy cover 

which would limit the usage of the application especially in the 

tropics. Furthermore, the performance of the application need to 

be tested on mountain areas where the elevation differences are 

significant. 

 

The continuation of the research can introduce a reference 

surface. It would reduce the topographical effect influenced by 

the indices (mostly in the case of TPI). It would be especially 

beneficial for the TPI index. It can increase the usability of low 

resolution laser scanning data as well, which could make the 

method cheaper in practical use. Furthermore, it would contribute 

to its use on mountainous terrains. 

 

In conclusion, the methods were successfully tested on both 

datasets. Road surface quality can be detected on high density 

ALS data while the ditch system can be detected on the sparse 

dataset as well. The results provide the opportunity that, after 

further development, airborne laser scanning data can be used for 

road quality assessment in forest road management. 
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