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ABSTRACT:

Data recorded by mobile LiDAR systems (MLS) can be used for the generation and refinement of city models or for the automatic
detection of long-term changes in the public road space. Since for this task only static structures are of interest, all mobile objects need
to be removed. This work presents a straightforward but powerful approach to remove the subclass of moving objects. A probabilistic
volumetric representation is utilized to separate MLS measurements recorded by a Velodyne HDL-64E into mobile objects and static
background. The method was subjected to a quantitative and a qualitative examination using multiple datasets recorded by a mobile
mapping platform. The results show that depending on the chosen octree resolution 87-95 % of the measurements are labeled correctly.

1. INTRODUCTION

Most of todays mobile mapping systems apply active laser scan-
ners in addition to camera systems to supplement dense 3D en-
vironment data. The mobile laser scans generated by such sys-
tems are usually of high accuracy and more detailed than airborne
laser scans, which makes them suitable for change detection in ur-
ban environments, as it is required for the automatic detection of
changes in public road space. The task of long-term change de-
tection benefits from the removal of all measurements associated
with mobile objects (e.g. cars, persons), so that only the static
structures of interest remain. A first step into that direction is to
remove moving objects, which are the easiest to identify class of
mobile objects. During this step, both moving objects and the
remaining background should be preserved. The latter one is of
further interest for the modeling process and the former can be
utilized to characterize, recognize and remove non-moving in-
stances of these mobile objects in subsequent steps.

Most techniques based on range measurements either distinguish
between static structures and moving objects very crudely or ex-
tract moving objects - due to real-time constraints - in a short-
term sense which may result in a non-accurate background. The
approach presented in this paper uses a technique similar to back-
ground subtraction to identify range measurements associated
with moving objects. Since the intended field of application does
not have real-time constraints, the quantity of all measurements
and therefore all available information can be utilized. The ap-
proach is also model free, so no assumptions about the environ-
ment or the moving objects (aside from the ability to be detectable
by a LiDAR sensor) are required. The main contributions are the
following:

• We perform a detailed analysis of the inherent capability of
a probabilistic volumetric representation to discard mobile
objects.

• The impact of the system parameters onto the background
representation is investigated.
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• Based on both insights, a straightforward and yet powerful
approach with unique properties for the labeling of measure-
ments as moving objects and static structures is proposed.

This paper is organized as follows: Section 2 provides an overview
of related work. The analysis of the probabilistic volumetric rep-
resentation and its system parameters is given in Section 3. The
process of labeling range measurements based on the volumetric
representation is given in Section 4. The proposed approach is
evaluated based on the setup described in Section 5. A discussion
of the results is given in Section 6. Finally, Section 7 presents our
conclusion.

2. RELATED WORK

2.1 Detection of moving objects

The distinction between moving objects and static structures is a
relevant topic in many fields of research. Lots of work regard-
ing this topic is done in computer vision, especially in relation to
Object Tracking in 2D images. Since the focus of this paper is
on MLS measurements, the methodically most related topics are
Detection and Tracking of Moving Objects (DATMO) and Change
Detection. The former is investigated especially in robotics and
autonomous driving. The latter one deals with the finding of dif-
ferences between several scans of a scene.

Some approaches for change detection such as the one proposed
by Girardeau-Montaut et al. (2005) and Zeibak and Filin (2008)
compare point clouds of different epochs, but only work under
certain conditions such as stationary sensor platforms.

In Hebel et al. (2013), an approach based on the analysis of ev-
idential conflicts between free and occupied 3D-space is used to
detect changes between two airborne LiDAR scans. Xiao et al.
(2015) use a similar approach to detect moving objects in mo-
bile LiDAR measurements based on conflict search between a
reference and a target epoch. Both approaches require the ob-
ject to be completely removed from the space it previously occu-
pied and can be misled when one object is replaced by another.
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Both techniques can in theory be extended to consider all avail-
able scans and therefore be able to generate the same results as
the approach presented in this work. However, this would lead
to quadratic runtime complexity, since each measurement in the
dataset must be cross-referenced with vision rays generated from
all other measurements.

Azim and Aycard (2012) detect moving objects based on incon-
sistencies between scans. An octree-based occupancy grid is uti-
lized to represent the current state of the environment. A list
of dynamic voxels is managed and updated whenever a conflict
between a scan and the environment representation is detected.
Since the approach adapts very quickly to changes in the envi-
ronment, it is less suitable for the extraction of long-term stable
structures. The approach could be modified by tweaking the sen-
sor model to consider long-term stable structures, but not without
missing most of the moving objects.

In Simultaneous Localization and Mapping (SLAM), the elimi-
nation of moving objects can contribute to increase consistency
of the environment’s representation. In the approach presented
by Litomisky and Bhanu (2013), clusters of point clouds of two
different epochs are formed. Correspondences are established
between them and based on these, moving objects are detected
and removed. A high percentage of the points belonging to static
structures is kept, but not all of them. Since that approach is de-
signed for SLAM, more emphasis is put on consistency than on a
complete representation of the environment.

The approach presented in this work provides an unique combina-
tion of properties. First of all, it prevents short-time stable objects
from merging with the background; instead it identifies them cor-
rectly as moving objects. Most of the fore- and background is
kept intact, meaning no larger chunks of measurements are lost.
Furthermore, the proposed algorithm has a linear runtime com-
plexity. All measurements only need to be touched twice; once
to build the volumetric representation and a second time for de-
termining their label.

2.2 Volumetric representation

For the representation of the background an occupancy grid has
been chosen, since unlike a merely surface-based method the vol-
umetric approach is able to describe free and unexplored space.
Moravec and Elfes (1985) generate a probabilistic occupancy grid
based on data from ultrasonic sensors. It describes the state of
the environment along a plane on the sensor level with a proba-
bility that indicates either free or occupied space. Although the
ultrasonic signal has a conical shape that covers a larger quan-
tity of space, the resulting representation is considerably accu-
rate. Meagher (1982) presented an approach to model arbitrary
geometries that utilizes an octree to store binary occupancy infor-
mation. Later the concept has been extended to use probabilistic
information (Payeur et al., 1997). Hornung et al. (2013) added a
nearly lossless compression strategy based on probability clamp-
ing. The latter also allows the fast adaption to a changing en-
vironment. This approach has gained huge popularity under the
name OctoMap in the robotic community. Based on this work,
we proposed a concept to represent probabilistic volumes on a
global scale as well as to handle the efficient storage and retrieval
of the associated data (Gehrung et al., 2016).

3. VOLUMETRIC BACKGROUND MODELING

3.1 Approach to volumetric modeling

In the following, the approach for volumetric representation used
in this work is briefly outlined. It is based on an approach pro-
posed in Gehrung et al. (2016) which is founded on the Bayesian
framework established by Hornung et al. (2013). It was favored
over a Dempster–Shafer based approach since the combination
rule of the latter can lead to non-intuitive results. Also updates
require more computational efforts than it is the case for the for-
mer one, which requires just a single addition.

For the global management of volumetric environment data, a
grid over a global Cartesian reference frame such as ECEF is de-
fined. Each grid cell comprises a cubic subspace and is referred
to as tile. A tile has an unique address and contains a probabilis-
tic occupancy octree based on the work of Hornung et al. (2013).
This volumetric representation permits the deduction of informa-
tion about free, occupied and unexplored space. Each voxel in
the octree contains an occupancy probability which corresponds
to the logarithm of a fraction that represents a probabilistic two
class decision problem. This is also denoted as a log-odd. Due to
the transformation into logarithmic space, adjustment of the log-
odd can be done by simply adding or subtracting the logarithmic
equivalent of a probability.

New range measurements are integrated into the system by ray-
casting. For each ray the traversed voxels as well as the end
voxel are determined. The log-odd of the corresponding octree
nodes are adjusted accordingly; for free space lfree is subtracted,
occupied space is handled by adding locc. Both are also referred
to as sensor parameters and describe the reliability of the sensor
system, more precisely its ability to measure the correct state of
the observed space. To ensure fast adaption to changes in the
environment, the log-odd is confined to an interval defined by
the so-called clamping thresholds lmin and lmax. These thresholds
are also required for compressing the octree by condensing nodes
with a similar state.

3.2 Automatic removal of mobile objects

The purpose of this work is to investigate the hypothesis that a
volumetric representation constructed as stated above converges
to a state where it only contains non-moving objects. This state of
the environment is assumed to only contain static structures and
non-moving instances of mobile objects. For the sake of simplic-
ity both are summarized by the umbrella term background. The
idea is that a moving object occupies a point along its path only
for a short duration. In terms of the volumetric representation
this means the following: for all voxels occupied by the object, a
probability mass corresponding to locc is added to their occupancy
probability. Multiple measurements accumulate probability mass
which leads to the occupancy probability converging against the
upper clamping threshold, thus implying solidity. Once the ob-
ject left the voxels, utilizing a 360 ° rotating laser scanner it is
very likely that these are traversed by other range measurements.
In such a case the probability mass is reduced by lfree for each
ray passing the voxel. This leads to a convergence in direction
of the lower clamping threshold. Since the moving object occu-
pies a voxel only for a short duration, the amount of measure-
ments traversing it outweighs the amount of measurements im-
plying solidity. Therefore in the longterm the voxel converges to
a free state, removing the former imprint of the moving object.
An impression of this process is given in Figure 1.
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(a)

(b)

(c)

Figure 1. The influence of an object to a voxel’s log-odd based
occupancy probability. (a) Voxel with zero knowledge. (b) Voxel

occupied by an object. (c) Voxel after the object left.

3.3 Clamping thresholds and sensor parameters

In this section the impact of both the clamping thresholds and
the sensor parameters on the volumetric representation genera-
tion process is explained. The clamping thresholds lmin and lmax

define the lower and upper boundary of an interval that limits the
occupancy probability. The interval can either be symmetrical or
asymmetrical (cf. Figure 2). The former considers convergence
to both the states free and occupied as equal. Setting the interval
to asymmetric values has the advantage of a faster convergence
to either occupied or free, depending on which threshold is closer
to the log-odd of l = 0, which implies equal distribution. Re-
gardless of the symmetry aspect it is recommended to select both
thresholds in such a way that the behavior of the function is ap-
proximately linear.

Figure 2. Symmetric (red) and asymmetric (green) clamping
thresholds.

The sensor parameters lfree and locc can also be selected either
in a symmetrical or an asymmetrical way. In the first case the
convergence speed towards both states is identical. The latter
case leads to faster convergence towards either free or occupied,
depending on which sensor parameter is the larger one.

3.4 Minimal observation durations

Based on the parameters described in the last section and the du-
ration per scan, the approximate time for a state change can be
calculated. If should be noted that due to reasons of consistency,
occupancy updates are handled based on scans, not on single

measurements. So the exact number of measurements per voxel
does not matter. The period of time required to change a voxel’s
state from zero knowledge to occupied is calculated as

tinit =

⌈
lmax

locc
tdps

⌉
, (1)

where tdps is the duration per scan in seconds. For a rotating laser
scanner this is reciprocal to its rotation frequency. The duration
for the transition from zero knowledge to free is defined as

tinit =

⌈
lmin

lfree
tdps

⌉
. (2)

The period of time required for a full state change from free to
occupied is defined as

tbg =

⌈
lmax − lmin

locc
tdps

⌉
, (3)

whereas the inverse transition from occupied to free is calculated
as

tmobile =

⌈
lmax − lmin

−lfree
tdps

⌉
. (4)

3.5 Effects of parametrization

Table 1 shows how different clamping thresholds and sensor pa-
rameters are able to influence the convergence time between the
states free, occupied and zero knowledge. The durations are cal-
culated using Equations 1-4. Parameter set A applies symmetri-
cal clamping thresholds and sensor parameters. This leads to an
unbiased behavior where neither the free nor the occupied state
is favored. Parameter set B leads to a faster convergence towards
free, both from the initial zero knowledge state as well as the
occupied state. This leads to a reset behavior of voxels that con-
tained moving objects.

The parameters defined in scenario C result in a fast initial con-
vergence from zero knowledge towards free, whereas the con-
vergence times between free and occupied are symmetrical. Pa-
rameter set D illustrates the effects of using both asymmetrical
clamping thresholds and sensor parameters. The initial conver-
gence from zero knowledge towards free is quite fast in contrast
to the convergence towards solid. Also the duration between state
changes clearly prefers the free state.

A parameter selection such as the one in A may fit most applica-
tions. Scenarios may apply asymmetrical parameters like spec-
ified in B and C in cases where initial or overall convergence
towards one state is preferred. Should both be required, an asym-
metrical parameter selection such as in D will be suitable.

Num. lmin lmax lfree locc z→f z→o f→o o→f
A −2 2 −0.04 0.04 5 s 5 s 10 s 10 s
B −2 2 −0.08 0.04 2.5 s 5 s 10 s 5 s
C −0.5 2 −0.04 0.04 1.25 s 5 s 6.25 s 6.25 s
D −0.5 2 −0.08 0.04 0.625 s 5 s 6.25 s 3.125 s

Table 1. Example parameters and the corresponding
convergence time for a 10 Hz scan frequency. z, f and o denote

the states zero knowledge, free and occupied.
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4. MOVING OBJECT SEGMENTATION BY
BACKGROUND SUBTRACTION

4.1 Background subtraction

In this section an algorithm for labeling range measurements uti-
lizing a volumetric environment representation is proposed. It can
also be considered as an experiment designed to evaluate the hy-
pothesis presented in Section 3.2. The algorithm’s input consists
of a set of range measurements acquired by a mobile LiDAR sen-
sor. These are organized as scans, where each scan includes mul-
tiple range measurements. A common representation for range
measurements are point clouds.

The process consists of two steps that are illustrated in Figure 3
and can be compared to background subtraction as known from
computer vision. First, a volumetric representation based on all
scans is generated. Based on the assumption explained above this
representation should converge to a state where only non-moving
instances of mobile objects and static structures are left. In a sec-
ond step, the same scans are labeled using the volumetric repre-
sentation. For each range measurement the voxel corresponding
to its endpoint is determined. Based on the occupancy probability
of the voxel in question the following cases can be distinguished:

• If the occupancy probability is larger or equal to an upper
clamping threshold, the measurement belongs to a solid ob-
ject.

• If it is less or equal to a lower clamping threshold, the mea-
surement is part of a moving object.

• If none of the preceding cases occurs, the state of the mea-
surement is undetermined.

4.2 Parameter selection

As explained in Section 3.3, the clamping thresholds and sen-
sor parameters have a direct impact on the convergence of the
volumetric representation and therefore on the labeling results.
Therefore it is recommended to utilize the equations presented
in Section 3.4 to select the parameters based on whatever dura-
tion seems plausible for the case at hand. The octree resolution
has to be adapted to the accuracy and precision of the sensor. If
the voxels are too small, minor deviations of the range measure-
ments endpoint can lead to inaccuracies of the resulting represen-
tation. The size of the voxels will also have influence on the time
required to generate the background representation and the dis-
cretization errors. Restricting the maximum length of range mea-
surements is also worth considering, since in this way negative
effects of inaccuracies in geolocalization and sensor calibration
can be reduced. Limiting the ray length is a compromise between
information loss and the improvement of the background repre-
sentation and highly depends on the deployed sensor system. It is
recommended to use another set of clamping thresholds for the la-
beling step. If both thresholds are closer to l = 0, more points are
labeled either as belonging to a moving object or to background
and therefore less points will end up as undetermined.

5. EVALUATION

5.1 Experimental setup

The presented approach has been evaluated with MLS measure-
ments taken on the campus of the TU München and along public

(a)

(b)

Figure 3. Illustration of the two-stage process for labeling range
measurements. (a) Generation of the background representation.

(b) Labeling of range measurements.

buildings in the vicinity. The MLS 1 - TUM City Campus dataset
consists of georeferenced MLS scans and is publicly available1

under a Creative Commons License. An overview of the dataset
is given in Figure 4(a). Measurements have been carried out with
the mobile mapping system MODISSA of Fraunhofer IOSB. The
vehicle itself is equipped with four LiDAR sensors. Two Velo-
dyne HDL-64E are mounted at an angle of 35 ° on the front roof.
This setup makes it possible to cover both a part of the road ahead
of the vehicle as well as the facades of the surrounding buildings.
Two additional Velodyne VLP-16 Puck are installed on the back
of the roof and are inclined by an angle of 15 °. Eight cameras
mounted at the roof corners can be utilized to texture the LiDAR
measurements. Georeferencing of the measurements is based on
navigation data provided by an Applanix POS LV navigation sys-
tem with two GNSS antennas, an inertial measuring unit and a
distance measuring indicator. The navigation data has been post-
processed to increase accuracy.

In this paper, the provided dataset is divided into two subsets that
are used to evaluate different facets of the proposed approach.
The first subset is referred to as Inner Yard and shows a busy
inner courtyard on the campus. The sequence has a duration of
about 4 minutes and contains multiple groups of people standing
or sitting as well as walking around. Also included are several
trees with dense foliage whose leaves are moving in the wind.
The second subset denoted as Crossing comprises a traffic sit-
uation which the mobile mapping platform waits at a crossing.
Multiple cars pass by, passengers and a cyclist cross the road.
After 22 seconds the platform continues on its way. Both subsets
can be seen in Figure 4(b) and 4(c).

1http://s.fhg.de/mls1
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(a)

(b)

(c)

Figure 4. The TUM City Campus dataset. (a) Overview. (b)
Inner Yard. (c) Crossing.

5.2 Quantitative examination

The results of the approach are examined by comparing its re-
sults with a ground truth that comprises per point labels. Since
every LiDAR scan consists of about 100000 points, the process
of labeling is very time consuming. Therefore an automated ap-
proach has been used for ground truth generation. A bounding
box has been placed within the Crossing subset; all points within
the box are labeled as belonging to a moving object, all outside

are part of the static environment. This easy approach works quite
well, since the scene contains both static and moving objects, but
structured in a way that both are easy to divide. This resulting
sequence of ground truth data has a duration of 22 seconds.

5.3 Qualitative examination

The quantitative examination is supplemented by a visual inspec-
tion by a human observer. The results are examined based on the
following criteria:

• Has each moving object at least some measurements labeled
correctly?

• How high is the percentage of correctly labeled measure-
ments per moving object?

• What is the false positive and false negative rate?

• How many percent of all measurements remain undeter-
mined?

These questions are answered based on the Inner Yard subset.
The labeled results are inspected scan by scan, whereby color
coding allows the easy interpretation of the labeled results. In
addition to the questions above, the results are inspected for arte-
facts and other discrepancies.

5.4 Comparison with other approaches

For a more in-depth evaluation of the proposed approach, it is
compared with other techniques for the moving object detection.
The goal is to work out the advantages and disadvantages be-
tween them. A sliding window approach similar to the one pre-
sented by Azim and Aycard (2012) is simulated by building vol-
umetric representations for sequences of 10 second length. The
corresponding scans are labeled and visually compared to the la-
bels created within the scope of the Inner Yard subset.

To compare our work to a per scan based technique, the approach
proposed by Zeibak and Filin (2008) has been chosen. This ap-
proach compares two depth images created by a stationary Li-
DAR sensor. For comparison the Crossing subset has been se-
lected, since at the beginning of the sequence the car is stationary
for about 20 seconds.

5.5 Runtime

Since the time required for labeling the range measurements
highly depends on the environment and the density of the scans,
the runtime regarding this step has been further investigated based
on both subsets. More information regarding the generation run-
time of the volumetric representation can be found in our other
work (Gehrung et al., 2016).

6. RESULTS AND DISCUSSION

6.1 Results of the quantitative examination

For the generation of the volumetric representation the clamp-
ing thresholds and sensor parameters were chosen symmetrically
and in a way that the convergence time between states is about
8 seconds; this has turned out to be good practice for the given
scene and sensor setup. Since the most critical parameter in re-
gards to the quality of the results is the octree resolution, the
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examination has been executed for multiple octree resolutions
(caused by selecting multiple depth levels). Table 2 shows the
results of quantitative examination - the rates of correct classifi-
cation, type I and type II errors. It can be seen that a high reso-
lution favors also a high rate of correct classifications, but is also
correlated to both type I and type II errors.

Rate 10 cm 20 cm 40 cm 80 cm 160 cm
True Positive Rate 97.2 % 95.2 % 87.1 % 74.3 % 66.9 %
True Negative Rate 71.3 % 86.4 % 94.8 % 98.2 % 99.1 %
False Positive Rate 28.7 % 13.6 % 5.2 % 1.8 % 0.9 %
False Negative Rate 2.8 % 4.8 % 12.9 % 25.7 % 33.1 %

Table 2. The rates of correct classification, type I and type II
errors for multiple octree resolutions, calculated based on the

results of the quantitative evaluation.

The corresponding ROC curve in Figure 5 indicates a working
point at either a 20 cm or a 40 cm resolution, both with a good
trade-off between true positive rate and false positive rate. For
the qualitative examination in the next section the latter has been
chosen.

Figure 5. ROC curve describing the evaluation results depending
on the resolution of the octree.

6.2 Results of the qualitative examination

The parameters for the generation of the volumetric representa-
tion were chosen as suggested in the last section. The clamp-
ing parameters for labeling have been set to lmin = −0.5 and
lmax = 0.5 to decrease the number of points labeled as unde-
termined. An impression of the labeled results can be found in
Figure 6.

Coverage of all moving objects – All moving objects were man-
ually identified by comparing multiple scans in chronological or-
der. In summary, it can be stated that surface points have been de-
tected on all moving objects. Several times it has been observed
that persons that stopped for a few seconds were still labeled as
a moving object. This can be considered as a clear benefit in
comparison to the sliding window approach.

Coverage per moving object – All moving objects were closely
examined by a human observer. The number of correctly labeled

Figure 6. A labeled scan from the Inner Yard subset. The point
clouds are divided into the categories moving object (red), static

structure (green) and undetermined (blue).

(a) (b) (c)

Figure 7. Examples for moving objects and vegetation. Moving
object (red), static structure (green) and undetermined (blue). (a)
Discretization error. (b) Labeling error due to partial movement.

(c) Tree with leaf movement.

measurements corresponds the the rates determined by the quan-
titative examination. The rest is usually considered to be static
and is located within the lower part of the object. The reason for
this are discretization errors caused by overlaps of the object with
volumes containing the ground. In other, less frequently observed
cases larger block-shaped parts were labeled incorrectly as being
uncertain or solid. This happens usually when a person stands
still for most of the time and only moves occasionally. See also
Figure 7(a) – 7(c).

False positive and false negative rate – False negatives are mea-
surements of moving objects that are labeled incorrectly to be
part of a static object or structure. This was mostly observed in
the case of discretization errors and partly moving objects as dis-
cussed above.

False positives include all measurements of static structures and
objects that are incorrectly labeled as belonging to a moving ob-
ject. These appear in multiple cases. Both grid-like structures
and leafs are sometimes hit by a laser, sometimes not (see Figure
7(c)). This leads to conflicting measurements which cause the
corresponding voxels to converge towards the state of being free.
This in turn marks all measurements ending within the voxel as
being part of a moving object. False positives can also happen be-
cause of sensor noise. The latter leads to incorrect labeled points
that are distributed in a non-systematic way along the surfaces
of static background. That effect appears to become stronger the
smaller the voxels are.

Multiple times in both subsets huge spots of false positives were
observed, mostly on the ground or on walls (compare Figure 8).
Their size varies between half a meter and multiple meters. Due
to the clustering of affected voxels in close proximity to each
other a systematic cause for this artefact is assumed. A possible
explanation is that this effect is generated by measurement rays
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Figure 8. Solid ground (green) labeled as undetermined (blue) or
moving (red), possibly due to measurements under unfavorable

incidence angle.

that pass along the said plane in a relatively flat angle, thereby
traversing voxels belonging to the plane (cf. Figure 9). As a
consequence, the state of these voxels is changed step by step
until they are considered to be free. A possible explanation for
the different degrees of belief - visible in form of different labels
in Figure 8 - could be measurement noise or sensor calibration
errors.

Figure 9. A ray may traverse other voxels assumed to be solid
before hitting a surface, thereby successively changing their

state to free.

Rate of undetermined measurements – One of the two states
can only be assigned to a measurement once its occupancy prob-
ability is beyond the corresponding clamping threshold. As de-
scribed above these have been adapted to reduce the number of
undetermined measurements. The result of this action is that only
5 % of all measurements cannot be labeled as either being static
or part of a moving object.

6.3 Differences to other approaches

Sliding window – The labeling results of the sliding window
based approach are comparable with the ones described in Sec-
tion 6.2. Also present is the false positive artefact, which has
the same characteristics. Since the window has a length of only
10 seconds, surface points of slowly moving or deforming ob-
jects like flags are associated mostly with incorrect static labels.
It appears also to be less likely to label measurement points on a
person that has stopped for a few seconds correctly, especially if
the action of stopping extends over several windows. The results
show that a sliding window based approach has only a subset of
the capability of an approach that considers all available measure-
ments.

Scan based comparison – In case of a stationary sensor with a
high scan rate, the successive scan based approach tends to gen-
erate false negatives. This is due to the fact that the difference in

the 2.5D depth image is too small to be considered as a move-
ment of the corresponding object. In theory this could be handled
by carefully adapting the threshold, in practice the sensor noise
limits these efforts to some lower boundary. This is an inherent
problem of an approach that is based on the comparison of suc-
cessive scans; one that the approach presented in this paper does
not have.

Another difference between both approaches is the ability to han-
dle sensor movement. Depending on the parametrization of the
scan comparison based approach there are either lots of false pos-
itives or lots of false negatives, since it only works based on 2.5D
information. The approach proposed in this work utilizes geolo-
cated full 3D measurements and is therefore able to handle also
a moving platform, although the associated noise due to localiza-
tion errors effect the results in a negative way.

6.4 Runtime

Subset Resolution Runtime
Inner Yard 20 cm 1000-2200 ms
Inner Yard 40 cm 800-1500 ms
Crossing 20 cm 900-1300 ms
Crossing 40 cm 900-1100 ms

Table 3. The runtime for the Inner Yard and Crossing subset,
determined with different voxel resolutions.

The runtime for the labeling process has been determined for both
subsets and with different voxel sizes. The results can be seen in
Table 3. Since not all scans contain the same number of measure-
ments, the runtimes are stated as an interval. It can be assumed
that the upper runtime boundary is also affected by reloading op-
erations of volumetric data from the hard drive if the former one
has not been found in the in-memory cache. The results show
that while the labeling is executed quite fast it would not be able
to process the measurements from a Velodyne LiDAR sensor in
realtime, since this would require a runtime of less that 100 ms.

7. CONCLUSION AND FUTURE WORK

We have presented a straightforward, yet powerful approach to
distinguish measurements of a mobile LiDAR sensor into mov-
ing objects and static background. It relies on the hypothesis
that a probabilistic volumetric representation converges against
a point where it is free of moving objects and therefore can be
used for background subtraction. An evaluation of the approach
consisting of both a quantitative and a qualitative part based on
a real-world dataset proved the hypothesis, but also showed spe-
cial cases such as vegetation that need to be handled separately.
For most moving objects 87-95 % of all measurements are la-
beled correctly; all moving objects were provided with labels.
The amount of measurements which can not be associated with
either background or moving objects is less than 5 %. It has been
shown that even moving objects stopping for some time are still
labeled correctly, since the full time horizon available is consid-
ered.

In the future, we plan to further investigate solutions for the arte-
fact that causes larger spots of static background to be labeled as
moving object. It is also planned to apply the approach for point
cloud labeling within the context of change detection.
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