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ABSTRACT: 

Due to the irrepalable devastations of strong earthquakes, accurate anomaly detection in time series of different precursors for 

creating a trustworthy early warning system has brought new challenges. In this paper the predictability of Least Square Support 

Vector Machine (LSSVM) has been investigated by forecasting the GPS-TEC (Total Electron Content) variations around the time 

and location of Nepal earthquake. In 77 km NW of Kathmandu in Nepal (28.147° N, 84.708° E, depth=15.0 km) a powerful

earthquake of Mw=7.8 took place at 06:11:26 UTC on April 25, 2015. For comparing purpose, other two methods including 

Median and ANN (Artificial Neural Network) have been implemented. All implemented algorithms indicate on striking TEC 

anomalies 2 days prior to the main shock. Results reveal that LSSVM method is promising for TEC sesimo- ionospheric 

anomalies detection.     

1. INTRODUCTION

The pre-seismic disturbances occurring in lithosphere, 

atmosphere and ionosphere in absence of significant solar 

and geomagnetic perturbations are usually considered as 

earthquake precursors.  

   The ionospheric anomalies usually take place in the D, E 

and F layers, and may be observed 1 to 10 days prior to the 

earthquake and continue a few days after it. Many papers 

and reports have been published on satellite observations of 

the ionospheric plasma, the flux of charged particles, the 

DC electric field, electromagnetic waves and geomagnetic 

field associated with seismic activity (Parrot, 1995; Liu et 

al., 2004; Hayakawa and Molchanov, 2002; Pulinets and 

Boyarchuk, 2004; Akhoondzadeh, 2011). The pre-

earthquake disturbances usually affect the TEC (Total 

Electron Content). In this study, GPS-TEC data have been 

downloaded via NASA Jet Propulsion Laboratory (JPL) 

website. Global Ionospheric Map (GIM) data constructed 

from a 5° × 2.5° (Longitude, Latitude) grid with a time 

resolution of 2 hours. 

   The accurate anomaly detection in time series of 

earthquake precursors is regarded as one of the most 

challenging tasks since the behaviors of precursors is 

complicated, dynamic and nonlinear. In addition, the 

affected factors in ionospheric precursors such as solar and  

geomagnetic indices intensify the complexity of the 

ionospheric precursors.  

   As a modified version of Support Vector Machine (SVM), 

Least Square SVM (LSSVM) was proposed by Suykens 

and Vandewalle in 1999. It retains principle of the 

Structural Risk Minimization (SRM) and has important 

improvement of calculating speed with traditional SVMs 

(Wang and Shang, 2014). It is because of changing 

inequality constraints into equations and takes a squared 

loss function. Therefore, LSSVM solves a system of 

equations instead of a quadratic programming problem. Due 

to the mentioned advantages of LSSVM, it has been 

implemented as a classification model (Wang and Shang, 

2014). In this paper the predictability of LSSVM has been 

investigated by predicting the GPS-TEC variations around 

the time and location of Nepal earthquake. 

2. LSSVM METHOD

   SVM training is a time consuming process specially when 

analyzing huge dataset. For this purpose, LSSVM is 
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proposed by Suykens and Vandewalle in 1999 to overcome 

these shortcomings.   

   Unlike the classical neural networks approach, SVM 

formulates the statistical learning problem as a quadratic 

programming with linear constraints, by the use of 

nonlinear kernels, high generalization ability, and 

sparseness of solution. However, for large-scale problems, 

the optimization process of SVM has high computational 

complexity, due to the high-dimensional matrix involved in 

the quadratic programming whose size is directly 

proportional to the training sample size (Zhou et al., 2011).  

   LS-SVM needs significantly less training effort than the 

standard SVM as a result of the model simplification.  

 The basic principle of SVM regression is to estimate the 

output variable y from )(xϕ , a high dimensional feature

space of the input vector 
TKxxxx ),...,,( 21= , where 

K is the order of SVM. Thus, the general SVM regression 

model is 

bxwy T += )(ϕ  (1) 

   Where w and b are the weight vector and bias term 

respectively (Zhou et al., 2011). 
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subject to the equality constraints 
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where 
T

Neeee ),...,,( 21= . The first part of cost 

function regularizes weight sizes and penalizes large 

weights. Therefore, the weights tend to converge to similar 

values in that large weights cause excessive variance and 

hence deteriorate the generalization ability of LSSVM 

(Suykens and Vandewalle, 1999; Zhou et al., 2011). 

   The second part of Eq. (2) considers the regression error 

of all training data. The regularization parameter c controls 

the trade-off between the bias and variance of LS-SVM 

model. Note that the LSSVM model has equality constraints 

as shown in Eq. (3), rather than the inequality constraints 

with slack variables used in the standard SVM model. 

Moreover, as shown in Eq. (2), a squared loss function is 

considered in the objective function of LS-SVM model, 

while the standard SVM model has a linear combination of 

slack variables in its objective function. These two 

modifications simplify the quadratic optimization problem 

for the standard SVM to be linear for LSSVM (Suykens and 

Vandewalle, 1999; Zhou et al., 2011). 

The Lagrangian of Eq. (2) is 
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where iλ  are the Lagrange multipliers. By the Karush–

Kuhn–Tucker Theorem, the conditions of optimality are 

(Suykens and Vandewalle, 1999; Zhou et al., 2011) 
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Thus, b and λ  can be solved from the following set of

linear equations after eliminating w and e, 

(6) 

where 
T)1,...,1,1(1 =

r
 , I is the identity matrix, 

,),...,,( 21

T

Nyyyy = N

jiji xxkK 1,)),(( == is the 

kernel matrix, and )()(),( ji

T

ji xxxxk φφ=  is the 

kernel function (Suykens and Vandewalle, 1999; Zhou et al., 

2011). 

   As a result, given vectors x and xi , the LS-SVM 

regression model for estimating y in Eq. (1) becomes 
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(7) 

 In this study Gaussian kernel function has been used. 

)./exp(),( 22
σzxzxkG −−=                         

(8) 

where . denotes the 2-norm, and σ  is a constant

determining the width of Gaussian kernel. 

To implement the LSSVM method, training and testing 

data were initially set respectively to 60% and 40% of all 

TEC data. The input patterns in the LSSVM method are, 

x4=f(x1, x2, x3) 

x5=f(x2, x3, x4) 

. 

(9) 

. 

xN=f(xN-3, xN-2, xN-1) 

   At each step, using the training data, the LSSVM method 

is implemented and the prediction error (PE) can be written 

as:  

∑
=
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N

i
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Where, ix  and ix̂ are the actual value and the output from

the LSSVM method, respectively. 

   Finally, the TEC value is predicted and then is compared 

to the true value in testing set. In the case of testing process, 

if the value of DXi (i.e. the difference between the actual 

value Xi and the predicted value iX̂ ) is outside the pre-

defined bounds σµ ×± k , ( µ  and σ  are the mean and

the standard deviation of DXi values) the anomaly is 

detected.   

3. OBSERVATIONS

In 77 km NW of Kathmandu in Nepal (28.147° N,

84.708° E, depth=15.0 km) a powerful earthquake of

Mw=7.8 took place at 06:11:26 UTC on April 25, 2015 

(Table 1). 

   In this study, geomagnetic and solar indices (i.e. Kp, Ap, 

Dst and F10.7) were used to distinguish seismic anomalies 

from the other anomalies related to the geomagnetic and 

solar activities. Figure 1 illustrates the variations of Kp, 

Ap, Dst and F10.7 indices, during the period of 01 March 

to 30 April 2015. An asterisk indicates the earthquake 

time. The X-axis represents the days relative to the 

earthquake day. The Y-axis represents the universal time 

coordinate. 

   Figure 2(a) shows TEC variations during the period of 

01 March to 30 April 2015. To implement the Median 

method, Dx which will be called DTEC here, is calculated 

using Eq. (11).  

IQRkMxhigh ×+=

IQRkMxlow ×−=

IQR

Mx
Dxk

IQR

Mx
kxxx highlow

−
=<

−
<−⇒<< ;

 (11) 

Where x , highx , lowx , M , IQR  and Dx  are the

parameter value, higher bound, lower bound, median value, 

Interquartile range and differential of x, respectively. 

According to this, if the absolute value of Dx would be 

greater than k, ( kDx > ), the behavior of the relevant

parameter (x) is regarded as anomalous. Figure 2(b) shows 

variations of DTEC. Figure 2(c) shows detected TEC 

anomalies using the Median method based 

on: 75.1>DTEC  and without considering the solar

and geomagnetic indices. Then to distinguish pre-

earthquake anomalies from the other anomalies related to 

the geomagnetic activities, the five conditions of 

75.1>DTEC , 2.5<  Kp , 

 > nt 20- Dst , 10  Ap < and F10.7 <150, respectively,

are jointly used using AND operator to construct the 

anomaly map (Figure 2(d)). The TEC value exceeds the 

higher bound ( IQRM ×+ 75.1 ), 2 days before the

earthquake time at 14:00, 16:00 and 18:00 UTC with the 

values of 18.68 %, 15.97% and 0.32% of the higher bound, 

respectively. It is seen that the other detected anomalies in 

Figure 2(c) have been masked by high geomagnetic 

activities (Figure 2(d)). In figure 2(d) increases (08.40% 

and 04.13%) in TEC are clearly observed at 16:00 and 

18:00 UTC on earthquake date (Table 2).  
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Fig. 1. a), b), c) and d) show respectively, the variations of Kp, Ap, Dst and solar radio flux (F10.7)   indices during the period of 

01 March to 30 April 2015. An asterisk indicates the earthquake time. The X-axis represents the days relative to the Nepal 

earthquake day.  

Fig. 2. a) TEC variations, b) DTEC variations after implementing the Median method, c) detected TEC anomalies using Median 

method without considering the geomagnetic conditions and d) detected TEC anomalies using Median method during quiet solar-

geomagnetic conditions. 
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To implement the Artificial Neural Network (ANN) method 

(Akhoondzadeh, 2013), training data were set to 60% of all 

data. Using the training data, the pattern vectors in feature 

space are constructed. In the case of testing process, if the 

difference value PEi between the actual value Xi and the 

predicted value iX̂ , is outside the pre-defined 

bounds σµ ×± 0.2 , ( µ  and σ  are the mean and the

standard deviation of PEi values) the anomaly is detected. 

    Red and green curves in figures 3(a) through (l) represent 

the observed and the predicted TEC values using the ANN 

method, respectively during the days selected as training 

and testing set. These figures indicate that the ANN method 

is a good estimator for non linear time series such as TEC 

variations. It can be seen that the ANN method efficiently 

predicts values during the time of testing.  

   Figures 4(a) through (l) represent the differences between 

the observed and the predicted TEC values during the 

testing data using the ANN method. Figure 5(a) is a 

representation of the differences values during the testing 

set. Figure 5(b) shows the DTEC values obtained from 

σ

µ−
=

x
Dx . In Figure 5(c), anomalous TEC 

values are only depicted at times when 0.2>DTEC .

Then to distinguish pre-earthquake anomalies from the 

other anomalies related to the geomagnetic activities, the 

five conditions of 0.2>DTEC , 2.5<  Kp  ,

01  Ap <  ,  > nt 20- Dst and 

501  F10.7 < respectively, are jointly used using AND

operator to construct the anomaly map (Figure 5(d)). The 

DTEC value exceeds the upper bound ( σµ ×+ 0.2 )

with the values of 8.14%, 2 days before the earthquake at 

14:00 UTC, and also 4 days after the earthquake time at 

22:00 UTC with the value of 38.49% (Table 2).  

  To implement the LSSVM method, training data were set 

to 60% of all data. Using the training data, the pattern 

vectors in feature space are constructed. In the case of 

testing process, if the difference value PEi between the 

actual value Xi and the predicted value iX̂ , is outside the 

pre-defined bounds σµ ×± 0.2 , ( µ  and σ  are the

mean and the standard deviation of PEi values) the anomaly 

is detected. 

    Red and green curves in figures 6(a) through (l) represent 

the observed and the predicted TEC values using the 

LSSVM method, respectively during the days selected as 

training and testing set.  

   Figures 7(a) through (l) represent the differences between 

the observed and the predicted TEC values during the 

testing data using the LSSVM method. Figure 8(a) is a 

representation of the differences values between the 

observed and predicted values during the testing set. Figure 

8(b) shows the DTEC values obtained 

from
σ

µ−
=

x
Dx . In Figure 8(c), anomalous 

TEC values are only depicted at times 

when 0.2>DTEC . Then to distinguish pre-earthquake

anomalies from the other anomalies related to the 

geomagnetic activities, the five conditions of 

0.2>DTEC , 2.5<  Kp , 01  Ap <  , 

 > nt 20- Dst and 501  F10.7 < respectively, are

jointly used using AND operator to construct the anomaly 

map (Figure 8(d)). The DTEC value exceeds the lower 

bound ( σµ ×− 0.2 ) with the values of -26.18% and -

30.89%, 2 days before the earthquake time at 02:00 and 

24:00 UTC, and also with the value of -0.5%, on earthquake 

date at  

Table 1. Characteristics of the Nepal earthquake and its main after shocks (reported by http://earthquake.usgs.gov/). 

Date Time (UTC) Geographic 

Latitude, longitude 

Magnitude 

(MW) 

Focal depth 

(km) 

2015-04-25 06:11:26 28.147°N 84.708°E 7.8 15.0 

2015-04-25 06:45:21 28.193°N 84.865°E 6.6 14.6 

2015-04-26 07:09:10 27.782°N 85.997°E 6.7 17.3 
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Table 2. The main detected anomalies for Nepal earthquake using the implemented methods. Value is calculated 

by ( ) kkDxp /100 −×±= . Day is relative to the earthquake day.

Method Day Time (UTC) Value % 

Median 0 

-2 

16:00; 18:00 

14:00; 16:00; 18:00 

8.40; 4.13 

18.68; 15.97; 0.32 

ANN -2 

+4 

14:00 

22:00 

8.14 

38.49 

LSSVM -2 

0 

+1 

+3 

+4 

+5 

2:00; 24:00 

20:00 

16:00 

12:00; 14:00; 16:00; 18:00; 20:00 

22:00 

22:00 

-26.18; 30.89 

0.5 

0.71 

67.20; 9.10; 15.45; 26.61; 7.89 

-1.8 

30.89 

Fig. 3. a) through l) Variations of the observed (red curve) and predicted (green curve) TEC values obtained from ANN method 

during at different universal times. The X-axis represents the day relative to the Nepal  earthquake day. 
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Fig. 4. a) through l) Variations of the differences between the observed and the predicted values of TEC obtained from ANN 

method on days selected as testing set at different universal times. The red horizontal lines indicate the upper and lower bounds 

( σµ ×± 2 ). The green horizontal line indicates the mean value ( µ ). The X-axis represents the day relative to the Nepal

earthquake day. 

Fig. 5. a) Differences between the observed and the predicted values of TEC obtained from ANN method. b) DTEC variations. c) 

Detected anomalies using ANN method without considering the geomagnetic indices. d) Detected anomalies using ANN method 

with considering the geomagnetic indices. The X-axis represents the days relative to the Nepal earthquake day. The Y-axis 

represents the universal time coordinate. 
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Fig. 6. a) through l) Variations of the observed (red curve) and predicted (green curve) TEC values obtained from LSSVM method 

during at different universal times. The X-axis represents the day relative to the Nepal  earthquake day. 

Fig. 7. a) through l) Variations of the differences between the observed and the predicted values of TEC obtained from LSSVM 

method on days selected as testing set at different universal times. The red horizontal lines indicate the upper and lower bounds 

( σµ ×± 2 ). The green horizontal line indicates the mean value ( µ ). The X-axis represents the day relative to the Nepal

earthquake day. 
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Fig. 8. a) Differences between the observed and the predicted values of TEC obtained from LSSVM method. b) DTEC variations. 

c) Detected anomalies using LSSVM method without considering the geomagnetic indices. d) Detected anomalies using LSSVM

method with considering the geomagnetic indices. The X-axis represents the days relative to the Nepal earthquake day. The Y-

axis represents the universal time coordinate. 

20:00 UTC. Other post-seismic anomalies could be 

associated with the strong aftershocks (Table 1).  

4. CONCLUSIONS

   This paper attempts to acknowledge the ability of LSSVM 

as a good predictor to forecast the GPS-TEC variations 

around the time and location of Nepal earthquake. Also two 

classical and intelligent methods including Median and 

ANN have been implemented. Using all applied methods 

prominent TEC anomalies are observed 2 days prior to the 

main shock. Results reveal that LSSVM method is 

promising for TEC sesimo- ionospheric anomalies detection. 
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