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ABSTRACT:

In recent years, there has been a significant improvement in the detection, identification and classification of objects and images
using Convolutional Neural Networks. To study the potential of the Convolutional Neural Network, in this paper three approaches are
investigated to train classifiers based on Convolutional Neural Networks. These approaches allow Convolutional Neural Networks to be
trained on datasets containing only a few hundred training samples, which results in a successful classification. Two of these approaches
are based on the concept of transfer learning. In the first approach features, created by a pretrained Convolutional Neural Network,
are used for a classification using a support vector machine. In the second approach a pretrained Convolutional Neural Network gets
fine-tuned on a different data set. The third approach includes the design and training for flat Convolutional Neural Networks from
the scratch. The evaluation of the proposed approaches is based on a data set provided by the IEEE Geoscience and Remote Sensing
Society (GRSS) which contains RGB and LiDAR data of an urban area. In this work it is shown that these Convolutional Neural
Networks lead to classification results with high accuracy both on RGB and LiDAR data. Features which are derived by RGB data
transferred into LiDAR data by transfer learning lead to better results in classification in contrast to RGB data. Using a neural network
which contains fewer layers than common neural networks leads to the best classification results. In this framework, it can furthermore
be shown that the practical application of LiDAR images results in a better data basis for classification of vehicles than the use of RGB
images.

1. INTRODUCTION

Traffic-related data is the key issue for urban monitoring and
planning. Therefore the automated analysis of this data to derive
a parametrized characterization is essential. Typical parameters
of interest start from precise vehicle location, number of vehicles
up to traffic density and flow.

For detection, recognition and classification of vehicles the gra-
dient between vehicle and background can be helpful because it
often shows a strong characteristic. Therefore gradient-based al-
gorithms are utilized to determine vehicles in images, e.g. like
Histogram of oriented Gradients (Dalal and Triggs, 2005), local
binary patterns (Ojala et al., 1994) or SIFT descriptors (Lowe,
1999). Further statistically predominate image pattern within
and around the vehicle area can be of interest and characterized
by very high-dimensional feature spaces, referred as implicit ap-
proaches (Grabner et al., 2008; Kembhavi et al., 2011; Moran-
duzzo and Melgani, 2014). In contrary, explicit approaches rely
on the image features with typical features of the vehicle shape
(Hinz and Stilla, 2006), such as the vehicle edges and their com-
binations, possibly enriched by other information. Beside gradi-
ents the region-based approaches are promising. These relies on
the assumption that at least piecewise color homogeneity of vehi-
cles is given. Various approaches are available, like a top-hat al-
gorithm (Zheng et al., 2013), an extended region-growing method
(Holt et al., 2009), a segmentation by using Otsu’s method (Eikvil
et al., 2009), as well as a method based on the detection of re-
gions of salient colors in images (Cheng et al., 2012; Leitloff et
al., 2010).

To increase the performance and reduce the false alarm rate addi-

tional knowledge can be considered as constrain (Hinz and Stilla,
2006; Türmer et al., 2013). However this constrain has an in-
fluence on the classification performance, as not all vehicles are
parked on or close to roads (like such parked in backyards) and
further highly accurate road maps are mandatory.

Combining measurements from different types of sensors for the
analysis is a strategy to increase the performance, especially if
the derived data is complementary. Therefore radiometric data
in form of RGB images and the geometric data measured with a
LiDAR sensor can be considered for vehicle classification. For
narrowing the search space of vehicle detection geometric data is
favorable (Türmer et al., 2013). The LiDAR point cloud can be
utilized for extracting vehicles and their motion (Yao et al., 2011).
Further features can be estimated by LiDAR point cloud for ob-
ject classification in general (Jutzi and Gross, 2009; Weinmann et
al., 2015). To derive vehicle hypotheses several features can be
calculated in this context by using radiometric (optical) and geo-
metric (elevation) data for classification. The fusion of the data
sources is done by state-of-the-art-classifier and only geometric
data is utilized for generating vehicle hypotheses (Schilling et al.,
2015).

Recent works are using Convolutional Neural Networks (CNNs).
These multi-layer neural networks are designed to learn opti-
mal features out of training data for a given classification prob-
lem and show promising results for detection and classification
tasks. For example the Hybrid Deep Convolutional Neural Net-
work (HDNN) is optimized to extract multi-scale features (Chen
et al., 2014). Combined with a modified sliding window tech-
nique vehicles are detected with high accuracy, but the evaluation
is limited to a few Google Earth images and single sensor data.
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In this work we study the potential of Convolutional Neural Net-
works especially for vehicle classification. Therefore three ap-
proaches are investigated to train classifiers based on Convolu-
tional Neural Networks. The main contribution of this work is

• CNNs based on RGB and LiDAR data lead to classification
results with high accuracy

• features derived by RGB data transferred into LiDAR data
by transfer learning lead to better classification results in
contrast to RGB data only

• using a neural network with less layers than common neural
networks leads to the best classification results

This contribution is organized as follows. In Section 2 an overview
on the most relevant components of a convolutional neural net-
work is given. The utilized data is described in Section 3. We
use three different approaches to train classifiers based on con-
volutional neural networks, the related experiments are described
in Section 4. The derived results are presented in Section 5 and
discussed in Section 6. Finally we conclude and an outlook on
future work is given.

2. METHODOLOGY

The presented work is based on convolutional neural networks
(CNN), an advanced development of artifical neural networks
(ANN) (LeCun et al., 1998). In this section we show the differ-
ences and advantages of CNNs compared to ANNs for 2D clas-
sification tasks.

One of the main reasons for the low performance of ANNs in
tasks of 2D classification are the fully connected layers (Figure
1). Each input value xi is connected to all neurons θ1n and all
neurons from the previous hidden layer are connected to the neu-
rons θjn of the following hidden layer. For a fully connected
ANN with 100 hidden neurons and an input size of 80× 80 pix-
els we need to train 1.92 million weighted connections.
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Figure 1. Base concept of a fully connected artificial neural
network. The orange layer contains the input information, the

green layers are j hidden layers and the blue output layer
consists of k output classes.

The tremendous amount of required training data and computa-
tional resources is not the only drawback of fully connected lay-
ers for 2D image classification. By giving each neuron all pixels
as input the classifier is highly dependent on the object location

in the given image. Furthermore, there is no local correlation be-
tween pixels in divergent regions of the image. The image on the
left in Figure 2 gives an example for a fully connected convolu-
tional layer. Each neuron θn is connected to the complete input
image. The image on the right shows an approach where each
neuron θn is connected to a local region of the image called re-
ceptive field. The calculated weight matricesWn for each neuron
are shared for the whole image. Each neuron θ is considered as
a filter with the size of the receptive field to compute the convo-
lution. Put simply, the filter mask corresponds to the calculated
weight matrix which slides over the image. The results are n fea-
ture maps where n is the depth of the following data volume. The
convolution (∗) is computed over all channels i of the input image
or the depth of subsequent feature maps:

ôk = f(
∑
i

Win ∗ xi + bn) (1)

where Win denotes the weight matrix corresponding to the chan-
nel i and neuron n, xi is the input value and bn is a bias. The
output ôk is the value which is written in the subsequent feature
map.
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Figure 2. On the left a fully connected layer is depicted, each
neuron is connected to every value of the input data. On the right

side a locally connected layer is shown, each neuron is
connected to a receptive field and the weights of each neuron are

shared for every sampling position of the image.

Using the local connectivity, the classifier becomes translation
invariant and the computational cost decreases to a fraction com-
pared to the fully connected approach. The required amount of
training data also decreases since there are fewer weight parame-
ters and biases which need to be computed. But still, the training
of deep CNNs requires thousands up to a million of training sam-
ples which are usually not given in the field of remote sensing
classification tasks.

Layer A CNN is a multilayer neural network with many dif-
ferent types of layers, we are going to cover only some of the im-
portant of this large and permanently growing number of different
layers. As the previous section describes the way how a convo-
lutional layer operates we introduce another CNN specific layer,
the pooling layer. The pooling layer reduces the dimensionality
of the feature map and reduces thereby the number of parameters
in the CNN. When using a pooling layer there is always a trade-
off between reducing the computational costs while keeping as
much information as needed. There are several pooling methods
such as average or L2-norm pooling but most common is the max
pooling which we are using in our CNNs. Since an artificial neu-
ral network can describe complex problems there is always a risk
of overfitting. To prevent overfitting we are using dropout layers.
The dropout layer proposed in (Srivastava et al., 2014) deactivates
neurons in the training phase of the net with a probability of p. In
the test or classification phase all neurons are active (Figure 3).
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Figure 3. On the left side a neural network is shown with all
neurons activated. On the right side a neural network is depicted

where neurons get deactivated with a probability of p by a
dropout layer to prevent overfitting.

w2

w1

w2

w1

w2

w1

Figure 4. Influence on the convergence of the optimization using
the SGD. The figure on the left side shows how the convergence
of a 2D optimization should look like for a fitting LR. A LR to
high will lead to a divergence of the optimization as shown in
the figure in the middle. In the figure on the right the LR is too
low what results into a convergence towards a local minimum.

The outputs have to get adjusted as the deactivated neurons would
lead to numerical differences in the outputs between training and
test phase. To accomplish this the output values for the test phase
get multiplied by the dropout-probability p.

Activation Function Another relevant component of CNNs
is the activation function between layers. The relu-function is a
common activation function in CNNs as they can be computed
more efficient than sigmoid or hyperbolic tangent functions and
is defined as:

f(x) = max(0, x) (2)

It was shown empirically that the convergence of the stochastic
gradient descent (SGD) by (Bottou, 2010) using relu activation
functions can be accelerated by a factor of six compared to sig-
moid or hyperbolic tangent functions (Krizhevsky et al., 2012a).
As activation function of the output classification layer we are
using a softmax classifier (Bishop, 2006). The softmax classifier
computes the probability of the class affiliation of each input .

Training To understand how a CNN learns the weights we
take a glance at three important parts of the CNN. The error
between the softmax output and the labels is computed using a
cross-entropy loss function (De Boer et al., 2005). To minimize
this training error the weights get updated using back-propagation
(Hecht-Nielsen et al., 1988). The back-propagation is used to
compute error-rates of single neurons to trace back the impact
they have on the training error. To compute the updates the data
set is divided in mini-batches as the stochastic gradient descent is
computing the optimization using only a subset of the data. The
most important parameter while training a CNN using SGD is the
learning rate (LR). Using a good LR will result in a fast conver-
gence of the optimization as shown in Figure 4 (left plot). If the
LR is too high the optimization will diverge as shown in Figure
4 (middle). The figure on the right side shows the optimization
converging towards a local minimum as the LR is too small.

3. RGB AND LIDAR DATA SET

We use two data sets in this work which were provided by the Im-
age Analysis and Data Fusion Technical Committee (IADF TC)

of the IEEE Geoscience and Remote Sensing Society (GRSS)
(Moser et al., 2015). The data consists of a RGB and LiDAR
data set. Both data sets were acquired using an airborne platform
flying over the harbor of Zeebruge, Belgium. The RGB data is
a orthophoto with a 5cm ground sampling distance (GSD). The
LiDAR Data is provided as a digital surface model (DSM) with a
point spacing of 10cm. The LiDAR point cloud gets rastered to a
2D grayscale image by using natural neighbor interpolation. The
RGB data is down sampled to 10cm GSD to go with the GSD of
the LiDAR data.

Since there is only one data set available we are separating the
training and validation data locally to minimize the correlation
between the two sets. For training purpose we augment the data
by rotating it by 90◦, 180◦and 270◦to create more training sam-
ples and make the classifier more robust towards rotation vari-
ances. All images also get zero-centered by subtracting the mean
value of each channel.

4. EXPERIMENTS

Three different approaches are presented in this work based on
CNNs to classify vehicles in RGB and LiDAR. The data sets can
be seperated in two fields. In Section 4.1.1 and Section 4.1.2
a pretrained CNN is used, those ideas are based on the concept
of transfer learning. In Section 4.2 we design and train a CNN
from scratch. Those approaches tackle the requirement of the
tremendous amount of training data to train deep CNNs.

4.1 Transfer learning

The following two approaches are based on the concept of trans-
fer learning. The idea behind those approaches is that CNNs
which are trained on one data set can be transferred to classify an
other data set. We are using a CNN based on the AlexNet archi-
tecture of (Krizhevsky et al., 2012b) depicted in Figure 5 which
was pretrained on the ImageNet dataset (Deng et al., 2009).
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Figure 5. Architecture of the AlexNet, where the most
conventional CNN architectures are derived from.

The features the CNN is learning in the first couple of layers are
considered as generalized features. The deeper layers in the ar-
chitecture of the CNN include more abstract features. Figure 6
shows the pretrained features of the first layer of the VGGNet
(Simonyan and Zisserman, 2014). The features appear like some
sort of gabor and blob features. Those generalized features are
suitable for many 2D image recognition tasks.
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Figure 6. Features of the pretrained VGGNet in the first
convolutional layer computed in MATLAB. The appearance of

the filter masks is similar to gabor and blob filters.

4.1.1 CNN Feature Vector In this approach we take away the
task of classification from the CNN and we only use it as feature
extractor. To accomplish this, we remove the last fully connected
layer of the CNN which is usually the classification layer. In this
case, the resulting feature map of the convolution of the penulti-
mate layer is a feature vector (Nogueira et al., 2016). The size of
the feature vector depends on the CNNs architecture, the size is
4096×1. The extracted features are used to train a linear support

feature maps feature vector
4096 × 1

Figure 7. Changes in the VGGNet to use the output of the last
layer as feature vector. The Classification layer is removed and

the penultimate layer with the size of 4096× 1 is used as feature
vector.

vector machine (SVM) (Burges, 1998). To fuse the RGB, LiDAR
elevation and intensity data we concatenate the feature vectors for
the SVM training so the dimensions of the resulting vectors are
4096× 1, 8192× 1 and 12288× 1.

4.1.2 Fine-Tuning In this approach we use the pretrained CNN
as feature extractor and classifier. The process of training a pre-
trained CNN on a different dataset is called fine-tuning (Nogueira
et al., 2016). Again, we have to take a few small adjustments
at the CNN. Theoretically, there are no restrictions how many
changes can be applied to the architecture of the CNN. Consider-
ing there is only a small amount of training samples available we
want to keep the number of parameters we have to retrain as small
as possible. Since the VGGNet is trained on the ImageNet data
set its classification output layer consists of 1000 elements for the
1000 classes of the ImageNet. As we only want to separate the
background and vehicle class we have to change the classification
layer to a two element layer. The green highlighted elements in
Figure 8 are the ones that replace the old classification layer. The
new weights between the penultimate fully connected layer and
the classification layer need to be trained since they get initial-
ized at random. The rest of the CNN remains the same before the
fine-tuning starts.

We kept the learning rate for all layers the same since our ex-
periments showed there is no difference in the training outcome
regarding the error rate whether we set the learning rate of the
pretrained layers to zero or the same as the new layer. The reason
for this is how the weights of the layers are changed in the training

feature maps feature vector
4096 × 1

Figure 8. Changes for fine-tuning the VGGNet on the
classification task. The classification layer and the corresponding
weights get replaced by a two element classification layer with

weight matrices of the corresponding size.

process of the CNN. An error value for each neuron in the net-
work is calculated starting from the output. The backpropagation
uses this error value to determine which neuron has the highest
impact on the classification error and updates the weights to min-
imize this classification error. Since all layers besides the clas-
sification layer are already roughly adapted to the classification
problem the CNN will update the randomly initialized weights of
the new classification layer to minimize the classification error.

A disadvantage of this approach is that we can not change the
dimensionality of the input data since we do not want to change
the pretrained weights in the first layer of the CNN. The number
of channels of the input image is limited to the size of the data the
CNN was originally trained with. The number of input channels
is limited to three, as the VGGNet we are using was trained on a
RGB data set. This implies that we can not fuse RGB and LiDAR
data at the input layer of the CNN. As there is only one channel
available using the LiDAR data sets we simply put that channels
information in all three input channels of the VGGNet.

4.2 Training and design from the scratch

This approach is based on designing and training a CNN from
scratch. Most state of the art CNNs consist of millions of param-
eters and require an huge amount of training samples. As we are
training a CNN for a binary classification problem, CNNs with
few parameters can probably also solve this problem. It is not
necessary to use CNN architectures with that many parameters.
In Table 1 the architectures of two best performing CNNs in this
study are listed. S is the stride and P the padding of the con-
volutional layers. As pooling method we use max-pooling and
while training a dropout is used at the first fully connected layer
to prevent overfitting. The designed shallow CNNs consisting of
only a fraction of parameters compared to deep CNNs such as
AlexNet . The size of the filter in the first layer of the Medium-
CNN was chosen at a equal dimension as the size of the filter from
the AlexNet architecture. The size of the filters of the Large-CNN
was chosen to be at the scale of the objects in the image we are
going to classify. In contrast to the approach from Section 4.1.2
we can fuse the RGB, LiDAR elevation and intensity data in the
input layer of the map. Every combination and number of chan-
nels can be chosen since all weights are trained anew every time
you change the CNN. The following layers of the CNN are not af-
fected by changes of the input layers size since they only depend
on the number of neurons in the previous layer.

4.3 HoG feature classification

To show the improvements through CNN in contrast to tradi-
tional approaches, we implemented a baseline method based on

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-115-2017

 
118



Medium-CNN Large-CNN
conv1 16×8×8

S=3, P=0
×3 pool

16×20×20
S=1, P=0
×3 pool

conv2 32×5×5
S=1, P=0
×2 pool

32×5×5
S=1, P=0
×2 pool

conv3 64×4×4
S=1, P=0
−

64×9×9
S=1, P=0
−

full4 128
dropout

128
dropout

full5 2
softmax

2
softmax

Parameters 180.000 360.000

Table 1. Architecture of CNNs designed and trained from the
scratch.

the work of (Türmer, 2014). The work shows the applicability
of the well-known histograms of oriented gradients (HOG) by
(Dalal and Triggs, 2005) as input to a state-of-the-art classifier.
Following this approach, we extract HOG features at the cen-
ter of each segment in RGB, elevation and intensity data sepa-
rately, concatenate these features in a single vector and use ran-
dom forests for classification (Breiman, 2001). The used segmen-
tation algorithm is presented in (Schilling and Bulatov, 2016) As
HOG features are sensitive to orientation, we augment the train-
ing data through rotation. All relevant parameters (e.g. blocksize
and cellsize) as well as sensor combinations are optimized using
cross validation.

5. RESULTS

The training of the CNNs was performed on a balanced data set
with 399 training samples of each background and car class be-
fore data augmentation. As there is way more background than
cars in a realistic scenario we use 426 car and 6017 background
samples for the validation of the training which were acquired
with a watershed based segmentation method (Schilling and Bu-
latov, 2016). Since the validation is highly unbalanced the overall
accuracy is not fit for representing the quality of the classifica-
tion. The F-score, the harmonic mean of precision and recall, is
more suitable for this task. The training results are then compared
to the classification approach based on the histogram of oriented
gradients (HOG) features and a random forest classification.

5.1 Training Results

The training is conducted by utilizing the MatConvNet frame-
work in MATLAB (Vedaldi and Lenc, 2015). For the classification
layer we use a softmax classifier with a cross-entropy loss func-
tion to update the weights. As optimization function we choose
the SGD. The CNN training is applied with LR of 0.01, 0.001
and 0.0001. The training is terminated if the validation loss does
not decrease over k training epochs where k is defined as

k = 10 +
⌈
numEpoch

10

⌉
× 2. (3)

The following samples of the CNN training only show the best
performing combinations of LR and data types.

5.1.1 CNN Feature Vector The training of the SVM with the
CNN features is performed by using a 10-fold crossvalidation.
The SVM with the lowest loss is used to classify the validation
data. As shown in Figure 9 the training on the RGB data achieves
the lowest F-Score (0.794) even though the CNN features are
originally trained on a RGB data set. The best training result is
achieved by the fusion of the elevation and the intensity data set
(F-Score = 0.929). Adding the RGB data to the fusion of the
LiDAR data set still outperforms the solitude training results and
yields good results but does not improve the training results of
the fusion of the LiDAR data.
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Figure 9. F-Scores for the CNN feature training using a SVM.

5.1.2 Fine-Tuning For the Fine-Tuning we are using the same
pretrained CNN (VGGNet) as we already used in the CNN fea-
ture vector approach. For this approach we only get training re-
sults for each of the data types, not the fused data. As shown in
Figure 10 the training on the LiDAR elevation (F-Score: 0.903)
and intensity (F-Score: 0.902 ) outperforms the RGB (F-Score:
0.867) data training results again. Compared to the results from
Figure 9 the training on the solitude data shows improved results
for all the data sets.

5.1.3 Training and design from scratch For the CNNs de-
signed and trained from scratch we take a look at the Medium-
CNN and the Large-CNN. While testing several architectures of
CNNs these show the best performance both in computability and
training results. As depicted in Figure 11 and Figure 12 the train-
ing using the Medium-CNN architecture on the RGB data set (F-
Score: 0.803, yellow line with triangles) still under perform the
results which are achieved by the training on the LiDAR data.
The best training result is achieved by the CNN data fusion of
elevation and intensity (F-Score: 0.955, green line with dots).
We also compare the result of the Medium-CNN training with
a HoG-feature classification using a random forest classifier (F-
Score: 0.874, brown line with squares) trained on the fusion of

Figure 10. F-Scores for the fine-tuning of the VGGNet.
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the RGB and LiDAR data sets. While this classification approach
outperforms the results of Medium-CNN on the RGB data, its
within the same range as the Medium-CNN trained on the in-
tensity data set and the fusion of RGB and elevation data. For
the solitude elevation data, the fused data of the LiDAR and the
fused RGB and LiDAR data sets the Medium-CNN outperforms
the HoG-Feature classification by far.
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Figure 11. F-Scores for the training results derived by different
data of the Medium-CNN with the HoG feature classification

result for comparison.
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Figure 12. PR-Curves of the training results derived by different
data for the Medium-CNN with the HoG feature classification

result for comparison.

Figure 13 shows the training results of the Large-CNN. As shown
in Figure 13 the training on the RGB data set achieves the low-
est F-Score of 0.722 for all data set combinations. For the CNN-
Large the fusion of intensity and elevation produces the best train-
ing results with an F-Score of 0.927. The HoG feature classifica-
tion results lie within the same range as the results for the solitude
LiDAR data.

5.2 Sliding window classification

Finally, we want to show a practical result of the CNN based
classification approach on our given data set, to see where the
weaknesses of the classifier lie and how to tackle or explain them.
We chose the Medium-CNN for a sliding window classification
on the fusion of LiDAR data as it shows the best performance
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Figure 13. F-Scores for the training results derived by different
data of the Large-CNN.

in the training. The classification is performed using a sliding
window with a size of 80 × 80 pixels. The sampling rate is set
to 10 pixel so we can ensure that each car is included and the
number of image samples to compute is minimized. For an test
area of the size 5000 × 5000 pixels we are computing 243049
image samples. In Figure 14 we show samples from the classi-
fied area. For visualization purpose we use the RGB image as
background even though the data was classified on the fusion of
LiDAR data. The classification results are depicted by using a
heatmap where the values are interpolated between the classifica-
tion values of each classified pixel. On a wide open field where
the cars are spread out the classifier has no problems detecting all
the cars with almost no false positives. A more challenging task

Figure 14. Samples from the complete classified area. While the
classification of the vehicles is performed on the fusion of

LiDAR data the results are displayed using the RGB data as
background. The heatmap overlay uses the classification values

provided by the Medium-CNN.

is the classification of cars parked close to each other or which
are placed in backyard. The left side of Figure 15 shows an ex-
ample where a couple of cars are parked next to each other, with
a few exceptions the classifier can still separate the cars. The im-
age on the right shows an interesting case since the cars are of
completely different sizes. The classifier can detect small cars up
to large caravans even though the number of training samples for
caravans is very low.

A challenging task occurs if the cars are covered by vegetation or
similar objects. Even though the car appears completely visible
in the RGB presentation in Figure 16 on the left side our classifier
did not classify it as car. In the presentation using the elevation
data in the middle the car is barely visible even though we are
using the last pulse of the LiDAR signal to create the 2D images.
Also in the intensity presentation on the right side large parts of
the car are not visible. Since the features the CNN is learning
in the first couple of layers are mostly edge detectors it can not
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Figure 15. Classification samples of different sizes cars off the
road. The left image shows cars parked closely together in a

parking lot. The classifier is still able to classify them as single
object. In the image on the right side, a classification example
for two cars of completely different sizes is shown. Both, the

small car and the caravan are classified as car.

correctly classify the car.

Figure 16. Misclassification of a car covered by a tree. The left
image shows the car in the RGB data. In the elevation image in
the middle the car is barely visible. In the intensity image on the

right the front of the car is mostly covered by the tree.

Other obstacles are objects which are very similar to cars in their
geometry. The image on the left in Figure 17 shows garden furni-
ture which looks quite different to a car in the RGB presentation.
Looking at the elevation (middle) and intensity (left) representa-
tion, the furniture is similar to a small car or the roof of a car. The
detector needs to be sensitive for different sizes since the goal is
to detect everything from a small car up to a caravan.

Figure 17. Misclassification of an object similar to a car. The
left RGB image shows garden furniture which was falsely

classified as a car. In the elevation image in the middle and the
intensity image on the right the furniture has the same type of

edges like a car roof which may have led to the misclassification.

6. DISCUSSION

In Table 2 we give an overview of all achieved classification re-
sults. The best results were achieved by the Medium-CNN de-
signed and trained from the scratch on the fusion of the LiDAR
data, closely followed by the fusion of RGB and LiDAR data
sets. For all proposed approaches the quality of the classification
result could be improved by the fusion of the sensor data com-
pared to using the solitude data. The only exception is the fusion
of RGB and elevation data for the CNNs designed and trained
from scratch. The fine-tuning approach could achieve the best
training results for the solitude RGB and LiDAR data. Looking

at the overall performance, the LiDAR based classification yield
better results than the RGB based classification. This was quite

Data CNN
Feature

Fine-
Tuning

From the
Scratch

RGB 0.794 0.867 0.803
Elevation 0.846 0.903 0.900
Intensity 0.846 0.902 0.875
RGB/Elevation 0.918 — 0.871
Elevation/Intensity 0.929 — 0.955
RGB/Elevation/Intensity 0.917 — 0.942

Table 2. Overview of the reached F-Scores for all trainings for
each data type and combination.

surprising as the CNNs used for the transfer learning approaches
(CNN Feature, Fine-Tuning) were pretrained on a RGB data set.
This leads to the conclusion that features learned on RGB data
are transferable into LiDAR data. The LiDAR data seems to be
more suitable for this classification. As we only have a few hun-
dred training samples available the uniformity in the geometry
of the cars might lead to more stable geometric features than the
radiometry from the RGB data as cars of different colors have
mostly the same appearance in the LiDAR data. A reason for the
decreasing performance by adding the RGB data to the fusion of
the LiDAR data might be an imprecise coregistration of the 3D
LiDAR data on the 2D RGB data. This leads to blurred edges
and as the filters in the first layer of the CNNs are mostly edge
detectors. Further, the performance of the Medium-CNN with
only 180.000 parameters shows that deep CNNs are not neces-
sary for binary classification tasks in this remote sensing applica-
tion. The training of the classifiers we present in this work could
be performed with only a fraction of training samples compared
to common databases for CNN training (e.g. ImageNet).

7. CONCLUSION AND FUTURE WORK

In this paper, three approaches have been presented to classify
vehicles from RGB and LiDAR data sets. The novelty of the
most successful approach lies in the training of CNNs based on
the fusion of RGB and LiDAR data for remote sensing appli-
cations. A comparison for different data fusion training results is
presented. The CNN with the best performance in training is used
for a sliding window classification on the fusion of the elevation
and intensity data. We managed to achieve promising training
and classification results even though there were only a few hun-
dred training samples available. This tackles one of the biggest
issues of using CNNs for remote sensing applications. Overall,
the training and classification results using the LiDAR data sets
outperform the training on the RGB data.

For future work, we want to test more CNN architectures such as
siamese CNNs to tackle the problem of a imprecise coregistration
and pay more attention to the features of each input channel. An-
other field to be examined is the distinction between vehicles of
different kinds. Moreover, we intend to test CNN classifications
for hyperspectral data and combinations of RGB, hyperspectral
and LiDAR data sets.
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