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ABSTRACT: 

This paper presents an automated approach to detect citrus trees from digitals surface models (DSMs) as a single source. The DSMs 

in this study are generated from Unmanned Aerial Vehicles (UAVs), and the proposed approach first considers the symmetric nature 

of the citrus trees, and it computes the orientation-based radial symmetry in an efficient way. The approach also takes into account 

the local maxima (LM) information to verify the output of the radial symmetry. Our contributions in this study are twofold: (i) Such 

an integrated approach (symmetry + LM) has not been tested to detect (citrus) trees (in orchards), and (ii) the validity of such an 

integrated approach has not been experienced for an input, e.g. a single DSM. Experiments are performed on five test patches. The 

results reveal that our approach is capable of counting most of the citrus trees without manual intervention. Comparison to the state-

of-the-art reveals that the proposed approach provides notable detection performance by providing the best balance between 

precision and recall measures. 

1. INTRODUCTION

The detection of individual trees using automatic and semi-

automatic methods from very-high-resolution (VHR) datasets is 

one of the challenges of remote sensing and computer vision. 

The trees are one of the most significant topographic elements 

of the plant cover, because they are the major reservoirs of 

providing nutrition, forestry, shelter, CO2 storage. Strategically 

important certain types of trees like citrus, palm etc. requires 

further attention since achievement of decisions towards quick 

and reliable agricultural production is further important to 

ensure the sustainability of agricultural production. 

In this paper, we utilize digitals surface models (DSMs) 

extracted from a UAV platform for detecting citrus trees in 

Mersin province of Turkey, a country ranking 9th in the world 

citrus fruit production with about 4 million tons in more than 

125 thousand hectares (TUIK, 2015). Therefore, extracting 

reliable information (location and number) of the citrus trees is 

an important task. To our knowledge, such information related 

to the citrus trees is not entirely known considering the regional 

and country levels for most of the developing countries. 

Therefore, a precise detection step from remotely sensed data is 

a requirement. For sure, intensive manual processing (either on 

site and/or from images) is an alternative strategy to collect the 

required information of citrus trees. Although quite reliable 

results are achieved from manual investigation, such an 

operation requires qualified labour force, and therefore, 

expensive and time-consuming. For that reason, utilization of 

automatic methods is essential, especially for the detection step. 

In this paper, we present an approach to automatically detect 

citrus trees. The approach considers the symmetric nature of the 

citrus trees and detects them from a single source, DSM. In a 

very recent work, we presented a new form of orientation-based 

radial symmetry transform (Ok and Ozdarici-Ok, 2017) that can 

be directly applied to an input like DSM to detect and label the 

citrus trees. We expand that approach such that false positive 

detections by the approach are mitigated using additional local 

maxima (LM) information. In this study, we guarantee that the 

output of the orientation-based radial symmetry transform also 

coincides with an LM; thus, reducing the number of false 

positives and increasing the correctness rates. The feasibility of 

our approach is presented on five test patches having different 

contexts of orchards (first patch is shown in Fig. 1). We also 

show the results of four state-of-the-art approaches on our test 

patches, and prove the superiority of the method presented. Our 

contributions in this study are twofold: (i) Such an integrated 

approach (symmetry + LM) has not been tested to detect (citrus) 

trees (in orchards), and (ii) the validity of such an integrated 

approach has not been experienced for an input, e.g. a single 

DSM.   

The remainder of this paper is organized as follows. The 

previous studies are summarized in Section 2. The details of the 

proposed approach are presented in Section 3. Our test dataset, 

evaluation strategy, and parameters of the approach are given in 

Section 4. The results are reported and discussed in Section 5. 

The concluding remarks and future directions are provided in 

Section 6. 

2. PREVIOUS STUDIES

Automated extraction of trees is an open research area of remote 

sensing and computer vision, and numerous studies have been 

published so far. General trends, gaps and possible feature 

trends for tree extraction were examined in a recent review 

paper (Fassnacht et al., 2016). It was reported that active data 

are suitable for tree species classification, whereas passive and  

(a) (b) 

Figure 1. Test patch #1. (a) RGB UAV image acquired on July 

2016, and (b) the photogrammetric DSM generated using dense 

image matching (bright tones represent elevated parts). 
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hyperspectral systems have potential for this purpose although 

much effort has not been made yet for hyperspectral data. 

 

Another recent review article focussing on the trends in 

individual tree detection and delineation with LiDAR data was 

published in (Zhen et al., 2016). Besides active data, image-

based approaches still form another important research area of 

tree detection studies (e.g. Jing et al., 2012; Hung, et al., 2012; 

Malek et al., 2014; Ozdarici-Ok, 2015; Leckie, et al., 2016). 

According to the literature published up to now, most of the tree 

detection studies are related with the detection of areal and/or 

individual mixed and coniferous forests (e.g. Wang et al., 2012; 

Kandare, 2016) and urban trees (e.g. Ouma and Tateishi, 2008; 

Li and Shao, 2013). A small part of studies deal with 

strategically important tree types, e.g. palm, mangrove, olive 

(e.g. Sharfi et al., 2011; Malek et al., 2014; Hung et al., 2012; 

Hadaś and Estornell, 2016). So far, there has been little 

attention focussing on the citrus trees (e.g.  Fieber et al., 2013; 

Ozdarici-Ok, 2015; Ok and Ozdarici-Ok, 2017).  

 

Another broad research area in this topic covers the studies 

whose framework includes a DSM, or a normalized DSM 

(nDSM), or a canopy height model (CHM) as an input data. 

Among the methods developed, segmentation (especially 

watershed method) applied to DSM–nDSM–CHM from active 

and/or passive data draws attention (e.g. Hyyppa et al., 2001; 

Wolf and Heipke, 2007; Kwak et al., 2007; Ene et al., 2012; 

Wallace, 2014; Liu et al., 2015; Paris et al., 2016). It is observed 

that the segmentation-based methods are generally applied 

together with seed generation (e.g. Hirschmugl et al., 2007), 

local maxima detectors (e.g. Popescu and Wynne, 2004; Kwak 

et al., 2007; Hirschmugl et al., 2007; Swetnam and Falk, 2014; 

Zhen et al., 2014; Eysn et al., 2015; Dalponte et al., 2015a, Li et 

al., 2016), or region growing (e.g. Hirschmugl et al., 2007; Zhen 

et al., 2015; Eysn et al., 2015). Some other methods, like image 

classification (e.g. Dalponte et al., 2014; Matsuki et al., 2015; 

Liu et al., 2015; Dalponte et al., 2015b), morphological analysis 

(e.g. Heinzel et al., 2011), wavelet analysis (e.g. Falkowski et 

al., 2006), regression analysis (e.g. Hadaś and Estornel, 2016) 

are other popular methods preferred in this context. 

 

Considering the previous effort in this context, our approach 

specializes for the detection of citrus trees by taking into 

account two critical observations: (i) the citrus trees have a 

symmetric circular shape in general, and we present orientation-

based radial symmetry transform (Ok and Ozdarici-Ok, 2017) to 

extract that information, (ii) the citrus trees present an LM with 

respect to their close neighbourhood, which we utilize extended 

maxima transformation (Soille, 1999) to extract LMs from a 

DSM. Thereafter, we filter out erroneous detections arising 

from symmetry transform using the LM information. 

 

3. PROPOSED APPROACH  

In an early work, fast radial symmetry transform (Loy and 

Zelinsky, 2003) was proposed to detect circular structures in 

images. However, their approach utilized many ad-hoc 

thresholds, and further problems associated with their approach 

are discussed in (Ok and Baseski, 2015), and an improved radial 

symmetry transform to detect circular objects from images were 

proposed. More recently, we proposed an orientation-based 

radial symmetry (Ok and Ozdarici-Ok, 2017) that is particularly 

designed to focus on above-ground circular objects from a 

DSM. In the following, we first review that approach, and 

improve the results of that approach using LM information.  

 

The approach starts by defining the range of minimum and 

maximum radii in pixels (rmin ,rmax) after taking into account all 

values of radii of a single citrus tree can retain, R = {rmin, 

rmin+1, … , rmax}, depending on the GSD of the input DSM. 

Next, we compute the gradient (Farid and Simoncelli, 2004) of 

the DSM and collect the magnitude, m(p), and orientation, o(p) 

components for each pixel p, where the orientation component 

is also normalized to achieve unit direction vectors, 𝐠⃗ . Note that 

we do not apply any noise filtering step to the input DSM 

beforehand thanks to the powerful multi-image semi-global 

matching (SGM) strategy applied to generate the DSM (see 

details in Section 4). Thereafter, the orientation image (Or) of a 

DSM for a specific radius r in R can be computed directly using 

the formula given below: 

 

𝑂𝑟(𝐩𝑟(𝐩))
{𝑛𝑒𝑤}

= 𝑂𝑟(𝐩𝑟(𝐩))
{𝑜𝑙𝑑}

+ 1    . (1) 

 

In Eq. 1, pr denotes the unit direction vector pointing a distance 

defined by radius r from p and can be computed by 𝐩𝑟(𝐩) =
⌊𝐩 + 𝐠⃗ . 𝑟 + 𝐜⌋ where c is a constant vector in pixels (c = [0.5 

0.5]), the operator ⌊.⌋ maps the computed number to the smallest 

previous integer. The superscripts ({new} and {old}) in Eq. 1 

describe an accumulation performed in image space for a radius 

r. The accumulated pixels in Or hold the critical information 

about the centre locations of circular objects in a DSM that 

satisfy a specific radius r. However, other objects in a DSM 

(e.g. linear, L-shaped structures) may also contribute to the 

accumulation, thus may lead false alarms. We use a series of 

orientation strictness parameters (αi) to minimize the effects of 

such incorrect accumulation, and a rotation invariant two 

dimensional Gaussian kernel with a fixed σ (that is Gσ) to 

spread the influence of accumulated pixels in image space: 

 

𝑂𝑟
𝐴 = ∑ (

(𝑂𝑟)
𝛼𝑖

max {(𝑂𝑟)
𝛼𝑖}
∗ 𝐺𝜎)

𝑚
𝑖=1     .       (2) 

 

In Eq. 2, 𝑂𝑟
𝐴  denotes the aggregated orientation image for a 

radius r depending on the number of strictness parameters 

chosen (i.e., m). The denominator part in Eq. 2 ensures that the 

computed values for each 𝛼𝑖  contributes equally to 𝑂𝑟
𝐴 . Note 

that applying the Gaussian kernel not only reduces the level of 

noise in image space after the accumulation but also spreads the 

influence of highly accumulated pixels to neighbouring pixels to 

achieve a smooth aggregated orientation image. 

 

Note that the aggregated orientation image 𝑂𝑟
𝐴  reflects the 

orientation based symmetry of a DSM for a specific radius r in 

R. Therefore, we repeat above steps for all r in R and compute 

the orientation symmetry image (OS) of a DSM by summing all 

aggregated orientation images for a given R: 𝑂𝑆 = ∑ 𝑂𝑟
𝐴

𝑅  (Fig. 

2b). The orientation symmetry image OS contains higher pixel 

values around centre locations of circular tree objects in a DSM. 

Thus, we need to build interest regions after thresholding the 

orientation symmetry image (e.g. OS > τ). However, this task is 

not trivial since the resulting interest regions will form the basis 

of the detection step. Besides, finding an optimal τ value (τ*) 

that is valid across diverse DSM datasets full of multiple types 

of trees having varying densities, and along with other objects 

(buildings, roads, greenhouses etc.) is also a problematic issue. 

In this study, we benefit from unsupervised multilevel 

thresholding method (Otsu, 1979) to achieve an automated 

threshold value. We build our interest regions (RI) using the 

smallest threshold provided, i.e. OS > τ1 (Figs. 2c and 2d). 

 

As can be seen in Figs. 2c and 2d, interest regions successfully 

locate most of the citrus trees. However, as expected, other  

(semi-) symmetric objects (e.g. other tree canopies) provide 

symmetry up to a level; therefore, also involved in interest 
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regions. In this study, this problem is mitigated by taking into 

account LM information. We benefit from the extended maxima 

transformation (Soille, 1999; Kwak et al., 2007) to compute LM 

regions. The extended maxima transformation can be computed 

by finding the regional maxima of the H-maxima 

transformation. The H-maxima transformation aims to suppress 

all local maxima in a DSM whose elevation value is lower than 

or equal to a given threshold, h. This can be achieved by 

performing a grayscale image reconstruction (Vincent, 1993) 

using two images, namely the mask (I: DSM) and the marker (J: 

DSM-h). The grayscale reconstruction, rec(J, I), where J ≤ I is 

obtained by successive grayscale geodesic dilations, 𝜌𝐼
(𝑛)
(𝐽) ,

until stability is reached (Vincent, 1993): 

𝑟𝑒𝑐(𝐽, 𝐼) = lim𝑛→∞ 𝜌𝐼
(𝑛)
(𝐽) = lim𝑛→∞ 𝜌𝐼

(1)
∘ 𝜌𝐼

(1)
∘ … ∘ 𝜌𝐼

(1)
⏟            

𝑛 times

(𝐽) . (3) 

In Eq. 3, n is the geodesic dilation size and is computed by 

iterating geodesic dilations for n times to reach stability, and 

𝜌𝐼
(1)
(𝐽) denotes the elementary geodesic dilation of grayscale

image J given I: 𝜌𝐼
(1)(𝐽) = 𝑚𝑖𝑛(𝐼, 𝐽 ⨁𝐷). In this equation, ⨁

denotes the dilation operation, and D is the flat square 

structuring element defining 8-neigbourhood connectivity. Once 

H-maxima transformation is computed through reconstruction

with a specific threshold h, the LM regions are found by the

regional maxima (connected pixels with a constant elevation,

whose elevation is higher than their external boundary pixels) of

the H-maxima transformation (Fig. 2e). Finally, we filter out

erroneous detections arising from symmetry transform using the

LM information. We label connected components in interest

regions (RI) using 8-neigbourhood connectivity, and check

whether any pixel in a connected component is labelled as an

LM region or not. Finally, we remove all the components with

no LM evidence (Fig. 2f).

(a) (b) 

(c) (d) 

(e) (f) 

Figure 2. (a) DSM of test area #1, (b) aggregated orientation 

symmetry (OS) for αi = 4, 5, and 6, (c) detected regions (RI), (d) 

the green “+” corresponds to the centroid location of each RI, 

(e) the LM regions found (h = 0.2 m), and (f) filtered centroid

locations using LM information. 

4. DATASET, EVALUATION, AND PARAMETERS

The UAV used in our study is a smart plane called SmartOne-C 

(Smartplanes, 2016). It has 1.2 m wing span, high strength skin 

and equipped with 16.1 MP calibrated Ricoh GR camera. The 

smart plane can fly up to 200 m and the GSD ranges between 

2.6-5.2 cm/pixel depending on the flying height. In our case, we 

set up the flying height around 140 m which corresponds to a 

GSD of approximately 3.5 cm. The forward and side overlap is 

set as 80% and 60%, respectively, to achieve a sufficient 

overlap between images to facilitate image matching.  

The UAV images are processed with Pix4D software (Pix4D, 

2016). During the bundle adjustment of UAV images, a total of 

52 Ground Control Points (GCPs) were collected with an SL500 

RTK GNSS receiver. Among the available GCPs, 9 of them 

were reserved as Independent Control Points (ICPs) and the root 

mean square (RMS) values for the 9 ICPs after the bundle-block 

adjustment were computed to be 6 cm (≈ 1.5 pixels) and 11 cm 

(≈ 3 pixels) at most in horizontal and vertical directions, 

respectively. The powerful multi-image SGM approach 

(Hirschmüller, 2008) available in Pix4D was used to create 

point clouds from the overlapping UAV images. Note that any 

part of the region is covered by at least five images to minimize 

the matching errors and noise, thus increasing the point cloud 

accuracy. This point cloud was then used to generate the dense 

DSMs (≈ 3.5 cm) and true-orthoimages. 

Our study area covers the northern part of the city Mersin, a 

region covering one of the most productive citrus orchards of 

Turkey. We selected five test patches from the generated DSMs 

to assess the performance of the proposed approach (Fig. 3). In 

this study, GSD of all test patches is reduced as a factor of two 

(≈ 7 cm) to facilitate and speed up the processing. For validation 

purposes, the reference data are generated by manual on-screen 

digitizing using DSMs and UAV true ortho-images of the test 

patches (Fig. 4a-f). Partial citrus trees at the edges of the DSM 

patches are also included during the digitization process.  

During the assessment of the accuracies of the detection step, 

we consider a reference citrus tree object as detected if any part 

of the reference citrus tree is hit by the approaches. Because a 

single tree is described with a single pixel (i.e. the location of 

the stem) found in the detection step, we label a reference tree 

as detected (i.e. TP) if any pixel within an individual tree 

canopy is labelled as a stem. We label a reference citrus tree as 

FN if no stem is available for that tree, and we mark a detected 

stem as FP if it does not correspond to any part of the citrus tree 

canopies in the reference data. Using these measures, three 

well-known metrics, precision, recall, and F1-score, are 

calculated to evaluate the results: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑃|
(4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑁|
 (5) 

𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. (6) 

In Eqs. 4-6, the operator | . | is the set cardinality. In Eq. 6, the 

F1-score can be used to evaluate the overall performance. 

Our experiments show that a single parameter set is sufficient to 

properly handle very different datasets, and therefore, we fix 

each parameter to constant. All parameters required to run the 

proposed approach are listed in Table 1. We performed a large 
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(a) Patch #1 (b) 

  
(c) Patch #2 (d) 

  
(e) Patch #3 (f) 

  
(g) Patch #4 (h) 

  
(i) Patch #5 (j) 

Figure 3. UAV dataset: DSM patches (#1-#5) are shown in (left 

column). Corresponding ortho-images (right column) are only 

presented for better visual understanding of the test patches. 

 

number of tests on different parameters and investigated the 

effects of each parameter using the quality measures given in 

Eqs. 4-6 to select the best parameter configuration. We set the 

minimum radius to the smallest observable radius for citrus tree 

detection (i.e. rmin = 0.3 m), and the maximum radius to the 

largest radius for citrus trees observable in our test patches (i.e. 

rmax = 3.4 m). Considering the strictness parameter α, lower 

values (e.g. α = 2) put emphasis on non-symmetric features 

along with the radial symmetric ones. Choosing a higher α value 

suppresses non-symmetric radial features as anticipated; 

however, the orientation values of symmetric features are also 

reduced. This problem is mitigated by using the aggregation 

strategy presented in (Ok and Ozdarici-Ok, 2017). In this study, 

we aggregate the orientation symmetry results for a series of 

strictness values, i.e. αi = 4, 5, and 6. Thus, this gives us 

opportunity to better focus on radial symmetric features, while 

the non-symmetric evidence in the output is minimized. The 

purpose of the Gaussian kernel Gσ is to spread the influence of 

the orientation symmetry (Eq. 2), and the rotation invariance 

and a fixed σ allow us to have a balanced accumulation. We 

benefit from isotropic filtering in (Geusebroek, 2003) to 

efficiently compute the Gaussian smoothing, where we set σ =5 

pixels. In respect to the number of classes (v) required for  

 
(a) 

 
(b) 

 
(c) 

 
(e) 

 
(f)  

(g) 

Figure 4. (a-f) The reference data (in red color) are generated by 

manual on-screen digitizing, and (g) performance results 

computed for different h thresholds. 

 

Task Parameter Value 

Generation of 

interest regions (RI) 

rmin – rmax 0.3 – 3.4 m 

strictness (αi) 4, 5, 6 

sigma (σ) 5 pixels 

number of classes (v) 3 

Generation of LM 

regions 
threshold (h) 0.2 m 

Table 1. Parameters of the proposed approach 

 

multilevel thresholding, all values tested provide comparable 

results except for the binary case (v = 2) in which Otsu’s 

method optimizes a threshold for two classes. For that 

parameter, we fixed the number classes to 3 as it provided the 

slightly the best balance performance (Ok and Ozdarici-Ok, 

2017). Considering the threshold h, we tested a range of 

parameters to select the best value, and we found 0.2 m 

provided the best balance between the precision and recall (Fig. 

4g). 

 

5. RESULTS AND DISCUSSION 

We visualize the results of test patches in Fig. 5. These results 

demonstrate that our approach can provide promising results for 

the detection of citrus trees. The numerical results in Table 2 

favour these facts. We achieved overall precision and recall as 

94.9% and 81.6%, respectively. The computed F1-score for 

these five test patches is around 87.8%. Our approach correctly 

detected 3502 of 4290 citrus trees in all test patches and the 

total false positive object number is just 190. According to Fig. 

5, the results give the impression that the detected citrus trees 

are convincing and representative. As shown, most of the citrus 

trees are detected successfully without having a strict limitation, 

e.g., planting pattern and orientation, texture, shape, elevation. 

It is also evident that the approach has capability to separate 

citrus trees from most of the other objects (e.g. bushes, other 

trees, water, roads, and greenhouse roofs). 

 

DSM patch #4 has the lowest performances for all measures 

(Table 2). However, this result was expected because that test 

area is the most challenging case. The main reason for this 

challenge is that most of the citrus trees in the DSM are newly 

planted non-bearing trees. Thus, there may not be enough 

evidence for the accumulation performed in image space for 

most the young trees even though the processed DSMs have 

very high GSD (≈ 7 cm/pixel). Nonetheless, the F1-score 

computed is still slightly above 54%. Then again, the second 

lowest F1-score is observed for DSM patch #2. This is due to 

the recall computed around 81%, and the problem reappears in 

the upper right part of the area where only half of the newly  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-27-2017

 
30



 

  
 

  
 

  
, 

  
 

  

Figure 5. (left column) The results of proposed approach, and 

(right column) the reference data. 

 
Test 

Patch 

# of Performance (%) 

TP FP FN Precision Recall F1-score 

#1 641 42 44 93.9 93.6 93.7 

#2 430 31 98 93.3 81.4 87.0 

#3 828 36 118 95.8 87.5 91.5 

#4 282 24 454 92.2 38.3 54.1 

#5 1321 57 74 95.9 94.7 95.3 

Overall 3502 190 788 94.9 81.6 87.8 

Table 2. Results of the proposed approach 

 

Test Patch 
Image Size  

(pixels) 

Computational 

time (sec.) 

#1 3124 x 1984 13.7 

#2 2826 x 1794 11.7 

#3 3039 x 1930 12.6 

#4 2340 x 1473 7.9 

#5 3973 x 2379 20.2 

Table 3. Computational time elapsed by the proposed approach. 

 

planted trees could be detected. Bearing in mind the problem 

occurring for the young trees, the results of other test patches 

prove that proposed approach is generic for different planting 

forms and has the ability to detect citrus trees in dense patterns. 

For example, only 74 out of 1395 citrus trees are missed in a 

difficult case in patch #5; as a result, the proposed approach 

reaches a recall performance of nearly 95%. 

 

The processing times required by the proposed approach are 

provided in Table 3. The implementation and processing was 

performed in MatLab. All experiments were performed on a 

notebook computer with a quad core Intel i7 CPU @ 2.40GHz 

and 16 GB RAM. Our approach is quite feasible to run by 

parallel processing; therefore, we benefit from the built-

in parallel processing (with four cores) available in MatLab to 

speed up the processing. According the computational times 

computed, it is possible to detect citrus trees from images with 

sizes approximately 6 MP in thirteen seconds with the approach 

presented. 

 

In this study, we also performed a comparison to the state-of-

the-art approaches (Fig. 6, and Table 4). For all state-of-the-art 

approaches, we utilized nDSMs of the test patches generated by 

Pix4D software (Pix4D, 2016) to fulfil the input data 

requirements of the approaches. The GSD of the input nDSMs 

are exactly the same as the DSM utilized for our approach, 

except for the approach in (Dalponte et al., 2015) wherein we 

resampled the GSD of the nDSM to 0.5 m to get meaningful 

representative results. For all approaches, we found that the 

default parameters provided the best results in most cases. We 

set the maximum radii of a tree to 3.4 m, and the minimum tree 

top height to 1 m, if required as an input by the approaches. 

Besides, for the approach in (Swetnam and Falk, 2014), we set 

the canopy ratio to 1 which provided the best results for our 

case. 

 

The comparison of the detection results of the proposed 

approach with the results of state-of-the-art approaches are 

given in Table 4. First, the proposed approach clearly 

outperforms the state-of-the-art approaches in precision scores. 

All the precision scores computed are above 92%. Therefore, 

proposed approach improves the precision scores of the first 

three state-of-the-art approaches of around 7% at least in an 

overall sense. Besides, compared to the results in (Ok and 

Ozdarici-Ok, 2017), adding LM information into the framework 

improves the overall precision scores 3.4%. This is, of course, 

due to the reason that some of the incorrect detections could be 

now be eliminated by integrating the LM information. In 

contrast to the precision scores, proposed approach cannot 

achieve the best recall scores in none of the test patches. For 

that case, the best overall result is achieved by the approach in 

(Ok and Ozdarici-Ok, 2017); however, the overall recall result 

of the proposed approach is only 1.6% away from that result, 

thus; provides the best overall F1-score of 87.8%. Nevertheless, 

we also note that the level of improvement achieved is only 

slightly better (0.8%) in terms of the overall F1-score compared 

to our previous approach. We also observe that other 

approaches also provided acceptable F1-scores around 75% or 

more. It is also noteworthy that the approach in (Popescu and 

Wynne, 2004) still provides the best scores for the patch #4 with 

an F1-score 60.5%. 

 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, an approach to automatically detect citrus trees is 

presented. The approach considers the symmetric nature of the 

citrus trees and detects them from a single source, DSM. The 

main novelty of the proposed approach is the integration of LM 

information into the framework to improve the output of the 

orientation-based radial symmetry transform. 

 

The proposed approach is tested for five DSM patches 

generated from UAV images comprising orchards of different 

planting patterns and orientation, texture, shape, and elevation. 

The results prove that our approach is generic for the detection  
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, 

Figure 6. Detection results of the approaches. (first column) The results of the approach in (Popescu and Wynne, 2004), (second 

column) the results of the approach in (Swetnam and Falk, 2014), (third column) the results of the approach in (Dalponte et al., 

2015), (fourth column) the results of the approach in (Ok and Ozdarici-Ok, 2017), and (fifth column) the results of the approach. The 

green “+” signs in each figure corresponds to a (citrus) tree (crown) location found by the approaches. Note that, nDSM is used as an 

input except for (Ok and Ozdarici-Ok, 2017) and the proposed approach; therefore, the brightness levels of the DSMs presented in 

the background of the last two columns are manually adjusted to approximately match the brightness levels of the nDSMs presented 

in the first three columns to improve the visual interpretability. 

DSM 

patch 

Performance (%) 

Approach in 

(Popescu and Wynne, 

2004) 

Approach in 

(Swetnam and Falk, 

2014) 

Approach in 

(Dalponte et al.,  

2015) 

Approach in 

(Ok and Ozdarici-Ok, 

2017) 

Proposed  

Approach 

Pre. Rec. F1-s. Pre. Rec. F1-s. Pre. Rec. F1-s. Pre. Rec. F1-s. Pre. Rec. F1-s. 

#1 89.7 97.1 93.3 90.7 95.8 93.2 69.3 93.1 79.5 90.1 94.2 92.1 93.9 93.6 93.7 

#2 83.3 82.2 82.8 85.8 71.8 78.2 62.4 79.4 69.9 87.9 82.2 84.9 93.3 81.4 87.0 

#3 89.0 66.6 76.2 89.0 68.5 77.4 78.7 92.0 84.8 94.4 89.5 91.9 95.8 87.5 91.5 

#4 89.6 45.7 60.5 85.3 22.2 35.2 74.8 27.5 40.2 80.8 39.4 53.0 92.2 38.3 54.1 

#5 86.3 87.7 87.0 87.2 90.9 89.0 65.8 97.1 78.4 94.4 96.1 95.2 95.9 94.7 95.3 

Total 87.4 76.7 81.7 88.0 72.6 79.5 69.3 81.2 74.8 91.5 82.9 87.0 94.9 81.6 87.8 

Table 4. Comparison of the results of the state-of-the-art and the proposed approach. Pre., Rec., and F1-s. denote Precision, Recall 

and F1-score, respectively. 

of citrus trees. Besides, assessments performed reveal that our 

approach is capable of providing the citrus trees in a scene with 

a promising performance (average F1-score of ≈ 88%). 

Comparison to the state-of-the-art reveals that the proposed 

approach provides superior detection performance by providing 

a better balance between precision and recall measures. 

In this study, manually delineated tree crowns are used as 

reference data and such data may also include subjective errors. 

Besides, the highest peak location of a tree might not correctly 

represent the stem location; therefore, a detailed field work must 

be performed to collect the correct stem locations to perform a 

reliable comparison in that respect. We also plan to develop a 

method that mutually optimizes LM information and the 

orientation-based radial symmetry transform to further improve 

the results. Moreover, the delineation of the detected trees is 

another essential task to be performed in a different future 

study. Note also that radial symmetry transform can also be 

directly applied to the true-orthoimages generated for the test 

sites. Therefore, it might also be interesting to compare the 

detection results of the image-based and DSM-based radial 

symmetry transforms. Besides, a method that efficiently 

computes the radial symmetry from the combination of the two 

datasets may further contribute the detection results. 
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