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ABSTRACT: 

Recently, low-cost 3D reconstruction based on images has become a popular focus of photogrammetry and computer vision research. 
Methods which can handle an arbitrary geometric setup of a large number of unordered and convergent images are of particular 
interest. However, determining the mutual overlap poses a considerable challenge.  
We propose a new method which was inspired by and improves upon methods employing random k-d forests for this task. 
Specifically, we first derive features from the images and then a random k-d forest is used to find the nearest neighbours in feature 
space. Subsequently, the degree of similarity between individual images, the image overlaps and thus images belonging to a 
common block are calculated as input to a structure-from-motion (sfm) pipeline. In our experiments we show the general 
applicability of the new method and compare it with other methods by analyzing the time efficiency. Orientations and 3D 
reconstructions were successfully conducted with our overlap graphs by sfm. The results show a speed-up of a factor of 80 compared 
to conventional pairwise matching, and of 8 and 2 compared to the VocMatch approach using 1 and 4 CPU, respectively. 

* Corresponding author

1. INTRODUCTION

In close-range photogrammetry untrained users typically do not 
record images in a pre-planned pattern, and even experts often 
need significantly more time for data acquisition when strict 
recording protocols must be followed. For some years, 
following the development of sensor and electronic information 
technology, users can obtain plenty of images of interesting 
objects using mobile phones, digital cameras or from the Inter-
net (Snavely et al., 2008a). How to compute 3D information in 
an efficient way from this set of unordered images has become 
an vivid research and development topic (Agarwal et al., 2009, 
Frahm et al., 2010). In this context “unordered” means that 
there is no prior knowledge of which images have a common 
field of view (overlap) and should be matched. 

For automatic image orientation and 3D reconstruction, a large 
number of high-dimensional features (using e.g. the scale-inva-
riant feature transform (SIFT, Lowe, 2004) are generally 
extracted from images which then need to be matched before 
computing 3D points. For unordered images, where it is not 
known which images share a common field of view and should 
therefore be matched, the two most time-consuming subtasks 
are feature matching and bundle adjustment. This paper is 
dedicated to feature matching. A naive exhaustive pairwise 
matching procedure imposes a significant computational burden 
on large-scale 3D reconstruction. Nevertheless, some state-of-
the-art approaches such as the well-known 3D modelling sys-
tem Photo Tourism (Snavely et al., 2008a) derive overlapping 
image pairs by exhaustive pairwise image matching, needing 
N*(N-1)/2 matchings, where N is the number of images. This 
strategy can become unacceptable if the dataset to be processed 
contains a very large number of images. 

This paper proposes an improved strategy based on a random k-
d forest. After the random k-d forest is built, the method is 

linear in N. The main contribution is threefold: First, we show 
that several independent random k-d trees (a random k-d forest) 
can be built from the extracted SIFT points by setting different 
splitting hyperplanes, and that the k nearest neighbour points of 
a point being queried can be retrieved efficiently. Second, an 
algorithm is introduced to determine the degrees of similarity 
and the image overlaps of the unordered images by using the 
results of the random k-d forest, and we propose an algorithm to 
eliminate gross errors from the image overlaps by clustering 
and discarding single images. Finally, the overlap results are 
integrated into a general structure-from-motion (sfm) pipeline, 
where only the overlapping image pairs are considered. 

2. RELATED WORK

As mentioned before, in sfm matching images is one of the 
most time-consuming processes. A naive approach needs N*(N-
1)/2 matchings to find tie-points if no prior knowledge of the 
image orientations is available. Suggestions to speed up this 
method exist, of course.  

A very good review of the current state-of-the-art incl. a com-
parison of a number of methods is contained in Hartmann et al. 
(2016). As mentioned in that paper, the standard way to obtain 
homologous points between two images is the approximate 
nearest neighbour (ANN) method based on k-d trees or random 
k-d forests (Sunil, 1998; Silpa-Anan, Hartley, 2008: Muja,
Lowe, 2009, 2010, 2014). If the number of homologous points
is larger than a given threshold, the two images are considered
to be overlapping. Very satisfactory results have been observed
with this method. However, when the number of images grows
or the number of features per image increases, the
computational effort can become very large. Another approach
to improve the efficiency is to reduce the number of extracted
features per image. Such reduction can be achieved using
classical image pyramids (e.g. Mayer 2003; Wu, 2013) or by
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stricter criteria for feature selection. When usingachieved using 
classical image pyramids (e.g. Mayer 2003; Wu, 2013) or by 
stricter criteria for feature selection. When using SIFT for 
feature extraction, setting a stricter Difference-of-Gaussians 
(DoG) threshold can achieve the goal; see e.g. VLFeat (Vedaldi 
and Fulkerson, 2008). However, this reduction can lead to the 
elimination of features which are important for computing the 
orientation, and it is then possible that the sfm computation fails 
altogether. To overcome this problem, supervised classification 
schemes were proposed to differentiate between matchable 
features (i.e. those for which a conjugate partner exists in 
another image) and unmatchable ones. Supervised classification 
needs training data. Hartmann et al. (2014), who use random 
forests for the classification, chose some sample images to be 
matched by ANN for training. The trained random forest was 
then considered as a predictor to decide which feature is 
matchable and to discard those features which are not 
matchable. It was found that random forests can discard many 
unmatchable features, but only if the training samples are 
representative enough for the whole image dataset. Moreover, a 
considerable amount of time is required to generate the training 
data if the number of sample images is large. 
 
Yet another method called vocabulary tree, first introduced by 
Nistér and Stewenius (2006), is based on the assumption that 
across all images homologous features should be similar. This 
observation is exploited by quantising the feature descriptors 
and then finding other images, e.g. stored in a database, with 
many similar descriptors. Typically tree structures are used for 
retrieval, and the k-means algorithm is employed to find the k 
closed neighbours. The process can be carried out hierarchically 
until a pre-specified level of detail is reached; in this way a tree, 
the vocabulary tree, is created. Each cluster of the vocabulary 
tree is regarded as one word. It is intuitive that the matchable 
points should be classified into the same word and unmatchable 
points should be in different words (Farenzena et al., 2009). To 
calculate the degree of similarity between images, the so called 
term frequency inverse document frequency (tf-idf) is used to 
generate image weights. These weights ensure that words 
appearing seldom have a larger weight (Sivic and Zisserman, 
2003). Although the method works well, k-means needs several 
iterations to determine each cluster centre. Thus, it can become 
very inefficient to cluster so many features from a large set of 
unordered images. Also, some clusters will contain un-
matchable points if the number of features (from all images) is 
larger than the number of clusters of the last level: this may 
hamper the following steps. 
 
To improve the efficiency of the vocabulary tree and decrease 
the mentioned negative influence Zhan et al. (2015) proposed a 
multi-vocabulary tree implemented of a graphics processing 
unit (GPU). Different vocabulary trees are built and each word 
is evaluated by computing the average value of the distance 
between each feature to its cluster centre. The authors show that 
efficiency and precision are improved, but, the method is 
limited by the performance of the GPU, and also in the multi-
vocabulary tree a number of unmatchable features exists, which 
enter and thus slow down the computations.  
 
To avoid mixed clusters, i.e. clusters containing matchable and 
unmatchable points, the number of clusters is significantly in-
creased in a method named VocMatch (Havlena and Schindler, 
2014). The authors propose a 2-level vocabulary tree, the first 
level with 4096 clusters, and the second level with 4096* 4096 
clusters. All features of all images are contained in the resulting 
about 16 million words. It is assumed that the features which 

are clustered into the same word in the second level are 
matchable points. Again, rare words are preferred. Obviously, a 
considerable amount of time is needed to compute the 4096* 
4096 clusters. To make the algorithm more efficient, the authors 
use a pre-training procedure for the clusters of both levels, the 
results of which are assumed to be valid for different datasets. 
Whether or not this assumption is valid remains unclear. 
 
Graph optimization methods were also proposed to speed up the 
sfm process. Skeletal graphs for efficient sfm were designed to 
compute a small subset of images. Snavely et al. (2008b) 
reconstruct the skeletal set and then add the remaining images 
using pose estimation. In Havlena et al. (2010), the so called 
approximate minimal connected dominating set of images was 
computed using a fast polynomial algorithm. Those two 
methods are proposed for fast image orientation. They are not 
applicable, however, without image overlap information. 
Approximate methods which iteratively build the skeletal graph 
(Agarwal et al., 2009) have been suggested for this issue. 
 
The above mentioned works try to determine the mutual overlap 
of unordered images taken from different views. We are in-
spired by the vocabulary tree method which clusters the high-
dimensional features in feature space (we use the SIFT feature 
detector and thus deal with 128 dimensions). But, instead of the 
hierarchical k-means algorithm, which needs a lot of computing 
effort, a random k-d forest is used for clustering. In this way, 
each feature’s k nearest neighbours can be obtained by 
traversing the generated random k-d forest, and so can the 
distances between a feature and its nearest neighbours. Further-
more, we propose an algorithm to compute the degree of 
similarity of images and we eliminate single images which may 
result from wrong nearest neighbours. 
    

3. METHODOLOGY 

In this section we first present the procedure of building the 
random k-d forest. Then, the algorithm of determining the 
degree of similarity and the overlap between two images is 
introduced. Finally, we explain how to cluster the unordered 
images and discard single images. 
 
3.1 Building the random k-d forest 

The k-d tree is a form of balanced binary search tree (Robinson, 
1984) and has been widely used in conducting nearest 
neighbour queries for image descriptors. For low dimensional 
data, the k-d tree gives good results, in both efficiency and 
precision. As an example, Arya et al. (1998) proposed the so 
called priority search algorithm, a method which is based on a 
k-d tree and which can quickly complete a nearest neighbour 
search in low dimensions. However, when dealing with high 
dimensional data, a very large number of nodes may need to be 
searched, and when faced with a large amount of data, there 
will be a lot of backtracking, which reduces the retrieval 
efficiency. We propose an improved method for calculating the 
similarity degrees and image overlaps of a large set of 
unordered images based on a random k-d forest. To build the 
random k-d forest, we follow the following rules: 
 
1) To make the k-d trees of the forest independent of each 

other, each k-d tree should have a different tree structure.  
2) Priority search is applied in each k-d tree. To improve the 

efficiency, the search procedure is undertaken simul-
taneously on the k-d trees, where each of the m trees 
returns n nearest neighbour nodes, thus m*n nearest 
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candidates will be obtained after the search is complete. 
Among these m*n nearest candidates, the r nearest 
candidates are then selected. 

Figure 1. The k-d tree procedure 

As Fig. 1 shows, the original data are recursively split into two 
nodes by a splitting hyperplane.  When dealing with k-d trees, 
typically the entry of the high-dimensional feature with the 
largest variance is chosen for splitting. In order to make the 
trees more independent we instead select the splitting plane 
randomly from a range of entries with relatively large 
variances, and we randomly select the hyperplane anew for 
every splitting operation. All k-d trees are built using this same 
algorithm. 
 
3.2 Determining the similarity degree and overlap between 

images 

According to the above algorithm, the random k-d forest is built 
by employing all SIFT features from all unordered images. In 
this way each SIFT feature point obtains r nearest neighbour 
points and the distances between the query point and these 
neighbour points. The similarity degrees and the overlap of the 
unordered images can then be determined. The specific 
processes are as follows: 
 
1) Obtain the r nearest neighbour points of each SIFT feature 

point from the i-th image (i=1,2, 3, … , N) by traversing 
the random k-d forest, where N is the number of unordered 
images. We then select the l nearest neighbouring images 
for the i-th image, i.e. one per tree of the forest. The 
number of the resulting neighbours per image pair ij is 
called Pij, where j is the image ID of j-th image. 

2) By adding up the distances between the SIFT feature points 
of the i-th image and their neighbours, we obtain a distance 
measure Dij, where j is again the image ID of j-th image. 

3) The larger the value of Pij, the more potential matches 
between the i-th and j-th image exist, and the more likely it 
is that the two images overlap. According to our 
experience, Pij should be larger than 20. Furthermore, the 
smaller the value of Dij, the more similar the two images 
are. We then calculate the so called degree of similarity Sij 
between the i-th and j-th image, equation (1): the more 
similar the i-th and j-th images, the larger the value of Sij. 

                                10
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Among the set of unordered images, we determine this degree 
of similarity from all potential image pairs; this information 

reduces the computational effort for subsequent pairwise 
matching to a large extent, as we only undertake matching for 
similar images.  
 
Based on Sij one simple way to determine the image overlap is 
to choose, for each image, the images with the f largest Sij 
values. Typically, such a procedure will only produce 
approximate overlap information. In an attempt to obtain more 
accurate results, Zhan et al. (2015) proposed a method which 
performs well in removing wrong overlaps. It assumes that the 
number of overlapping images (which we call the overlap 
degree C) is at least approximately known. The main steps are 
as follows: 
 
1) We first take the C partners of a given image with the 

highest S values and compute the average and the standard 
deviation of the similarity values. 

2) For any additional images, if the absolute difference 
between the similarity value and the average is smaller 
than twice the standard deviation, the new image is 
considered to also be overlapping with the image under 
investigation, and we recalculate average and standard 
deviation of the enlarged set of images. Otherwise, the new 
image is assumed not to overlap with the image under 
consideration, and we discard it. 

 
3.3 Clustering unordered images and discarding single 

images 

Typically, large sets of unordered images, especially crowd-
sourced images collected from websites, naturally decompose 
into several smaller unconnected clusters (i.e. there are no or 
not enough tie-points between different clusters). Moreover, 
there sometimes exist single images which are not connected to 
any of the other images. 
 
Algorithm 1 Clustering images and discarding single images 
Input Symmetric N*N matrix Q. 
Output p symmetric matrices Qi, p is the number of clusters. 
 

I.  Initiate a new symmetric N*N matrix, called adjacency 
matrix A. If Qij > cpmin, set Aij = 1, otherwise, Aij = 0. 

II. Initiate a new N vector V :={-1} and an integer t =0 
do 
{ 
1.  Create a new empty vector Iv. If Aij = 1, add i  
     and j into vector Iv, and set Vi  =0, Vj  =0. 
2.  Traverse vector Iv, add the images into vector Iv 

             whose corresponding A values are equal to 1. 
        3.  Repeat 2 until the size of Iv does not change.  
        4.  set t equal to the number of 0 element of Iv. 
        }while(t !=N) 
       5.  The images which are classified into the same vector Iv 
             belong to the same cluster. If the size of Iv is smaller  
             than 50, then discard the cluster. 
III. From the vectors Iv and A, the image overlap Qi can be 

determined in each cluster. Qi represents the overlap 
result of the i-th cluster. 
 

 
 
Based on the information from sections 3.1 and 3.2 it is easy to 
count the number of putative conjugate points for each image 
pair and to store these values in a symmetric N*N matrix Q. In 
order to obtain stable image orientations we require each pair to 
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have a minimum of cpmin conjugate points (we use a threshold 
of 30) and delete the connection otherwise. Subsequently, an 
adjacency matrix A is derived (see Algorithm 1 for details) that 
determines which images have enough conjugate points to be a 
part of the same cluster. By traversing each image in A, we 
obtain the different clusters. Clusters which have less images 
than a pre-defined threshold (we empirically found that 50 
works well) are considered as unreliable and are discarded. 
 

4. EXPERIMENTS 

All experiments are carried out using real data. The data consist 
of three different groups of images: the first one is made up of 
two different clusters, 301 UAV images of an urban area from 
Wuhan, China, and 296 close range images showing a relic of 
Xinjiang province also in China (see the right part of Fig. 4(a)); 
the second group contains 450 images of the main building of 
Hannover University, some acquired on a sunny day, some on a 
cloudy day (Fig. 4(b)). The last group is the Notre Dame dataset 
(Snavely, 2016) containing 715 images (Fig. 4(c)). According 
to preliminary experiments, the overlap degree C is set to 20. 
 
4.1 Overlap results of unordered images 

 
(a)                                                  (b) 

Figure 2. The result for the first image group: (a) similarity 
graph, (b) overlap graph (see text for details) 

Based on the proposed method, the degrees of similarity and 
overlap of the first group were calculated. Fig. 2(a) shows the 
similarity graph, i.e. the results computed with eq. (1), Fig. 2(b) 
depicts the overlap graph, i.e. the result after applying the 
method of Zhan et al. (2015) described at the end of section 3.2. 
For both figures the horizontal and vertical axes are the image 
IDs from 1 to 597 (which is the size of the data set). White 
means that the two corresponding images have a high similarity 
or overlap, black stands for a low similarity or overlap. The 
white dots mostly lie along the main diagonal, which tells us 
that the numbering scheme of the images reflects the sequence 
of acquisition. It can be seen in Fig. 2(b) that the group consists 
of two different clusters. Accordingly, our method correctly 
divides the group into two clusters, see Fig. 3(a) and 3(b). 

 
(a)                                                (b) 

Figure 3. The sub-cluster overlap graphs of the first image 
graph 

4.2 SFM results  

We have applied our approach to the other two unordered 
image groups as well. To demonstrate that the results are 
qualitatively correct, the three unordered image groups (the first 
one in two sub-groups) were orientated and coarse 3D recon-
structions were produced by sfm. Specifically, the unknown 
image overlaps were calculated by our algorithm, and only 
overlapping image pairs were considered for matching. A few 
software packages, e.g. VisualSFM (Wu, 2016) and COLMAP 
(Schönberger, 2016), can use this overlap information instead 
of carrying out exhaustive pairwise image matching. We used 
VisualSFM. 
 

 
(a) uav images (left and right-up) and close range 

images (middle and right-low) 

 

 
(b) Hannover University 

 

 
(c) Notre Dame 

 
Figure 4. SFM results of three experimental image groups 

 
Fig. 4 depicts the result, coarse 3D reconstructions of the three 
experimental image groups, together with the similarity graph 
and a few sample images. As many off-diagonal elements of the 
similarity graphs are white, image acquisition in the second 
case occurred more ad hoc, and even random for Notre Dame. 
Images above the horizontal red bar of the right part of Fig. 4(b) 
and (c) are classified into clusters that contain more than 50 
images and are used for sfm. Images below the bar are single 
images or images belonging to small size clusters which are 
discarded by our approach. 
 
4.3 Analysis of the time efficiency 

4.3.1 Time efficiency of different methods: To determine 
the time efficiency of the proposed method, we compare our 
computing time to that of two other methods: exhaustive 
pairwise matching (with each image containing 5000 SIFT 
points) and VocMatch (Havlena and Schindler, 2014; 2016). 
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Number 

of 
image 

Proposed method, 1 CPU Exhaustive 
pairwise 
matching 

VocMatch 
Calculating 

overlap 
graph 

Matching Total 1 CPU 4 CPUs 

301 UAV 
images and 
296 close 

range image 

597 4min42sec 12min12sec 16min54sec 
848min 
(50×) 

106min 
(6.8×) 

29min 
(1.7×) 

Main 
building of 
Hannover 
University 

450 3min53sec 10min36sec 14min29sec 
482min 
(33×) 

86min 
(6×) 

24min 
(1.7×) 

 Notre Dame 715  5min35sec 9min34sec 15min9sec 
1217min 

(81×) 
127min 
(8.5×) 

35min 
(2.3×) 

Table 1. Computational time needed for three methods for processing the three data sets. In our method, matching refers to the 
generation of conjugate points in image space. The numbers in brackets below the times of the Exhaustive pairwise match and 

VocMatch refer to the achieved speedup factor of our method. All timings are based on the mentioned hardware setup.  

All experiments were conducted under the QT platform and the 
system environment of VS2015 and OpenCV. In all experi-
ments the result are the image coordinates of conjugate points 
in image space, image orientation and coarse 3D reconstruction 
are not considered in the timings given. 
 
The system hardware configuration was an Intel Core i5 CPU, 
and the graphics card was a HD Graphics 530. A state-of-the-art 
CUDA-enabled SiftGPU matching from VisualSFM was used 
in exhaustive pairwise matching and in the matching part of our 
method. The graphics card was not used in VocMatch and in 
our generation of the overlap graph. The code used for 
VocMatch is the one available at Havlena, Schindler (2016), it 
is tested for one and four CPUs.  
 
For our method we individually specify the times for 
calculating the overlap graph and for matching. It can be seen 
that the matching, although performed using parts of the 
VisualSFM and thus the graphics card, takes considerably more 
time than the generation of the overlap graph, i.e. our main 
result. Although the number of Notre Dame images is the 
largest, the matching time is the shortest. The reason is that 
there are fewer actually overlapping images, which can also be 
seen in Fig. 4(b) and (c). 
 
Tab.1 further (and not surprisingly) illustrates that, as the 
number of images grows, so does the computing time. For 
exhaustive pairwise matching the computation time increases 
by nearly a factor of 3 when comparing the second group (450 
images) and the last one (715 images). For VocMatch the factor 
is about 1,5; whereas for our method it is only 1,3 (overlap 
computation) or 1,05 (overlap and matching). 
 
Finally, our proposed approach is 50×, 33×, 81× faster than the 
exhaustive pairwise matching, respectively, for the three 
datasets.  By building a 2-layer vocabulary tree, VocMatch does 
improve the efficiency, but depending on the number of non-
empty clusters for each quantised SIFT feature VocMatch must 
compute up to 4096*4096 distance computations between two 
128-dimension vectors in the second level; up to 4096*4096*n 
computations are required for n SIFT points. Compared to 
VocMatch, building k random k-d trees for the proposed 
method needs k*n*log2n distance computations for selecting the 
splitting hyperplanes. From Tab. 1, our approach with only one 
CPU is about 6 to 8.5 times faster than 1-CPU VocMatch. The 
more CPUs VocMatch uses, the higher the efficiency is, for 

instance, with 4 CPUs for VocMatch our method is only 
slightly (about 2 times) faster.  
 
4.3.2 Time efficiency of different size random k-d forests: 
We now analyse the effect of the number of trees in the random 
k-d forest (note that the effect of the number of trees on the 
correctness of the result is analysed in section 4.4). We test four 
relatively small random k-d forests, each with datasets of 
different size (5 to 70 images) from Notre Dame. Fig. 5 depicts 
the results. As can be seen the more k-d trees the random k-d 
forest has, the more time it needs to construct the overlap 
between the unordered images. Moreover, nearest neighbours 
must be searched for on each tree of the random k-d forest. In 
the investigated example we obtain a rather linear relationship: 
the time of 10 k-d trees is about 2.5 times that of 4 k-d trees. 
Similarly, with 4 k-d trees the method is twice as fast as with 8 
k-d trees, and compared to a 6 k-d trees the method is almost 
1.5 times faster with 4 k-d trees.  

  
Figure 5. Computational time for random k-d forest with 

different sizes. 
4.4 Evaluation of the overlap of the unordered images 

In the work of Davis and Goadrish (2006), the precision-recall 
and receiver operating characteristic (ROC) curves are 
introduced to present results for binary decision problems. Here, 
we use the criteria for assessing the quality of our results. A 
generic confusion matrix is shown in Tab. 2, and the connection 
between the entries of the confusion matrix and those of the 
ROC curve are given in equation (2). 
 
To obtain a first impression of the confusion matrix resulting 
from our method, we tested a set of 120 UAV images by  

 Actual positive Actual negative 
Predicted positive TP FP 
Predicted negative FN TN 

Table 2. Generic Confusion Matrix 
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         (2) 

 
exhaustive pairwise matching and the proposed method. In this 
investigation the result of exhaustive pairwise matching was 
assumed to be the ground truth. 
 
We calculated the overlap graph by using 6 random k-d trees 
and an overlap degree C of 20. The results are shown in Fig. 6(a) 
for exhaustive matching and (b) for our method. Similar to Fig's. 
2 and 3, on the horizontal and the vertical axes are the image 
IDs, white means overlap and black means no overlap. As can 
be seen, Fig. 6(a) is much cleaner than Fig. 6(b). Fig. 6(c) is 
generated by taking the difference of Fig's. 6(a) and 6(b). Green 
pixels represent TP, red pixels are FN, blue pixels are FP, and 
black pixels represent TN. For this set of UAV images, the 
proposed method can construct the overlap with only a few TP 
ignored (shown by the red pixels) and some noisy overlap 
(shown by the blue pixels). 
 

 
               (a)                             (b)                               (c) 
Figure 6. Results of exhaustive pairwise matching, the proposed 

method and their difference graph 
 

To further interpret the overlap result of the proposed method 
and compare it with VocMatch, the TP, FP, FN and TN values 
of our complete datasets were calculated. Again exhaustive 
matching served as ground truth. The results are showed in Tab. 
3. The values in brackets are the differences to VocMatch; red 
means the VocMatch value is smaller than that of the proposed 
method, green means it is larger. A larger TP is calculated using 
our method, as well as the smaller FN and FP; we thus obtain a 
slightly better result than VocMatch does. This can also be 
concluded from Fig. 10 (see discussion below). In addition, Tab. 
3 shows that we achieve a recall of about 50% (this means we 
find about half of the overlapping image pairs) and a precision 
of more than 85%, The FP value is not equal to zero, which 
means some image pairs are assumed to overlap by our 
algorithm, but they don’t actually do so. This frequently occurs 
due to mismatching. The two images shown in Fig. 7 depict the 
right and left side of the main building of Hannover University 
and do not overlap, however, the building is partly symmetric 
and thus there exist some conjugate points. Most of these false 
point pairs are detected during matching using the epipolar 
geometry constraint. Thus this is not a question we need to 
consider in our work. 
 
Fig.8 shows the TP and FP values for Hannover University as a 
function of the overlap degree C. TP increases as C grows when 
C is smaller than 20, after that, it tends to be stable, on the other 
hand FP increases nearly linearly with C. Given a small C, the 
average degree of similarity S will be larger, such that some 
actually overlapping image pairs with small S value may be 
missed. As C increases, the average value of S will decrease, 
and image pairs with smaller S values are considered to be 

overlapping at the risk that some incorrect image pairs (as Fig. 
7 shows) are classified into the overlapping set. This result 
motivated us to select C=20 for our experiments. 
 

 Actual positive Actual negative 
Predicted positive 6.70 (-0.14) 1.18 (+0.09) 
Predicted negative 6.13 (+0.14) 158.43 (-0.09) 

UAV + close range images 
 Actual positive Actual negative 

Predicted positive 8.97 (-0.10) 1.24 (+0.08) 
Predicted negative 9.376(+0.10) 81.44 (-0.08) 

Hannover University 
 Actual positive Actual negative 

Predicted positive 29.86 (-2.38) 4.26 (+0.89) 
Predicted negative 31.25 (+2.38) 189.88 (-0.89) 

Notre dame 
Table 3. Derived Confusion Matrices (values in brackets 

indicate differences to VocMatch results) 
 

 
Figure 7. Mismatching of Hannover University. 

 

 
Figure 8. TP and FP values for different overlap degree, 

Hannover dataset 
 
In Fig. 9, we show the precision-recall and ROC graphs of 
different sizes of random k-d forest. According to Fig. 9 (a) and 
(b), the 4 k-d trees give the worst overlap result, although not 
by a large margin. As the size of the random k-d forest 
increases, the overlap result becomes slightly better. The 6 k-d 
trees and the 8 k-d trees are almost at the same level. The result 
of 10 k-d trees is again a little better. By analysing Fig. 5, the 
computational time increases linearly as the size of the k-d 
random forest grows. Fig. 9 shows that the overlap result is only 
improved by a little margin.  Considering the time efficiency 
and the overlap result, we choose 6 k-d trees as the best 
compromise for our experiments. 
 
Fig. 10 shows the difference of the overlap evaluation between 
the proposed method (k =6) and VocMatch. From the precision-
recall and ROC graphs, the overlap results of the proposed 
method and VocMatch are roughly the same as a whole, 
however, our approach is slightly better than VocMatch for a 
small false positive rate and a recall value lower than about 0.7. 
This means that, based on the experimental results presented 
here, if those two methods find the same number of green pixels 
(shown in Fig. 6(c)), the proposed method would find slightly 
less blue pixels than VocMatch. 
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(a)                                                 (b) 
Figure 9. (a) Precision-recall and (b) ROC curve of different 

size random k-d forest. 

(a)                                             (b) 
Figure 10. (a) Precision-recall and (b) ROC curve of different 

methods. 

5. CONCLUSIONS

In this paper, a method based on a random k-d forest has been 
proposed to efficiently determine the mutual overlap of a large 
set of unordered images. The experimental results confirm that 
the proposed method performs rather well. To demonstrate the 
quality of the results we fed them into a sfm pipeline and 
visualised the outcome. To assess the time efficiency of our 
method we compared it to two other approaches. The results 
show that the proposed method is the most efficient one. For 
assessing our results numerically, we derived precision-recall 
and ROC curves. They confirm that the proposed method can 
obtain good overlap results. 

Nevertheless, a number of open questions exist. Besides the 
relatively large number of false positive results (see Fig. 9(b)) 
we need further clarification about the sensitivity of the method 
with respect to a number of free parameters (the min. no. of 
points per image pair, the min. no. of images per cluster, the 
overlap degree etc). In terms of the methodology, a better 
selection for the splitting hyperplane in constructing the k-d 
trees is assumed to bring better results. We plan to investigate 
these questions in the near future. 
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