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ABSTRACT:

We present a powerful method to extract per-point semantic class labels from aerial photogrammetry data. Labelling this kind of data
is important for tasks such as environmental modelling, object classification and scene understanding. Unlike previous point cloud
classification methods that rely exclusively on geometric features, we show that incorporating color information yields a significant
increase in accuracy in detecting semantic classes. We test our classification method on three real-world photogrammetry datasets
that were generated with Pix4Dmapper Pro, and with varying point densities. We show that off-the-shelf machine learning techniques
coupled with our new features allow us to train highly accurate classifiers that generalize well to unseen data, processing point clouds
containing 10 million points in less than 3 minutes on a desktop computer.

1. INTRODUCTION

Extraction of semantic information from point clouds enables us
to understand a scene, classify objects and generate high-level
models with CAD-like geometries from them. It can also provide
a significant improvement to existing algorithms, such as those
used to construct Digital Terrain Models (DTMs) from Digital
Surface Models (DSMs) (Unger et al., 2009). With the growing
popularity of laser scanners, the availability of drones as survey-
ing tools, and the rise of commercial photogrammetry software
capable of generating millions of points from images, there ex-
ists an increasing need for fully automated extraction of semantic
information from this kind of data. Although some of the com-
mercial photogrammetry software available today offer tools such
as automated DTM extraction (Pix4Dmapper, 2017, Photoscan,
2017), semantic classification is typically left to specialized soft-
ware packages (eCognition, 2017, GlobalMapper, 2017) that rely
on 2.5D orthomosaics and DSMs as an input.

The need for semantic modeling of 3D point data has inspired
many research and application engineers to model specific struc-
tures. Often the proposed solutions were handcrafted to the appli-
cation at hand: buildings have been modeled by using common
image processing techniques such as edge detection (Haala et al.,
1998, Brenner, 2000) or by fitting planes to point clouds (Rusu
et al., 2007); road networks have been modeled by handcrafted
features and DTM algorithms used heuristics about the size of
objects to create a DTM from a DSM. While successful and valu-
able, these approaches are inherently limited since they cannot
be easily applied to detect new classes of objects. The huge boost
in the performance of machine learning algorithms over the last
years allows for more flexible and general learning and classifi-
cation algorithms. If supervised or semi-supervised learning and
especially classification becomes fast and reliable, machine learn-
ing approaches to point cloud classification will find their way
into common photogrammetric workflows. Therefore we focus
here on machine learning techniques, that will allow the users to
detect objects categories of their own choice.

∗This work was done while the author was working at Pix4D SA

In this paper we present a method to classify aerial photogram-
metry point clouds. Our approach exploits both geometric and
color information to classify individual points as belonging to one
of the following classes extracted from the LAS standard: build-
ings, terrain, high vegetation, roads, human made objects or cars.
Unlike previous point cloud classification methods that rely ex-
clusively on geometric features, we show that incorporating color
information yields a significant increase in accuracy.

We evaluate our approach on three challenging datasets and show
that off-the-shelf machine learning techniques together with our
new features result in highly accurate and efficient classifiers that
generalize well to unseen data. The datasets used for evaluation
are publicly available at https://pix4d.com/research.

2. RELATED WORK

Methods used to extract semantic information from point clouds
can be split into two groups: those that try to segment coherent
objects from a scene, and those that focus on assigning an indi-
vidual class label to each point. Early works using the first ap-
proach often converted the point data into a regular 2.5D height
grid so that standard image processing techniques, e.g., edge de-
tection, can be applied (Haala et al., 1998, Haala and Brenner,
1999, Wang and Schenk, 2000). A scan line based approach (Sit-
hole and Vosselman, 2003) was proposed for structure detection
in urban scenes. Building extraction approaches typically use ge-
ometric primitives during the segmentation step. A multitude of
such primitives has been proposed, both in 2D, such as planes and
polyhedral (Vosselman et al., 2001, Dorninger and Nothegger,
2007), and in 3D (Lafarge and Mallet, 2012, Xiao and Furukawa,
2014). In (Rusu et al., 2007) the authors fit sampled paramet-
ric models to the data for object recognition. Similarly, (Oesau
et al., 2016) investigates supervised machine learning techniques
to represent small indoor datasets with planar models for object
recognition.

The second type of methods assign a label to each point in the
point cloud. Typically this is done with supervised machine learn-
ing techniques, requiring training on labeled data from which a
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classification model is learned and then applied to new, unseen
data to predict the label of each point. Binary classification has
been explored in environmental monitoring to extract road sur-
faces (Shu et al., 2016), tree species (Böhm et al., 2016, Liu
and Böhm, 2015), land cover (Zhou et al., 2016), and construc-
tion sites (Xu et al., 2016). Several other authors employed a
multiclass setting to classify multiple types of objects and struc-
tures (Brodu and Lague, 2012, Weinmann et al., 2015a, Hackel
et al., 2016), which we adopt in this paper. In particular, we fol-
low the work of (Weinmann et al., 2013), which introduced local
geometric features that were used to train a Random Forest (RF)
classifier for single terrestrial LiDAR scans. Their set of features
was extended later by (Hackel et al., 2016). Examples of other
feature sets used in the point classification context are Fast Point
Feature Histogram (FPFH) (Rusu et al., 2009) or Color Signature
of Histogram of Orientations (SHOT) (Tombari et al., 2010). All
these methods use handcrafted features that can be considered
suboptimal when compared to more recent deep learning tech-
niques (Hu and Yuan, 2016, Qi et al., 2016), which learn features
directly on image or point cloud data. Those approaches have
not been considered here, since they require large computational
power to train the classifier, and may be restrictive at prediction
time, depending on the hardware available.

The ambiguity of the classification task can be minimized by
modeling also the spatial correlations between the different class
labels. Spatial priors are used in (Shapovalov and Velizhev, 2011)
to classify LiDAR data and in (Niemeyer et al., 2014) the authors
apply Conditional Random Field (CRF) priors to model differ-
ent probabilities that neighboring labels can have. While those
methods show reasonable classification improvements, they are
computationally expensive and not easy to parallelize.

In this paper we extend the work on geometric features by (Wein-
mann et al., 2013, Hackel et al., 2016) and show that incorpo-
rating color information provides a significant boost in predic-
tion accuracy, while keeping a low computational load at predic-
tion time. In the following sections we describe our method and
present the results obtained on three photogrammetry datasets.

3. METHOD

Our approach combines geometric and color features that are
fed to a classifier to predict the class of each point in the point
cloud. The geometric features are those introduced in (Hackel et
al., 2016), which are computed at multiple scales, as explained
shortly further. To exploit color information, we compute addi-
tional color features, based on the color of the respective point
and its neighbors.

In the next sections we describe the geometric features introduced
in (Hackel et al., 2016). We then show how our color features are
computed and discuss implementation details.

3.1 Geometric Features

Our approach computes geometric features at different scales to
capture details at varying spatial resolutions. Below we first de-
scribe how features are computed for a single scale, and then we
show how the scale pyramid is constructed.

We follow the method proposed in (Weinmann et al., 2013) and
later in (Hackel et al., 2016). To compute the features for a point
x, we first obtain its neighboring points Sx = {p1, p2, . . . , pk}.
This set is used to compute a local 3D structure covariance tensor

Cx =
1

k

k∑
i=1

(pi − p̂)(pi − p̂)T , (1)

Covariance

Omnivariance (λ1 · λ2 · λ3)
1
3

Eigenentropy −
∑3

i=1 λi · ln(λi)

Anisotropy (λ1 − λ3)/λ1
Planarity (λ2 − λ3)/λ1
Linearity (λ1 − λ2)/λ1

Surface variation λ3

Scatter λ3/λ1

Verticality 1− |〈[0, 0, 1] , e3〉|

Moments

1st order, 1st axis
∑

p∈Sx
〈p− p̂, e1〉

1st order, 2st axis
∑

p∈Sx
〈p− p̂, e2〉

2st order, 1st axis
∑

p∈Sx
〈p− p̂, e1〉2

2st order, 2st axis
∑

p∈Sx
〈p− p̂, e2〉2

Height

Vertical Range zmax{Sx} − zmin{Sx}

Height below zp − zmin{Sx}

Height above zmax{Sx} − zp

Color
Point color [Hx, Sx, Vx]

Neighborhood colors 1
|Nx(r)|

∑
p∈Nx(r)

[H,S, V ]p

Table 1. Our set of geometric (top) and color features (bottom)
computed for points in local neighborhood Sx.

where p̂ = argminp
∑k

i=1 ||pi − p|| is the medoid of Sx.

The eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0, unit-sum normalized,
and the corresponding eigenvectors e1, e2, e3 of Cx are used to
compute the local geometry features shown in Table 1.

Besides the features based on the eigenvalues and eigenvectors
of Cx, features based on the z coordinate of the point are used to
increase their discriminative power. We have slightly changed the
geometry feature set from (Hackel et al., 2016) and removed the
sum of eigenvalues because it is constant since the eigenvalues
are normalized to unit sum.

Multi-scale Pyramid To incorporate information at different
scales we follow the multi-scale approach of (Hackel et al., 2016),
which has shown to be more computationally efficient than that
of (Weinmann et al., 2015b). Instead of computing the geometric
features of Table 1 at a single scale, we successively downsample
the original point cloud to create a multi-scale pyramid with de-
creasing point densities. The geometric features described earlier
are computed at each pyramid level and later concatenated.

Pyramid Scale Selection In order to generalize over different
point clouds with varying spatial resolution, we need to choose a
fixed set of pyramid levels. This is particularly important when
dealing with data with varying Ground Sampling Distance (GSD),
which affects the spatial resolution of the point cloud. The GSD
is a characteristic of the images used to generate the pointcloud.
It is the distance between two consecutive pixel centers measured
in the orthographic projection of the images onto the Digital Sur-
face Model (DSM). Among other factors, the GSD depends on
the altitude from which the aerial photos were taken. With this in
mind, we set the starting resolution of the pyramid to four times
the largest GSD in our datasets, or 4 × 5.1 cm = 20.4 centime-
ters. In total we compute 9 scales, with a downsampling factor of
2. With these values we were able to capture changes in patterns
of surfaces and objects which vary with distance (e.g. buildings
have significant height variations at the scale of dozens meters,
while cars, trees do at only a few meters).
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3.2 Color Features

To increase the discriminative power of the feature set we com-
bine the geometric features introduced above with color features.
Our color features are computed in the HSV color space first
introduced by (Smith, 1978), since the analysis of the Pearson
product-moment correlation coefficient and the Fisher informa-
tion of our training data showed that we should expect higher
information gain from the HSV over RGB color space.

Besides the HSV color values of the point itself, we compute
the average color values of the neighboring points in the original
point cloud (i.e. not downsampled). These points are selected
as the points within a certain radius around the query point. We
experimented with the radii 0.4m, 0.6m and 0.9m to balance be-
tween speed and accuracy of the classification.

3.3 Training and Classification

We use supervised machine learning techniques to train our clas-
sifier. We experiment with two well-known ensemble methods:
Random Forest (RF) and Gradient Boosted Trees (GBT) (Fried-
man et al., 2001). Though RF has been used extensively in point
cloud classification (Weinmann et al., 2015b, Hackel et al., 2016),
we provide a comparison to GBT and show that the latter can
achieve higher accuracies at a similar computational complexity.

Both RF and GBT can generate conditional probabilities and are
applicable to multi-class classification problems. They are easily
parallelized and are available as reusable software packages in
different programming languages.

Random Forest (RF) (Breiman, 2001) is a very successful learn-
ing method that trains an ensemble of decision trees on random
subsets of the training data. The output of a RF is the average
of the predictions of all the decision trees in the ensemble, which
has the effect of reducing the overall variance of the classifier.

On the other hand, the Gradient Boosted Trees (GBT) method
trains an ensemble of trees by minimizing its loss over the train-
ing data in a greedy fashion (Friedman et al., 2001). GBT has
been described as one of the best off-the-shelf classification meth-
ods and it has been shown to perform similarly or better than
RF in various classification tasks (Caruana and Niculescu-Mizil,
2006).

3.4 Implementation Details

We implemented our software in C++ to ease its later integration
into the Pix4DMapper software. For prototyping and evaluation
we used Julia (Bezanson et al., 2014). For fast neighbor search
we used the header-only nanoflann library 1 which implements a
kd-tree search structure.

The implementation of the RF comes from the ETH Random For-
est Library 2. We parallelized training and prediction, reducing
computation times significantly. For GBT we used Microsoft’s
LightGBM 3.

3.5 Experimental Setup

To evaluate our method we test different combinations of fea-
ture sets and classifiers on photogrammetry data. We compare
two different setups to evaluate the performance of our approach:

1https://github.com/jlblancoc/nanoflann)
2http://www.prs.igp.ethz.ch/research/Source code and datasets.html
3https://github.com/Microsoft/LightGBM

within the same dataset, or intra-dataset, and across different
datasets, or inter-dataset. For training we sampled 10k points
of each class at random, resulting in 60k training samples.

The different feature sets used in our experiments are summarized
below:

• Geometric features (G): the geometric eigenvalue-based
features shown in Table 1. We use k = 10 neighbors to
construct Sx.

• Point color (Cp): HSV color values of the respective 3D
point.

• Point and Neighborhood color (CN (r)): Cp set added with
averaged HSV color values of the neighboring points within
the radius r around the respective 3D point.

• All features: Concatenation of all geometric, point color
and neighborhood color features for radii 0.4m, 0.6m and
0.9m.

Intra-dataset experiments In this setup we divide each dataset
into two physically disjoint point clouds. We first find a splitting
vertical plane such that the resulting point clouds are as similar
as possible with respect to the number of points per class. More
specifically, we solve for the vertical plane p̂

p̂ = argmin
p∈P

[
max
c∈Y

∣∣∣ 1

#c

∑
xi∈p+

(yi = c) − 1

2

∣∣∣] , (2)

where #c is the number of points of class c in the whole point
cloud, Y is the set of all classes present in the point cloud, p+ is
the set of points falling on one side of the plane p, and P is a set
of potential vertical planes of different offsets and rotations.

We then train on one of the splits and test on the other.

Inter-dataset experiments To test the generalization capabili-
ties of our approach to new unseen point clouds we also experi-
ment with a leave-one-out evaluation methodology: we train on
two point clouds and test on the remaining one.

4. RESULTS

In this section we describe first the datasets and classification
methods used for the experiments. Next, we show that our imple-
mentation is able to reproduce the results presented in (Hackel et
al., 2016) on the Paris-rue-Madame dataset. For this dataset we
use purely geometric features, as no color information is avail-
able. Finally, we evaluate our approach on challenging aerial
photogrammetry point clouds. Our experiments demonstrate that
using color information boosts performance significantly, both
quantitatively and qualitatively.

4.1 Datasets

Table 2 shows the characteristics of the datasets employed for
evaluation. The Paris-rue-Madame dataset (Serna et al., 2014)
does not contain color information and was solely used to verify
that our geometric features perform as well as those of (Hackel et
al., 2016).

Our main interest is the aerial photogrammetry and the three last
datasets of Table 2. The images were processed with Pix4Dmapper
Pro to obtain their respective dense point clouds that were used
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Dataset Acquisition Color # points GSD[
cm

pixel

]
Paris-rue-Madame Laser scan no 20M N/A
Ankeny Aerial images yes 9.0M 2.3
Buildings Aerial images yes 3.4M 1.8
Cadastre Aerial images yes 5.8M 5.1

Table 2. Point cloud datasets used for evaluation.

Feature Ankeny Buildings Cadastre

Roads X X X
Ground/Grass on flatland X X X
Ground/Grass on slopes 7 7 X
Gray/white Roofs X X X
Red Roofs 7 X X
Cropland X 7 7

Table 3. Point cloud dataset content break down. The datasets are
heterogeneous and contain different objects and types of terrain.

as the input for our approach. Note that the GSD varies signifi-
cantly between datasets. A 3D visualization of each of these point
clouds is presented in Fig. 3(a), Fig. 4(a), Fig. 5(a).

Moreover, each dataset contains different types of objects and ter-
rain surfaces as shown in Table 3. For example, while all datasets
contain roads, cropland only appears in one of them. This table
will be useful later to analyze the performance of our approach
on each dataset.

We have made the three photogrammetry datasets publicly avail-
able at https://pix4d.com/research.

4.2 Classifier Parameters

For both GBT and RF we used 100 trees, and at each split half
of the features were picked at random as possible candidates. For
RF the maximum tree depth was set to 30. For GBT we set the
maximum number of leaves to 16, learning rate to 0.2 and the
bagging fraction to 0.5. These parameters were fixed for all the
experiments.

4.3 Validation on Laser Scans

In the first experiment we reproduced the results presented on the
laser-scan Paris-rue-Madame dataset (Serna et al., 2014). The
training and test data sets are generated the same way as in (Wein-
mann et al., 2015b) and (Hackel et al., 2016) by randomly sam-
pling without replacement 1000 points per each class for training,
and using the rest of the points for testing. When training a RF
we achieved overall accuracies of 95.76% compared to the re-
ported 95.75% in the paper although our per-class results differed
slightly. We also observed that this evaluation procedure typically
yields overly optimistic accuracies, which are much higher than
the expected accuracy on unseen test data. We noticed that such
evaluation resembles an inpainting problem: given a few known
labeled points in the cloud, estimate the labels of the rest that lie
in-between. This gives a bias to the results and does not represent
the classifier’s ability to generalize to unseen datasets.

To overcome these issues we propose to split the data set into two
non-overlapping regions, train on one half and test on the other,
as described in Sec. 3.5. If the Paris-rue-Madame dataset is split
this way our overall accuracy is reduced to ∼ 90%. We believe
this is a less biased estimator of the performance on unseen data,
and adopt this strategy to evaluate performance in the rest of our
experiments.

Section Ankeny Building Cadastre

Geom. features 67s 23s 46s
Geom. + Color CN (0.6) 105s 56s 53s

Random Forest (RF) Train 74s 76s 77s
Predict 45s 18s 25s

Boosted Trees (GBT) Train 5s 5s 5s
Predict 56s 23s 41s

Table 4. Timings for feature computation, classifier training and
prediction. Our whole pipeline runs in less than 3 minutes with
any of the provided point clouds, being suitable for interactive
applications.

It is worth noting that the Paris-rue-Madame dataset contains only
small quantities of some classes such as vegetation and human
made objects which were found to be harder to classify correctly
by (Hackel et al., 2016).

4.4 Experiments on Aerial Photogrammetry Data

Intra-dataset results The misclassification errors for different
sets of features are presented in Fig. 1, where we can see that
color features bring a significant improvement. The best results
are obtained with the CN (0.6) features or with All features. A sec-
ond important observation is that GBT consistently outperforms
RF, in some cases by a large margin.

Inter-dataset results The results are shown in Fig. 2. First,
there is an overall increase of classification error, in particular
for the Cadastre dataset. To analyze the results in more detail
we computed the confusion matrix for the top-3 classes that con-
tribute to the misclassification error, as shown in Table 5. We now
discuss the result of each dataset in detail.

Ankeny The classifier performs very well for buildings and
roads, as shown in Fig. 3(b). However it confuses large amounts
of ground points as roads. This is not surprising since most of
such mistakes occur in croplands, which are not present in any
other dataset. Finally, although high vegetation appears in the
top-3 misclassified classes in Table 5, this is mostly due to ambi-
guities in the ground truth: some bushes were manually labeled
as ground, while the classifier predicts them as high vegetation.

Building The classifier performs very well on this dataset. The
highest error is due to predicting buildings as high vegetation or
human-made objects. This dataset has the lowest GSD (or highest
resolution), and facades of the buildings are well-reconstructed.
This is not the case for the other two datasets with higher GSD,
where few facade points are available. We hypothesize that the
classifier is confused with the facades, finding the vegetation or
human-made object to be the closest match.

Cadastre The classifier predicts vast amounts of ground and
vegetation points as buildings and human-made objects, leading
to a very high error rate. This result is expected considering Ta-
ble 3, as the Cadastre dataset contains hills and non-flat ground
surfaces, which are not present in any of the other two datasets.
Thus, the classifier confuses points in the regions of inclined
ground with other classes that are closer in feature space to the
training data (e.g. building roofs present a slope that resembles
the properties of the points on a hill).

The analyses above highlight the importance of reliable and var-
ied training data, in that it should resemble the unseen data on
which the classifier will be applied, e.g different landscapes, sea-
sons, shapes of buildings, etc.
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Figure 1. Intra-dataset results: classification error (number of misclassified points divided by overall number of points, the lower the
better) when training and testing on different parts of the same dataset. Each dataset is split into physically disjoint training and testing
sets through a vertical plane. Incorporating color features CN (0.6) yields a significant improvement. The best results are obtained when
combining both geometric and color features. For a detailed discussion see section 4.4.
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Figure 2. Inter-dataset results: classification error (number of misclassified points divided by overall number of points, the lower the
better) when training on two datasets and testing on the remaining one. Similar to Fig. 1, the best results are obtained with both
geometric and color features CN (0.6). The results on Ankeny and Cadastre show higher classification errors than those obtained when
training and testing on the same dataset in Fig. 1. This is due to the lack of training data for certain objects or terrain type. For a detailed
discussion see section 4.4.

Training Datasets Testing Dataset True Label
Predicted Label

Overall error
Ground High Building Road Car Human-

vegetation made object

Building ANKENY
Ground 52% 3.3% 0.1% 12% 0.4% 0.7% 16.5%

Cadastre High vegetation 3.4% 7.4% 0.1% 0.2% 0.2% 0.1% 4.0%
Human-made obj. 0.4% 0.3% 0.1% 0.1% 0.2% 0.1% 1.1%

Ankeny BUILDING
Building 0.1% 2.6% 29% 0.3% 0.9% 0.9% 4.8%

Cadastre Road 2.2% 0.3% 0.02% 33% 0.3% 0.3% 3.1%
Ground 7.3% 2.1% 0.01% 0.8% 0.06% 0.2% 3.1%

Ankeny CADASTRE
Ground 32% 2.1% 6.6% 4.6% 0.9% 4.7% 18.9%

Building High vegetation 0.6% 2.5% 7.7% 0.08% 0.5% 1.4% 10.3%
Road 2.9% 0.05% 0.9% 13% 2.1% 1.6% 7.5%

Table 5. Confusion matrix for the top-3 misclassified classes. In bold we highlighted the misclassification error corresponding to the
class with which the true label is confused the most. Results obtained for the G + CN (0.6) features with the GBT classifier, training on
two datasets and testing on the remaining third one. Percentages are with respect to the total number of points in the testing dataset.
See section 4.4 for a detailed analysis.
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Ankeny dataset

(a) Original data.

(b) Classification with geometry features only.

(c) Classification with geometry + color features.

Ground Road Building

High veg. Car Human-made obj.

Figure 3. Qualitative results obtained with our approach on the
Ankeny dataset, using the other two datasets for training. We
used neighbor color features within a 0.6-meter radius neighbor-
hood and the Gradient Boosted Trees classifier. Incorporating
color information into the classifier yields a significant boost in
accuracy, particularly for the road and high vegetation classes.

4.5 Qualitative Results

Figures 3, 4 and 5 show 3D views of each dataset and the respec-
tive classified point clouds obtained when using geometric fea-
tures only, as well as with our approach. Overall the results are
very satisfying, especially when one considers the heterogene-
ity of the different datasets, as discussed earlier. These figures
also help clarify the observations described in section 4.4. For
example, grass and ground on slopes in Cadastre are sometimes
misclassified as roof in Fig. 5(c).

4.6 Timings

Table 4 shows the break down of the timings obtained on a 6-core
Intel i7 3.4 GHz computer. Our approach is very efficient, taking
less than 3 minutes to classify every point in any of the presented
photogrammetry datasets. This makes it ideal for the applications
where the user needs to interact with the software to correct the
training data or fix the classifier’s predictions.

Buildings dataset

(a) Original data.

(b) Classification with geometry features only.

(c) Classification with geometry + color features.

Ground Road Building

High veg. Car Human-made obj.

Figure 4. Qualitative results obtained with our approach on the
Buildings dataset, using the other two datasets for training. We
used neighbor color features within a 0.6-meter radius neighbor-
hood and the Gradient Boosted Trees classifier. Incorporating
color information into the classifier results improves classifica-
tion, particularly for the roads between buildings.

Testing dataset Ankeny Building Cadastre

Geom. features 46% 33% 48%

Geom. + Color CN (0.6) 24% 16% 41%

Table 6. Overall classification errors for inter-dataset experiments
with LGBM classifier run with 2 sets of features: geometric only
and both geometric and color. Color information yields a signifi-
cant performance boost in prediction accuracy in all datasets.

5. CONCLUSION

In this paper we described an approach for a point-wise semantic
labeling of aerial photogrammetry point clouds. The core contri-
bution of our work is the use of color features, what improves sig-
nificantly the overall classification results. Further we provide a
concise comparison between two standard machine learning tech-
niques that hopefully facilitates the decision making process of
future research, showing that the Gradient Boosted Trees classi-
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Cadastre dataset

(a) Original data.

(b) Classification with geometry features only.

(c) Classification with geometry + color features.

Ground Road Building

High veg. Car Human-made obj.

Figure 5. Qualitative results obtained with our approach on the
Cadastre dataset, using the other two datasets for training. We
used neighbor color features within a 0.6-meter radius neighbor-
hood and the Gradient Boosted Trees classifier. Using color in-
formation results in a more accurate segmentation.

fier outperforms the Random Forest classifier, in some cases by
a large margin. Our method performs not only with high accura-
cies over the whole range of datasets used in the experiments but
also with a high computational efficiency, making our approach
suitable for interactive applications.

There are several directions that we would like to explore to in-
crease accuracy and further decrease computational complexity.
First we would like to explore the possibility to use auto-context
information to train a second classifier that takes into account
class labels of the neighboring points. Our preliminary experi-
ments with this technique provided smoother results and higher
accuracy. Another interesting topic to is to combine point cloud
and image classification. Existing image classification algorithms
are trained specifically to detect objects of such classes as cars

and other human made objects. This method could increase the
robustness of our classifier in particular on the classes that often
confused: cars and human-made objects.

The classification method presented in this paper will soon be part
of Pix4Dmapper Pro. Earlier we mentioned that access to prop-
erly labeled training data that represents aerial photogrammetry
point clouds is limited. To overcome this issue we will imple-
ment an incremental training method, where users will be given
the possibility to classify their data, visualize and correct errors
manually. In a next step we will offer our users the possibility to
include their datasets into our training data to improve the clas-
sifier quality. As the amount of training data increases we will
be able not only to provide more accurate classifiers but to also
train specialized ones. For example, we could provide a selec-
tion of classifiers for indoor and outdoor scenes, and for different
seasons and scales.
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