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ABSTRACT:

Despite having achieved good performance, visual tracking is still an open area of research, especially when target undergoes serious
appearance changes which are not included in the model. So, in this paper, we replace the appearance model by a concept model
which is learned from large-scale datasets using a deep learning network. The concept model is a combination of high-level semantic
information that is learned from myriads of objects with various appearances. In our tracking method, we generate the target’s concept
by combining the learned object concepts from classification task. We also demonstrate that the last convolutional feature map can
be used to generate a heat map to highlight the possible location of the given target in new frames. Finally, in the proposed tracking
framework, we utilize the target image, the search image cropped from the new frame and their heat maps as input into a localization
network to find the final target position. Compared to the other state-of-the-art trackers, the proposed method shows the comparable
and at times better performance in real-time.

1. INTRODUCTION

Single-target tracking is the most fundamental problem in many
vision tasks such as surveillance and autonomous navigation. In
the past, there have been many successful object trackers that use
features and appearance descriptors (Felzenszwalb et al., 2010,
Kalal et al., 2012). These trackers can be categorized as either
generative or discriminative which use appearance-based mod-
els to distinguish the target from the background. Researchers
have also introduced sophisticated features and descriptors (Kim
et al., 2015, Rublee et al., 2011, Zhang et al., 2014), yet there are
still many issues in practical applications. The main limitation of
these low-level hand-crafted features is that they only address the
texture of the object which may frequently change.

Recently, Deep Neural Networks (DNNs) have demonstrated promis-
ing performance in tasks like image classification (Krizhevsky et
al., 2012), object detection (Redmon et al., 2015, Ren et al., 2015)
and segmentation (Tsogkas et al., 2015). Different from the low-
level features, the DNNs, especially the convolutional neural net-
works (CNNs) have been shown to learn high-level semantic in-
formation of the object. After training on large-scale datasets like
ImageNet (Deng et al., 2009), it has been shown it can learn dis-
tinctive information for different object categories. Motivated by
this fact, many CNN based trackers have been proposed (Wang et
al., 2015, Wang and Yeung, 2013). However, most of them have
only consider the CNNs feature extraction capability and use the
traditional methods to do the tracking.

For humans, an object is not just about its appearance at limited
view angle, but its concept which may include every appearance
about it. Since the CNN has the capability to learn a general se-
mantic representation of objects, we think it can learn some con-
cept as well. Inspired by this idea, we propose a visual tracker
which adopts the one-thousand-object concepts learned from Im-
ageNet instead of directly modeling the appearance of the novel
target. The basic idea is that, with a pre-trained classification
network, a novel target can be modeled as a combination of sev-
eral existing categories. In another word, we calculate and define

Figure 1. The tracking flow of proposition. In the proposed
tracking framework, there are two different networks: one is for

the target identity concept recognition and the other is for the
target location detection.

one more set of weights for the last full connection in the net-
work to define the novel target. This is not an online training and
will not change the parameters of the pre-defined network; it uses
the learned high-level features to construct a new object concept
which is used to define the target. After getting the concept, a
heat map, which is generated by fusion of the last convolution
feature maps with the concept, is used to highlight the target in
new frames. Then, the target image, the search image and the
heat maps are used to find the final target location by the local-
ization network. The flow diagram can be seen in Fig 1. Since
we use a pre-trained network, there is no on-line training needed
which makes the tracker work at high frequency.

The main contributions of this paper include: (1) to the best of our
knowledge, it is the first paper that proposes using object concept
from CNNs instead of learning feature appearance in visual track-
ing; (2) offers an efficient way to define target as combination of
pre-learned object categories without on-line training; (3) com-
bines the heat map and target image to form a cascaded tracking
network that works at high frequency.
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The rest of the paper is organized as follows: The related work is
in Section 2, which followed by the proposed tracking methodol-
ogy in Section 3; The experiments are given in Section 4; Finally,
we conclude in Section 5.

2. RELATED WORK

Appearance feature based trackers. For the past several decades,
it has been common to use a form of well-studied target represen-
tations, such as points, lines, and target patches in tracking (Yil-
maz et al., 2006, Zhang et al., 2014, Kim et al., 2015). Despite
reported success in some benchmark sequences, these methods
are sensitive to noise and background clutter. In order to over-
come this, new models and features were proposed (Hong et al.,
2015b). In order to address the background clutter, researchers
use discriminative information generated from the target and non-
target regions. Most of these methods train a classifier and choose
discriminative descriptors (Sui et al., 2015). For the classifier
training, Multiple instance learning (MIL) use a set of ambiguous
positive and negative samples which in part belong to the target
or the background. Similarly, in TLD, the authors use positive
and negative experts to improve the learning process (Kalal et al.,
2012). MEEM uses SVM to detect target based on the entropy of
the score function which uses an ensemble of experts about his-
torical snapshots during tracking (Zhang et al., 2014). DLSSVM
uses dual linear SSVM to enable fast learning the features with
more robustness and less computation cost (Ning et al., n.d.).

Neural network trackers. Since the neural networks have shown
breakthrough performance in object classification, it has also been
adopted in tracking. For tracking, the network is typically used as
a feature extractor (Wang et al., 2015, Zhang et al., 2016, Hong
et al., 2015a). These features have higher semantic information
than low-level features used in the past. In (Wang et al., 2015,
Ma et al., 2015), the authors use the characteristics of lower and
higher feature maps in the network to represent target at the cate-
gory and individual levels. In (Zhang et al., 2016), previous target
patches are stored in a filter bank to do a convolution operation
at new frames to highlight the object location. In (Hong et al.,
2015a), sampled feature maps are classified by SVM to generate
a saliency map. More recently, a number of studies use Recurrent
Neural Networks (RNNs) for visual tracking (Bertinetto et al.,
2016, Held et al., 2016, Chen and Tao, 2016, Tao et al., 2016).
In (Held et al., 2016), Held et. al introduced a tracker which has
a network with siamese architecture. The input to their system
are target and search images and the output is the bounding box
within the search image. However, it is based on the previously
tracked target, if there is a drift or serious appearance change, the
tracking fails. In (Bertinetto et al., 2016), siamese architecture
with a different output which is a confidence map that shows the
similarities of the corresponding sub-windows. Unlike the sliding
window methods, this siamese network can directly generate all
possible locations’ similar scores by only one scan; but it handles
the scale variations by repeated estimations.

Many of the aforementioned trackers predict a heat map (or a
confidence map) that is generated by a correlation filter (Zhang
et al., 2016), a sparse combination of feature map (Wang et al.,
2015) and direct use of a convolutional network (Bertinetto et al.,
2016). However, their limitation is that they only consider the
texture similarity which may fail when appearance changes. In
(Zhou et al., 2015), Zhou et. al, revised the CNNs to demonstrate
the localization ability of feature map trained on image-level la-
bels. They use global average pooling on the last convolutional

feature maps for a fully-connected layer to produce category out-
put. For a specified class, the connection weights in the last layer
are used to generate an activation map based on the last covolu-
tional feature maps. This activation map can highlight the struc-
ture or region of the image that belongs to the given class. Their
method is used to detect objects which have been pre-trained and
the accuracy is critically dependent on the classification quality.
However, in visual tracking, a novel target may not always belong
to one of the pre-trained object categories and there also may not
be enough data for a new training. So, it is not preferred to di-
rectly use this heat map for a tracking prediction.

(a)

(b)

Figure 2. The classification results of TB50 target using the
GoogLeNet. The vertical axes is the percentage of the target

identified as different categories.

3. METHODOLOGY

3.1 Classification on Unknown Target

The proposed tracking idea is based on the assumption that the
CNNs can learn high-level object category concepts. In or-
der to test this assumption, we conducted a number of experi-
ments using the tracking dataset TB50 (Wu et al., 2013) with the
GoogLeNet (Szegedy et al., 2015). GoogLeNet originally de-
signed to perform classification of 1000 object categories in the
ImageNet challenge. We note that most of the targets in TB50 are
not labeled in the dataset. Our test is to verify if the GoogLeNet
can consistently classify TB50 targets that it has not learned be-
fore as one or several categories.

Based on the groundtruth, we crop targets from all image se-
quences and classify each cropped image with the GoogLeNet
network.. We record the top 5 classes for each classification.
We record the top 5 categories as the target classification results.
Each category’s score is estimated as the ratio of the recorded
time and the index of the target image. Two of the results are
shown in Fig. 2. Since the network is not trained with the labels
like standing body or the face, it classifies the targets as different
objects. In the ”singer sequence”, the target classified as space
shuttle with the highest score. From this perspective, the network
learns the novel object semantics despite scale, illumination and
appearance distortions. However, in the image (b), the human
face is identified as band-aid, sunscreen, and Windsor-tie with
high scores. From the texture point, the face has nothing similar
with them, however, all these classified categories are related to
skin or face. Hence, when the network finds a band-aid, or the
similar texture object, it may actually also finds a face.
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Figure 3. The new target concept estimation. Given a target, we can generate a number of heat maps for top n classes that the target
may belong to like the red classes. Then based on the ground truth on the heat maps, the coefficients for the combination of these

classes’ weights can be calculated to generate the new concept for the target.

We also consider the repeatability of this pre-learned semantics.
For that purpose, we choose the top 5 classified categories in the
previous test as ”true classes” that represent a target and for each
tested target, if one of the top 5 highest score classes belongs to
the selected representative classes, then we mark the classifica-
tion as correct. The classification accuracy is the ratio of cor-
rectly classified against the total number. We have consistently
observed that for almost every sequence, the classification accu-
racy reach 100 percent, which can be seen in the supplemental
materials. The results suggest that the target has semantic fea-
tures that spread along the 5 classes, and during the sequence, the
target will have high response to these semantic features.

3.2 The Target Concept

Before we explain how to generate a new target semantic concept,
we will first introduce the semantic concept, then define how to
generate heat map for specified object category with the concept.

During training, the parameters in the network are adjusted to
make sure the output have the same labels. In our approach, we
separate the parameters in the network into two. One is used to
extract high-level semantic features which are the weights of fil-
ters in convolution layers. The other one are the weights of the
connector from high-level semantic features to object categories
in the full connection layers. The convolution parameters decide
how to extract features while the full connection parameters de-
cide how to use these features. So, from this perspective, the
object category score actually is dependent on the weights that
decide the connections to the last convolution feature maps in the
network. In other words, the object category is defined as a com-
bination of these high-level features, and the connection weights
decide this combination. Hence, we define the concept of an ob-
ject category as a set of weights that connects the category and
the last convolution feature map.

Even when the full connection layers lose the spatial informa-
tion of the high-level features, many classification networks have
demonstrated a remarkable object localization ability (Zhou et
al., 2015, Oquab et al., 2015, Cinbis et al., 2016). In (Zhou et al.,
2015), the net’s last convolution layer is replaced by a global av-
erage pool (GAP) and the full connection layer is reduced to one
to make the connection between category and high-level features
very simple. Following the results of these studies, we combine

all the last feature maps by the category weights and generate
a class specified heat map (Fig. 3 shows an example). The heat
map can highlight areas that include the high-level features which
are trained as components of a given category.

It is impossible to train a network on all possible targets. Consid-
ering the conjecture we made in the last section, unknown target
shares many semantic features that were learned from other ob-
jects, we use this fact to extract features from CNN and combine
them to learn and define new targets. Unlike on-line learning,
we don’t change weights in the network. Instead, we select a
new combination of the feature maps to generate the concept of
a novel target. In order to do this, one can use the idea of sparse
coding to generate a new concept with all high-level feature maps,
but the process is time consuming and what’s more important,
the method converges to the same as appearance based tracking
method instead of the target conception. The sparse coding offers
a set of weights that make the combination of the feature maps
more similar to the appearance of the target. For example, if the
target is a cat face, the spare code only generate a concept about
the appearance of a cat’s face which is variant even totally differ-
ent in the following frames. In order to avoid this, we weight the
feature maps at the category level. The cat face, which the net-
work does not know before, may be classified as dog or rabbit.
On the class level, the concepts about the cat will include dog’s
body and limbs, rabbit’ nose and tail, which make the concept
more sensible, especially when the target cat shows his arms and
body in the next frames. Based on this consideration, we treat
the connections between the feature map and the class category
as one set for each category and we do not change it since it’s
already been trained for the category. Let:

Wn
i =

{
wn

1 , wn
2 , ...... , wn

m

}
, (1)

represent the nth category weights for all m feature maps in the
last convolutional layer. Then the goal is to present the new object
as estimating a set of coefficients that combine Wn as:

Wn+1 =
∑
n

an ∗Wn. (2)

Here, we use an efficient way to estimate the coefficients while
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strengthening the same feature parts and weakening the differ-
ence. We first use the network to get classification results Score
and weights Wn

i that show the mapping of all feature maps for
each category. Then we generate a heat map for each high score
category as:

Hn =
∑
i

Wn
i ∗Mi. (3)

where Mi = Feature map from last layer

Since we know the ground truth of the target during the track-
ing, we can evaluate how good each heat map is for the target by
measuring the values inside the target area against the outside as:

an = (Vinside(Hn)− Voutside(Hn))/V (Hn), (4)

where an = final combination coefficient of each category
n and V (Hn) = sum of all values in the heat map

Using this approach, we generate a set of connection weights to
represent the target concept from learned object categories with-
out online training.(see Fig. 3 for target concept generation).

Figure 4. The classification results of the target in TB50. The
vertical axis is the percentage that the target classified as

different class in all 51 tracking sequence.

In order to test the performance of the new target concept,
we conducted another set of experiments with the same TB50
dataset. From the initial target image, we generate the new con-
cept as well as the other four top classified categories as compar-
ison set. Then we use the new concept to generate the 1001th
category. For all target images in the sequence, and we test if it
belong to this 1001th new category, we mark the result as correct
if it belongs to the top 5 classified categories. The results can
be seen in Fig. 4. As can be observed, except six in fifty-one
tracking sequences, all the sequences have scores close to 100
percent, and it is far more accurate than any other class in the
initial frame. That suggests that even we only get the tracking
target concept from the initial frame, the network can recognize
the target in the following frames as this newly defined class.

3.3 Heat Map for Target Localization Prediction

Since heat map can highlight the interesting parts in the input im-
age for a specified class, it is helpful for tracking. We can gener-
ate the concept of the target in the initial frame, and for following

Figure 5. The heat map for prediction. In each sub four-images,
the left top is the target image with ground truth to generate the

heat map and calculate the target concept also the initial score of
the concept (top left). The lower left image is the search image,

and the right bottom image is the heat map generated by the
concept from the target image. The ground true in search image

is used to calculate the predict score.

frames, we extract their high-level feature maps, and based on the
target concept, generate heat maps to estimate the location of the
target. To test the ability of the heat map in prediction, we evalu-
ated if the heat maps generated from the concept helps to localize
the target in the new frame.

In this evaluation, we use the dataset from ALOV300+ (Smeul-
ders et al., 2014) which has 314 image sequences. In this dataset,
approximately every 5th frame of each sequence has a label to
locate the target. During the test, we randomly select two frames
from a random sequence which has more than one label. In the
first image, the target is cropped as target template with some
background texture. Using the sample generation idea from (Held
et al., 2016), we randomly shift and scale the target in the sec-
ond image as search image to simulate the motion of the target
and camera simultaneously. In tracking, we generally cropped a
search image in the new frame based on the target’s previous lo-
cation instead to track the target in the whole image. Hence, we
set the image window size both as two times as the target rectan-
gle. Also, the network need some contextual texture of the target
to help the classification and generate the concept. We don’t in-
put the whole image into the network. We test a number of sizes
for the input image and finally select 1.6 time of the target rect-
angle as best. In addition, we choose n = 100 as the number
of the top classes that are chosen to generate the new concept in
(2). The parameter selection test can be seen in the supplemen-
tal materials. In Fig. 5, we show some of the prediction results.
As can be seen, the heat map predicts the target location in new
frames. Even in the case of appearance blurring and rotation (left
top), illumination changes (right top), translation (left bottom),
scale change (right bottom), the heat map still can highlight the
target area well. The left bottom example also shows us that, the
learned concept is category based, it will highlight all the object
that belong to the category. So, if there are similar objects in the
image, the heat map will highlight all of them. To quantitatively
measure the highlighting ability of the heat map, we use (4) to
score the heat map for both the target image and the search im-
age. Since the search image size is four times as the target, with
even distribution ( which we consider as no predictive ability),
the score will be −0.5 and for the best prediction, the score is 1.
In order to centralize the score, and make positive value as good
prediction, negative as bad ones, we scale them from 0 to 1 by:
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Figure 6. The predict and initial score in different situations.

Figure 7. The architecture of localization network.

Sscale = (an + 0.5) ∗ 2/3. (5)

In order to report results, we randomly choose 500 image pairs
in each image category in the dataset and average the scores as
shown in Fig. 6. In the figure, the blue bars are the initial scores
of the new concept on the target image, and the orange bars are
predicted scores on the search image. As we see, the predict
scores are proportional to initial scores in all sequence categories.
That implicates that we can use the initial score to estimate the
prediction ability of the heat map. If the initial score is very low,
we don’t use the heat map to predict the target. Additionally, for
different scenarios, the confusion has a low score, when there is
background clutter, transparency and moving camera. In these
situations, the targets are either affected by the background or the
appearance is not stable which makes it hard to distinguish the
targets. Even in such challenging situations, the prediction score
is still higher than 0.35 which suggest that algorithm can mark
the target region successfully.

3.4 The Localization Network

The use of concept alone is not adequate to locate the target,
the detailed appearance in relation to the concept is also im-
portant. Hence, we use both the target image and search im-
age with their corresponding heat maps together as two sets of
height ∗ width ∗ 4(R,G,B,HeatMap) data blocks to feed to
a siamese localization network to get the tracking results. The
architecture of the localization network is similar to CaffeNet(Jia
et al., 2014) which can be seen in Fig. 7.

To train the localization network, we keep generating samples
from the ALOV300+ and ImageNet 2015 (Russakovsky et al.,
2015). For the ALOV300+ data, the overlap sequences that are
also in our experiment TB50 dataset are removed and the samples

are generated as described in section 3.3, but, we don’t only se-
lect continuous frames. Since we want the localization network to
find target location by both the texture and concept information,
the search image may not always be similar to the target image
which is important in the training. For the static images in Im-
ageNet, the search images are randomly cropped with scale and
translation changes respect to the target location. Considering the
changes are smooth in most cases, the cropping of location and
size follows the Laplace distribution given by:

f(x|u, b) =
1

2b
exp(−|x− u|

b
), (6)

where u = 0, for both scale and translation changes
for scale changes, b = bs = 1/5
for translation change, b = bt = 1/15,

Also, we enforce the scale change to be less than ±0.4 and the
center of the translated target is still in the search image similar to
the work in (Held et al., 2016). The ImageNet dataset is mainly
used to teach localization network to find object boundary and the
smooth motion as complementary data in the limited ALOV300+
dataset.

3.5 Tracking Framework

For single object tracking, the target is selected at the first frame
with an initial rectangle. First, we define the target and get its
concept as described above. For tracking, the target image is
cropped as twice as the initial rectangle. When the new image
comes, a search image is cropped based on the previous target
location with twice the rectangle size. After that, the heat maps
of target and search images are feed to the localization network
to find the final target position.

Since the initial target image is the only example appearance
of the target and the localization network performance is better
than if we use the appearance from tracked target in the previ-
ous frame, we fix the initial target as target image in the local-
ization network. By fixing the initial target, the tracker can effi-
ciently avoid the drift problem. But, when a similar object comes
nearby, the concept will highlight those regions and confuse the
tracker. So, during the tracking, the target concept (the connect-
ing weights of the last layer) needs to be updated:

Conceptn = a ∗ Conceptold + (1− a)Conceptcurrent, (7)

where a = the learning rate
Ccurrent = current target concept

Performing this update will suppress the concept which contain
the confusing regions. Hence, in the heat map, the confusion re-
gion will not be highlighted. Since the prediction score is propor-
tional to the initial score, we can use (4) to estimate the tracking
quality. If the tracking quality score is lower than a set threshold
Λ, then we assume there are too many distractors, we keep the
target location unchanged to further avoiding drifting.
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(a) (b)

Figure 8. Average success plot (left) and precision plot (right) for the OPE on TB50.

4. EXPERIMENTS

4.1 Experimental Setup

Beside the parameters discussed above, we set the learning rate
a = 0.5 and prediction quality check threshold Λ = 0.3 for all
experiments. We use Caffe as the deep learning tool (Jia et al.,
2014). We implement the tracking algorithm in Matlab and run it
with the NVIDIA graphic card GeForce GTX 950 at average 32
FPS.

We test the performance of the proposed approach using a large
dataset referred as the online tracker benchmark (TB50) (Wu et
al., 2013). The performance scores are provided from the one-
pass evaluation (OPE) toolkit. There are two measurements in the
evaluation: Precision plot and success plot. The precision plot is
used to measure the distance between tracking results and ground
truth. The success plot is used to evaluate the overlap score of
them. For more details, please refer to (Wu et al., 2013). We
also compared the proposed tracker on the benchmark with other
35 popular trackers including 29 trackers in (Wu et al., 2013)
and KCF (Henriques et al., 2015), MEEM (Zhang et al., 2014),
DLSSVM (Ning et al., n.d.), and some more recent deep learn-
ing based trackers CNN-SVM (Hong et al., 2015a), SiamFC-5
(Bertinetto et al., 2016) and FCNT (Wang et al., 2015).

4.2 Experimental Result

The tracking results from TB50 are given in Fig. 8. More results
for different attributes are given in the supplemental materials.
As we can see, the proposed approach is one of the best trackers
compared to all others. Especially in fast motion, motion blur,
in and out plane-rotation and illumination change sequences. We
believe the excellent performance is mainly because the tracking
target concept from deep network has very high semantic infor-
mation which is invariant to rotation, illumination, translation and
scale changes. Use of the concept generated heat map to high-
light target area is robust to this appearance changes as shown
in both Fig. 5 and Fig.9. In this figures, when the target under-
goes serious appearance changes, the concept heat map can still
find it correctly. As one can expect, the occlusion and clutter se-
quences reduce the performance. This may due to the fact that

Figure 10. Illustration of the occlusion scenarios.

when the sequence contains seriously confusing situations, both
the appearance and concept clue fail to work. We will discuss
more in the coming paragraphs.

Compared to other trackers, our methods shows excellent per-
formance in overlap score but a slightly lower performance at
precision. This can be attributed to the fact that the localization
network can find the target boundary and make the output rect-
angle fit the target very well. But in complicated scenarios, the
tracker may lose the target completely which reduces the preci-
sion score. Compared other all trackers, ours works in real-time
(32 FPS). The DLSSVM runs at 5.4 FPS, FCNT runs at 3 FPS,
CNN-SVM doesn’t show their time permanence in their paper but
should be far away from real-time. Only the SiamFC compares
to ours at 58 FPS, but with a better hardware(GTX Titan X) that
is more powerful than ours(GTX 950).

Occlusion: Most realistic sequences may contain target occlu-
sions. While the trackers based on a holistic target model may
have some problems, the proposed target concept still works un-
der the partial occlusions. Even when there is only a small part
of the target is visible, the concept still highlights visible parts.
Based on the texture information, the target can be found after re-
covering from the occlusion. As we can see in Fig. 10, the tracked
player is partially occluded by another player. The concept can
still highlight the target part in the heat map. And based on the
texture information, the target player can be located correctly.

Background clutter: In the case when the background and target
have similar descriptors, the tracking task becomes challenging.
If we only use the unchanged concept to detect the target, it is

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-125-2017

 
130



(a) (b) (c) (d)

Figure 9. Illustration of good tracking with (a) significant illumination change, (b) texture and edge change, (c) deformation and out
plane rotation, (d) fast motion and motion blur.

Figure 11. Illustration of suppressing distractions.

hard to remove the distractors, as shown in the left bottom image
in Fig. 5. However, during the tracking, the concept is updated
which can suppress the similar concept and increase the different
ones by our concept generation process. When a similar object is
observed, since it is not in the target rectangle, their similar con-
cepts will be treat as outlier and is suppressed in the next frame.
Fig. 11 illustrates an example. In the first row, the concept about
the helmet is highlighted for both players. However, after the
concept updating, some similar concepts were suppressed in the
heat map to help identify the true target.

The Lost Target: Our tracker may have problems in some com-
plicated situations. The tracking is based on the concept and the
target appearance information. When they both fail, they tracker
may fail. In Fig. 12, the concept captured from the upper image
are mainly about the shape and the edges of the face which is
completely lost in the lower image. Also, the face texture disap-
peared in the search image and leaves no clue to find the target.
Besides that, when a new similar object appears, the concept will
be weaker to highlight the target area. At the same time, if the
target’s appearance undergoes changes, both of the two tracking
cues will be lost. Since proposed tracker does not update in such
situations, the target can be retrieved after it reappears.

5. CONCLUSION

In this paper, we introduce a new target tracking method that uses
the concepts learned from deep learning network to represent a
novel target. The target concept is generated by combining high-
level features from the deep network pre-trained on unrelated ob-
jects. These high-level features are invariant to scale, rotation and

Figure 12. Illustration of concept and appearance information
both lost the target.

translation changes, even a serious deformation. Also, the con-
cept and high-level features can be used to generate a heat map
which highlights potential target area in the search map. In the
tracking phrase, the initial target image is used as constant tex-
ture information in a siamese localization network. Regardless of
only using the constant initialization target exampler, our method
shows good performance in the case when the object appearance
undergoes significant changes.
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