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ABSTRACT:

Malaria is endemic and a major public health problem in north east (NE) region of India and contributes about 8-12% of India's
malaria positives cases. Historical morbidity pattern of malaria in terms of API (Annual Parasite Incidence) in the state of Assam has
been used for delineating the malaria incidence hotspots at health sub centre (HSC) level. Strong spatial autocorrelation (p<0.01)
among the HSCs have been observed in terms of API (Annual Parasite Incidence). Malaria incidence hot spots in the state could be
identified based on General G statistics and tested for statistical significance. Spatial correlation of malaria incidence hotspots with
physiographic and climatic parameters across 6 agro-climatic zones of the state reveals the types of land cover pattern and the range
of elevation contributing to the malaria outbreaks. Analysis shows that villages under malaria hotspots are having more agricultural
land, evergreen/semi-evergreen forests with abundant waterbodies. Statistical and spatial analyses of malaria incidence showed a
significant positive correlation with malaria incidence hotspots and the elevation (p<0.05) with villages under malaria hotspots are
having average elevation ranging between 17 to 240 MSL. This conforms to the characteristics of two dominant mosquito species in
the state Anopheles minimus and An. baimai that prefers the habitat of slow flowing streams in the foot hills and in forest ecosystems
respectively.

1. INTRODUCTION

Globally malaria clinical cases are reported as 300–500 million
and 1.5–2.7 million deaths annually (Srivastava et al., 2001).
Malaria is endemic and a major public health problem in north
eastern region (NER) of India. It is stable with preponderance (60-
80%) of Plasmodium falciparum (Pf) species in the entire region.
NE region makes up to only 3.7% population of India but
contributes 8-12% of malaria positives, 10-20% of Pf cases and
13-41% deaths due to malaria as compared to the whole nation
during the last decade (Dev, 2009). Among NE states, Assam is
highly receptive to malaria transmission and accounts for more
than 50% of reported cases of malaria in NER. Here malaria
transmission is perennial and persistent with seasonal peak during
April-September corresponding to months of rainfall. P.
falciparum and P. vivax both occur in abundance but P.
falciparum is the predominant parasite (>60%). Focal disease
outbreaks were recurring characterized by high rise in cases and
deaths attributed to P. falciparum malaria. (Dutta, 1997).

Human malaria is a complex disease and its incidence is a
function of the interaction between the Anopheles mosquito
vector, the parasite, humans and the environment. Different
mosquito species have different habitat preferences like steams,
rice fields, plantations, forests, forest fringes, foothills, etc. The
physical environment also plays a significant role in the
distribution of species in particular geographical areas. For
optimizing vector control operations, spatial distribution of
malaria is an important consideration for designing situation-

specific intervention strategies that are aimed at reducing
transmission.

Geospatial techniques comprises of remote sensing, geographic
information system (GIS) and global positioning system (GPS)
have added new dimensions to spatial statistics analysis in
epidemiological studies (Back et al., 1994, Hay et al., 1997).
Many studies have applied these advanced tools in
understanding the host-vector relationship and their spatial
distribution (Barnes & Cibula, 1979, Glass et al., 1995,
Hendrickxy et al., 1999, Dhiman, 2000, Abelardo et al., 2000,
Jeganathan et al., 2001, Handique et al., 2011). Spatial statistics
analytical techniques help in analyzing the spatial order and
association of a variable under study. In areas like ecology,
epidemiology, geology and image processing, it is often not
appropriate to randomize, block and replicate the data because
of the spatial associations of attribute features associated with
study variable (Lawson, 2001). On the other hand, it is required
to stratify and prioritise areas under a particular administrative
unit for better planning and managing resources. Hence a sound
technique has to be followed to prioritise these areas of
importance or hot spots with sound statistical base. Use of
predictive approaches have been demonstrated by different
workers for study the of mosquito vector borne diseases like
malaria (Srivastava et al., 2001, Abeku et al., 2002).

In this study, we have employed spatial statistics analytical tools
in GIS domain to study the spatial distribution of malaria
incidence and identify the disease hotspots at Health Sub Centre
(HSC) level. Malaria incidence rates were integrated with
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vegetation cover derived from Indian remote sensing data and
elevation from digital elevation model of ASTER data.

The outcome of the study is expected to help the district health
authorities to mobilise man and materials for timely interventions.

2. METERIALS AND METHODS

2.1 Study Area
The study was carried out in Assam state located in the north
eastern part of India considering the severity of impact of Malaria
and its perennial occurrence. The state of Assam (240 44' - 27045'
N latitude; 89041' - 96002' longitude) is the most populous (30.94
million population as per census 2012) and is the gateway to the
northeast for economic activities. The problem of chloroquine
resistance first detected in Assam and is spreading and
intensifying thereby creating greater concern for the disease.

Figure 1. Location of study area

2.2 Collection of Malaria case data

Data pertaining to the Malaria cases during the period 2008-2013
were collected from the office of the Joint Director of Health
Services located at different district head quarters and from the
office of the Directorate of Health Services, Guwahati, Annual
Parasite Incidence (API) which is the number of confirmed cases
during one year per 1000 population was calculated based on the
PHC wise census records collected from the respective PHCs
compiled under National Vector Borne Disease Control
Programme (NVBDCP). We considered the HSCs having more
than 2 API.

2.3 Spatial Statistics Analysis

2.3.1 Measure of spatial autocorrelation
It is of interest to see the spatial distribution pattern of malaria
reporting villages in the district. If we observe the malaria
reporting villages to follow any kind of clustering pattern, we may
like to relate the occurrence of the disease with underlying
landscape and socio-economic features. In classifying spatial
patterns as clustered, dispersed or random, we focussed on how
various HSCs are arranged and observed the extent of spatial
autocorrelation (Lee and Wong, 2001). Here, high autocorrelation
would imply the occurrence of HSCs with higher value of API
and the correlation is attributable to the geographic ordering
HSCs. The most commonly used spatial auto-correlation statistic,
Moran’s I coefficient (Chou, 1997) was employed to measure the
autocorrelation (Eq. 1-4). Moran’s I can be defined as-
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Here, Euclidean distance is used to define the weights wij.
Corresponding to each pair of sample points i and j, let dij

represent the distance between them. The distance weight is
applied in an inverse manner, since the intensity of spatial
relationship diminishes when the distance increases. Hence wij =
1 / dij.
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Here, n is the total number of geographic units (HSCs), xi

denotes API corresponding to ith HSC.

The value of the Moran’s I coefficient ranges between -1 and 1.
A larger positive value implies a clustered pattern, while a
negative value significantly different from 0 is associated with
scattered pattern. When the Moran’s I coefficient is not
significantly different from 0, there is no spatial autocorrelation
and the spatial pattern is considered to be random.

Spatial statistics tool in ArcGIS software used to measure
spatial autocorrelation is based not only on locations of the
HSC or on number of malaria cases (API) alone, but on both
HSC locations and corresponding API simultaneously. Given a
set of HSC and associated malaria cases, it evaluates whether
the pattern expressed is clustered, dispersed or random. A ‘Z’
score is calculated to assess whether the observed clustering /
dispersion is statistically significant or not. The Z score is
calculated as-

(4)

2.3.4 Delineation of Malaria hotspots
Moran’s I has well-established statistical properties to describe
spatial autocorrelation globally. However, it is not effective in
identifying different type of clustering spatial patterns. These
patterns are sometimes described as ‘hot spots’ and ‘cold spots’.
If high values are close to each other, Moran’s I will indicate
relatively high positive spatial autocorrelation. The clusters of
high values may be labelled as a hot spot. But high positive
spatial autocorrelation indicated by Moran’s I could be created
by low values close to each other. This type of clusters can be
described as cold spot. Delineation of these hot spots and cold
spots will help in optimising the use of resources for timely
interventions. The G statistics (Getis and Ord, 1992) has the
advantage of detecting the presence of hot spots or cold spots
over the entire study area (Eq. 5-8). A local measure of spatial
autocorrelation is the local version of the General G statistics.
The local G statistics is derived for each aerial unit to indicate
how the values of aerial units of concern is associated with the
values of surrounding aerial units defined by a distance
threshold d.  The Local G statistics is defined as:
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This G statistics is defined by a distance d, within which the aerial
units can be regarded as neighbours of i. The weight wij(d) is 1 if
aerial unit j is within d, or 0 otherwise. Thus the weight matrix is
essentially a binary symmetrical matrix, but the neighbouring
relationship is defined by distance, d. The sum of the weights is:
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Basically, the numerator of (5) which indicates the magnitude of
Gi (d) statistics will be large if neighbouring features (Malaria
incidence in terms of API) are large and small if neighbouring
values are small. A moderate level of Gi(d) reflects spatial
association of high and moderate values, and a low level of Gi(d)
indicates spatial association of low and below average values.
Before calculating the G statistics we need to define a distance d,
within which aerial units will be regarded as neighbours. In this
exercise we have defined d as a distance of 10 kilometers based on
the extent of the study area and spatial distribution of Health Sub
Centres. So the HSCs will be regarded as neighbours if they are
within an aerial distance of 10 km. For detail interpretation of the
general G statistics we rely on its expected value and standardised
score (Z score).

To derive Z score and to test for the significance of the general G
statistics, we have to know the expected value of Gi(d) and its
variance. The expected value of Gi(d) is-
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The expected value of Gi(d) indicates the value of Gi(d) if there is
no significant spatial association or if the level of Gi(d) is average.
Then we need to derive the Z score of the observed statistics
based on the variance. Variance of Gi(d) is calculated as follows
and tested for statistical significance. (Getis and Ord, 1992):
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Where, n denotes the number of aerial units (villages) in the entire
study area.

2.3 Geospatial data
Land use/ land cover maps prepared as a part of National Natural
Resources Census (NR Census) using IRS LISS III satellite data
with spatial resolution of 23.5 meters were used in the study
(NRSC 2011). Land cover types within a buffer of 3 kilometres
(maximum flying range of mosquitoes) from the centres of the
villages under malaria incidence hotspots were delineated and a
comparison has been made across 6 agro-climatic zones of the
state to correlate with the disease incidence. Climatic condition of
different agro-climatic zones and the districts covered under each
zone are given in Table-1. With the assumptions that the most

dominant mosquito species in the state Anopheles minimus and
An. baimai prefers the habitat of slow flowing streams in the
foot hills and in forest ecosystems respectively, variation in the
elevation of areas under JE incidence hotspots were analysed
with elevation data retrieved from ASTER DEM with 30 m
resolution.

Table 1. Climatic conditions of Agro-climatic zones and
districts covered

Agro-
climatic

zones with
area

coverage

Districts
covered

Climatic condition

North Bank
Plains Zone
(NBPZ)

14421 km2

Lakhimpur
Dhemaji
Udalguri
Darrang
Sonitpur

Average rainfall is 1000 mm
and high humidity of more
than 80%. The maximum
temperature rises up to 370C in
July-August and the minimum
falls to 50C in January.

Upper
Brahmaputra
Valley Zone
(UBVZ)

16,192 km2.

Sivsagar
Jorhat
Golaghat
Dibrugarh
Tinsukia

High rainfall, i.e., more than
2000 mm per annum and high
humidity (more than 80%).
The maximum temperature
rises up to 370C in July-August
and minimum falls to 50C in
January.

Central
Brahmaputra
Valley Zone
(CBVZ)

5561 km2

Nagaon
Morigaon

About 30% of the area in this
zone comes under rain shadow
belt where the rainfall is much
lower (600 mm) The maximum
temperature rises up to 380C in
July-August and minimum falls
to 80C in January.

Lower
Brahmaputra
Valley Zone
(LBVZ)

20148 km2.

Kamrup
Dhubri
Bongaigaon
Nalbari
Barpeta
Kokrajhar
Chirang
Baska
Goalpara

The average rainfall in the
zone is about 1700 mm per
annum. Rainfall in the south-
eastern part of the zone is low
and it increases towards the
north and the west. The
maximum temperature rises
upto 310C in July-August and
minimum falls to 100C in
January.

Barak Valley
Zone (BVZ)

6922 km2.

Cachar
Hailakandi
Karimganj

The climate is characterized by
high rainfall (more than 2000
mm), high temperature and
high humidity. Maximum
temperature rises up to 370C in
July-August and minimum falls
to 90C in January.

Hills Zone
(HZ)

15322 km2.

Karbi-
Anlong
Dima Hasao

Rainfall and temperature differ
substantially among the
different parts of the zone due
to varying altitudes and
location of hills and valleys.
The total rainfall is about 1,144
mm in North Cachar hills and
600 mm in Karbi Anlong. The
temperature ranges between
370C and 90C.
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3. RESULTS AND DISCUSSION

3.1 Spatial pattern of malaria distribution

Spatial autocorrelation among HSCs have been measured with
Global Moran’s I index. Global Moran’s I, O(I) calculated with
all the HSCs having API >2 for the study period is found to be
0.00744 with Expected value E(I) 0.00143. Z score is found to be
3.24, which is significant at 99% confidence level (p< 0.01).
These results confirm that spatial distribution of Malaria
occurrence is non-random) and hence calls for special attention in
the areas of Malaria occurrence.

3.2 Malaria incidence hotspots and high risk areas

Malaria incidence hotspots have been identified with G statistics
based on whether large number of cases measured in terms of API
tends to cluster in the area. Highest value of Gi is calculated to be
5.211 and the lowest is -1.430. Z Scores have been calculated for
testing the statistical significance. SHCs with Z score more than
2.56 has been considered to significant at 99% confidence level
(p<0.01) and put in the hotspot category. Udalguri district located
in the foothills of Bhutan has identified as the district having
maximum SHCs under hotspot category followed by Baska
district having 70 HSCs in hotspot category.  On the other hand
the districts of Dibrugarh and Kamrup (Metro) are the districts
having two number of HSCs as hotspots (Figure 2). It has been
observed that the SHCs located in the foot hills are having
relatively high Malaria incidence in terms of API and the same
has been reflected in having higher malaria incidence hotspots.

Figure 2. Number of SHCs identified as hotspots in different
districts of Assam

3.3 Relation of Malaria incidence hotspots with vector habitats

It is interesting to note that majority of the Malaria incidence
hotspots are from foothills areas of the state.  Foothills areas from
Kokrajhar to Dhemaji reported maximum number of hotspots.
This observation reveals that the most dominant mosquito species
in the state Anopheles minimus and An. baimai prefers the habitat
of slow flowing streams in the foot hills and in forest ecosystems
respectively. Vegetation covers within the 3 km buffer of villages
under Malaria incidence hotspots shows that kharif  crop areas
(grown during June/July to Nov/Dec) occupies the major areas in
all the agro-climatic zones with  a percent of coverages from 16-
50% (Table 2 & Figure 3). In LBVZ and CBVZ, deciduous forest
covers about 12 % of the total land cover areas. In HZ, forest
covers about 63% of the total land cover areas, out of which about
43% is the dense forest (evergreen and semi-evergreen).
Significant areas of evergreen and semi-evergreen are observed in
the malaria incidence hotspots of UBVZ (11%). This corroborate
the results of Srivastava et al. (2004) who reported that two types
of forests, namely evergreen tropical wet and moist deciduous

forests available along the Himalaya foothills are favourable for
the distribution of An. baimai.

Figure 3. Malaria incidence hotspots with different land
use/land covers

3.4 Relation of Malaria incidence hotspots with elevation

In view of the observation that the majority of the malaria
incidence hotpots are located along the foothill area of the state,
a detailed analysis was made by correlating average elevation of
the villages under malaria hotspots to that of the year wise
malaria incidence. Positive correlation observed in all the agro-
climatic zones except the hill zone, which is obvious.  Among
agro-climatic zones, UBVZ showed highly significant positive
correlation during the years 2008-2012 (p<0.005). This may be
due to the fact that An. minimus prefers to breed in clear,
unpolluted slow moving water with grassy and partially shaded
edges (Nagpal and Sharma, 1987).

Figure 4. Correlation of malaria incidence with elevation in
different agro-climatic zones of Assam
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Table 3. Correlation of Malaria incidence hotspots with elevation

Agro-
climatic
Zones

API during 2008-2012
Average elevation of areas (MSL) under

HSCs

(r)
No of

HSC
Max Min Average SE Max Min Average SE

UBVZ 60 42.25 2.08 8.21 9.26 155.00 57.74 110.43 22.04 0.52

NBPZ 187 308.46 2.02 16.95 26.74 204.53 50.14 93.38 28.49 0.12

LBVZ 272 146.62 2.00 9.88 15.11 237.50 11.13 16.69 25.77 0.08

HZ 84 232.38 2.17 16.36 21.85 1446.65 7.75 240.32
272.3

5
-

0.16

CBVZ 59 24.91 2.11 6.61 5.72 175.33 6.00 65.22 23.18 0.24

BVZ 61 124.58 2.13 9.53 13.32 274.80 3.71 34.88 45.07 0.17

4. CONCLUSION

The study shows the potential application of spatial statistics
analysis to delineate the disease incidence hot spots at health
sub centre level. Maximum attention should be given to these
Malaria incidence hotspots by the health department authorities
to minimise fatalities.  Information generated in this exercise
will serve as baseline information and will help in future
monitoring of the disease in the state. The study in the hot spots
in terms of physiographic and climatic factors has helped in
understanding the threshold of different parameters responsible
for disease transmission and outbreak.
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Table 2. Land use/land cover classes within three kilometers buffer of villages under malaria hotspots

Land use/land cover classes LBVZ CBVZ BVZ NBPZ HZ UBVZ

Agricultural Land-Crop Land-Kharif Crop
197248

(39)
32490 (28) 31781 (25)

182107
(50)

32646 (16)
43546

(34)
Agricultural Land-Crop Land-More than two crop 298 (<0.5) 0 0 473 (<0.5) 0 43 (<0.5)
Agricultural Land-Crop Land-Rabi Crop 1295 (<0.5) 968 (1) 694 (1) 1993 (1) 1481 (1) 789 (1)
Agricultural Land-Crop Land-Two Crop area 44182 (9) 2184 (2) 354 (<0.5) 13496 (4) 302 (<0.5) 3204 (3)
Agricultural Land-Crop Land-Zaid Crop 1307 (<0.5) 6692 (6) 0 14 (<0.5) 658 (<0.5) 0
Agricultural Land-Fallow-Current Fallow 346 (<0.5) 0 0 0 0 0

Agricultural Land-Plantation 1663 (<0.5) 11124 (9) 10486 (8) 28410 (8) 2294 (1)
21969

(17)
Built Up-Built Up (Rural)-Built Up area (Rural) 2677 (1) 377 (<0.5) 71 (<0.5) 2264 (1) 2774 (1) 518 (<0.5)
Built Up-Mining / Industrial area-Industrial 212 (<0.5) 135 (<0.5) 0 0 161 (<0.5) 0)
Forest- Moist Deciduous 59380 (12) 14585 (12) 0 2417 (1) 1458 (1) 1131 (1)
Forest-Deciduous (Dry/Moist/Thorn)-Open 714 (<0.5) 0 0 0 0 0

Forest-Evergreen / Semi Evergreen-Dense/Closed 1913 (<0.5) 2091 (2) 54478 (43) 5915 (2) 6330 (3)
14386

(11)
Forest-Forest Blank 24 (<0.5) 117 (<0.5) 3325 (3) 25 (<0.5) 7326 (4) 96 (<0.5)
Forest-Forest Plantation 0 1662 (1) 0 0 756 (<0.5) 0
Forest-Scrub Forest 11888 (2) 16 (<0.5) 2288 (2) 444 (<0.5) 7197 (4) 3211 (3)
Natural Grassland & Grazing land-Sub tropical 13106 (>3) 4865 (4) 56 (<0.5) 8651 (2) 318 (<0.5) 1303 (1)
Others-Shifting cultivation 103 (<0.5) 5 (<0.5) 1820 (1) 0 1702 (1) 13 (<0.5)

Tree Clad Area-Open
124554

(25)
29812 (25) 17175 (14) 94257 (26) 79137 (40)

31179
(24)

Wastelands 2462 (<0.5) 4234 (4) 0 934 (<0.5) 50368 (25) 840 (1)
Waterbodies-River/Stream 29222 (6) 1946 (2) 1966 (2) 19892 (5) 4038 (2) 3296 (3)
Wetlands-Inland Natural 7175 (1) 3801 (3) 2661 (2) 3931 (1) 318 (<0.5) 2146 (2)
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