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ABSTRACT: 

Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional 
field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne 
synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In 
addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages 
make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS 
points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as 
substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for 
further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS 
points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its 
feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business 
districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized 
along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN 
clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven 
able to provide more detailed information for construction monitoring.  

1. INTRODUCTION

Human activities, such as population growth, economic 
globalization, urban extension, and natural disasters have led to 
frequent urban changes, which mostly regard building 
construction. Monitoring such changes is important for city 
management, urban planning, updating of cadastral map, 
environmental monitoring, disaster assessment, etc. (Gamba, 
2013; Marin et al., 2015). In contrast to conventional field 
surveys, which are usually expensive and slow, remote sensing 
techniques are fast and cost-effective alternatives. Spaceborne 
synthetic aperture radar (SAR) sensors provide radar images 
captured rapidly over vast areas at fine spatiotemporal resolution. 
For example, a single TerraSAR-X (TSX) image acquired in 
Stripmap mode covers a standard scene size of 50 km × 30 km, 
which can be repeatedly scanned every 11 days, with spatial 
resolution of 3 m. The spatial resolution can be increased up to 
20 cm when Staring Spotlight mode is operated (Mittermayer et 
al., 2014). In addition, the active microwave sensors are capable 
of day-and-night vision and independent of weather conditions. 
The advantages mentioned above make SAR suitable for 
monitoring tasks.  

Time series analysis based on SAR images is widely used for 
urban monitoring. Persistent scatterer interferometry (PSI) 
(Crosetto et al., 2016; Ferretti et al., 2000, 2001, 2011; Hooper et 
al., 2004; Kampes, 2006) is a technique to detect and analyse PS 
points, which are characterized by strong, stable, and coherent 
radar signals throughout a SAR image sequence and can be 
regarded as substructures of buildings in built-up cities. 
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Attributes of PS points, including line-of-sight velocities 
(mm/year level), topography heights, and geographic positions, 
can be derived and used for monitoring of structural deformation 
and 3D building modelling. A prerequisite of forming PS points 
is that their signals must maintain coherence throughout a time 
series of SAR images. For example, to avoid coherence loss, 
buildings covered with PS-like substructures are modelled to be 
steady and free of any big changes during the entire acquisition 
period of the SAR image stack. In contrast, if the substructures 
disappear or emerge arbitrarily due to construction, the 
corresponding temporary PS points are discarded at the initial 
screening of temporally stable scatterers in a standard PSI 
processing.  

Certain approaches (Ansari et al., 2014; Brcic and Adam, 2013; 
Ferretti et al., 2003; Novali et al., 2004) are dedicated to 
retrieving temporary PS points, which exist only in a portion of a 
SAR image sequence due to big changes. Our previous work 
proposed a 4D change detection technique to recognize two types 
of temporary PS points, which are called disappearing big change 
(DBC) and emerging big change (EBC) points, along with their 
occurrence times (Yang et al., 2016b). This technique has been 
validated by simulated and real data tests.  

In this paper, we apply our further developed method to enable 
construction monitoring in more detail. The spatiotemporal 
change detection result reveals a global picture of DBC and EBC 
points distributed over a built-up area (5 km × 5 km). Each DBC 
and EBC point indicate disappearance and emergence, 
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respectively, of a substructure on a building at a specific time. 
We focus on single buildings to explore their construction 
progresses in detail, e.g., completion times of main structures, 
supplemented substructures, and storeys. In order to move 
towards object analysis, we cluster spatially correlated DBC or 
EBC points of similar temporal evolution pattern into segments.  
 
This paper is organized as follows. We describe PSI, our change 
detection approach, and clustering scheme in Sections 2, 3, and 
4, respectively. Section 5 discusses the experiments in depth 
based on pixel-based analysis. The object-based analysis is then 
followed in Section 6. Finally, we summarize the conclusions and 
future works in Section 7.  
 

2. PERSISTENT SCATTERER INTERFEROMETRY 

Input data are a time series of N spatially overlapping complex 
SAR images acquired from the same orbit. So-called slave 
images are precisely co-registered to a master image, which is 
selected under small baseline constraint (Berardino et al., 2002; 
Lanari et al., 2004). Then, N-1 interferograms between the master 
and all of the slave images are computed. The interferometric 
phases of each pixel are used to estimate its temporal coherence, 
line-of-sight velocity, and relative topography height via a 
periodogram search (Ferretti et al., 2001). The temporal 
coherence serves as a measure of phase stability throughout the 
SAR images. Finally, pixels with high temporal coherences are 
selected as PS points. However, DBC and EBC points, if any, are 
just discarded in standard PSI as they suffer coherence loss 
during the entire image sequence. To retrieve such big change 
information, we resort to our approach described in the next 
section.  
 

3. 4D CHANGE DETECTION TECHNIQUE 

3.1 Single-break-date Change Detection 

We first illustrate the change detection scheme subject to a single 
break date that big changes occur before or after. Complete, front, 
and back SAR image sets are defined from an image sequence 
for use in this scheme. The complete set consists of all of the 
images in the sequence. The front and back sets comprise the 
images taken before and after some arbitrarily chosen break date, 
respectively. Our aim is to find PS points that exist in the front 
set but disappear in the back set and vice versa. The PS points 
that suddenly disappear are termed DBC points and those 
emerging in the back set are called EBC points. 
 
The flowchart of single-break-date change detection (Figure 1) is 
composed of the persistence, disappearance, and emergence 
scenarios, in which the complete, front, and back sets are mainly 
involved, respectively. These three image sets are processed by a 
standard PSI procedure to generate three temporal coherence 
images. The temporal coherence of a DBC or EBC point in the 
front or back set is supposed to be higher than that in the complete 
set, which is reduced due to the big change. Based on this 
assumption, the change indices of a pixel x in the disappearance 
(CID) and emergence (CIE) scenarios are calculated by 
 

CID(x)
[-1 , +1]∈R

= γT
F(x) − γT

C(x) (1) 

CIE(x)
[-1 , +1]∈R

= γT
B(x) − γT

C(x) (2) 

 
where γT

C , γT
F , and γT

B  denote the temporal coherences in the 
complete, front, and back sets. A pixel is more likely to be a DBC 
or EBC point when CID or CIE is closer to 1, respectively. A 

change index distribution over DBC or EBC points is modelled 
to be a right-tailed probability function towards 1. Then, a 
statistical-based thresholding is applied to the change indices of 
the pixels to extract DBC and EBC points. The extracted points 
are jointly analysed with the PS points, which are selected in the 
persistence scenario, to reject two types of outliers. First, PS 
points are discarded if they coincide with either of the other two 
point labels. Second, a DBC point must not be an EBC point as 
well and vice versa. Finally, the PS, DBC, and EBC points are 
combined into a change detection result. However, the accurate 
times of the big changes are lacking as they are only known to 
disappear and emerge after and before the break date, 
respectively. 
 

 
Figure 1. Flowchart of single-break-date change detection. 
Persistence (blue), disappearance (red), and emergence (green) 
scenarios are dedicated to extracting PS, DBC, and EBC points, 
respectively. 
 
3.2 Multi-break-date Change Detection 

To detect accurate big change times, a set of single-break-date 
results are jointly analysed in a multi-break-date change detection 
(Figure 2). For each pixel, two sequences, i.e., change indices and 
initial point labels (PS, DBC, and, EBC), have been determined 
thus far spanning a certain temporal period of interest. These two 
sequences are now analysed in depth. Some of the initial labels 
may be erroneous due to processing uncertainty. The majority 
vote is then applied to each label sequence to determine the pixel’ 
label, e.g., a pixel is labelled PS if most of its initial labels are PS. 
Nevertheless, false labels are still unavoidable but can be 
removed by an outlier filtering. Three outlier types are described 
below along with their removal strategies using sliding window 
operation. 
 Homogeneous points are expected to form a single object. 

For example, PS points are unlikely to appear on a 
demolished apartment full of DBC points. For this reason, 
PS, DBC, or BC points, which are in the majority in a 
window, are retained; the other inconsistent points are then 
deleted. 

 An isolated PS, DBC, or EBC point in a window is 
removed considering that its reliability cannot be inspected 
by comparing with neighbours. 

 A PS point is removed if its velocity is too large or quite 
different from the velocities of the neighbouring PS points 
in a window.  

Then, the change date of each DBC or EBC point is estimated 
from the time-series break dates based on the temporal variation 
in its change index sequence. The concept is to detect the turning 
point of a change index sequence, which is modelled to 
correspond to a disappearance or emergence date. In the end, the 
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PS, DBC, and EBC points along with the change dates are fused 
to illustrate the spatiotemporal changes. 
 

 
Figure 2. Flowchart of multi-break-date change detection.  
 

4. CLUSTERING SCHEME 

We use DBSCAN (Ester et al., 1996) to cluster DBC and EBC 
points into independent segments, which may indicate separate 
construction events. This clustering algorithm is not subject to a 
specified number of segments and can be adapted to arbitrary 
shapes. These two characteristics are suitable to cluster DBC or 
EBC points as their local amounts and spatial density vary. In 
initial clustering stage, all points are classified as core, reachable, 
and noise points. A point is defined as a core point if at least a 
minimum number of the neighbouring points are reachable from 
its position within a maximum radius. These neighbouring points 
are thus called reachable points to the core point. In addition, a 
point outside the maximum radius is also defined as a reachable 
point if it can be indirectly connected to the core point via other 
adjacent core points. By definition, a core point can also be 
reachable points to other core points. Those points that are neither 
core nor reachable points are then classified as noise points. 
Finally, a core point and its reachable points are clustered as one 
single segment. Finally, each segment’s shape is derived by α-
shape outlining (Edelsbrunner et al., 1983), which is capable of 
determining an arbitrary shape of a set of finite points in a plane. 
The clustered DBC or EBC points inside each segment are 
mutually connected by Delaunay triangulation. Those points 
along the outer edge are then linked to form a closed shape.  
 

5. DEMONSTRATION OF CONSTRUCTION 
MONITORING 

This test adopts forty TSX images (Table 1) acquired in High 
Resolution Spotlight mode from October 27, 2010 to September 
4, 2014. PSI requires a minimum amount of images, which 
coincide with lower limits of front and back image sets. Thirteen 
break dates were chosen between the 16th and 29th acquisition 
dates, i.e., we conducted thirteen single-break-date instances that 
were jointly processed by multi-break-date change detection. All 
of the images are precisely co-registered and resampled into 5000 
× 5000 grid of ground resolution of 1 m, which is able to 
represent detailed substructures. The study area (Figure 3) 
covering the city centre in Berlin, Germany, shows many bright 
clusters of strong signals on buildings that appear to be potential 
PS points. Three Google Earth (GE) images (ground truth) taken 
on September 12, 2010, May 20, 2012, and September 5, 2014 
reveal that many construction activities took place within the 
image acquisition period. The spatiotemporal change detection 

result (Figure 4) reveals the locations and dates of various 
building erection and demolition events (The examples of a DBC 
and EBC points are shown in Appendix). We focus the following 
discussion on highlighted patches 1 to 3.  
 

 
Table 1. TSX images and break date (bd) setting.  

 

 
Figure 3. Mean TSX image over study area. Patches 1 to 3 are 
used for in-depth analysis. 
 
First, the construction events around Berlin Central Station are 
explored (Figure 5). The office complex of Federal Ministry of 
the Interior (area 1) had been constructed in the second half of 
2013. A series of construction events is present in area 2. The 
quad-square structures were removed at the early stage. 
Afterwards, the upper-left hotel had been erected over time by 
2013; however, another new hotel and two office buildings 
cannot be detected because the constructions were still in 
progress after the last break date. Certain new surface 
substructures in areas 3, 4, and 7 have been revealed by our 
method; in contrast, these subtle changes can be hardly seen in 
the GE images. Another construction event, which is difficult to 
be recognized from the GE images, is illustrated in area 5 where 
the bridge was renovated during a couple of early months in 2013. 
Area 6 displays two new office buildings that have been 
constructed at different schedules. The right building had been 
completed earlier, giving rise to a building-shaped pattern formed 
by clustered EBC points. In contrast, the construction progress 
on the left building was slower as only sparse EBC points 
appeared in late 2013. 
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(a) 

 
 

(b) 
Figure 4. Spatiotemporal change detection result. Patches 1 to 3 
are used for in-depth analysis. (a) Steady, disappearing, and 
emerging buildings represented by PS (blue, 41277/km2), DBC 
(red, 2200/km2), and EBC (green, 7180/km2) points. (b) 
Disappearance and emergence dates: black to red, earliest to 
latest in 2013.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Construction monitoring in patch 1 (Figure 3) around 
Berlin Central Station. Areas 1 to 7 are used for in-depth analysis. 
GE images were acquired on (a) September 12, 2010, (b) May 20, 
2012, and (c) September 5, 2014. (d) and (e): spatiotemporal 
change detection result in patch 1 (Figure 4). 
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The second example (Figure 6) is about monitoring a business 
district, in which building changes are usually frequent and need 
cost-effective surveillance schemes. In the early 2013, the 
buildings in areas 1 and 2 were demolished. Meanwhile, the main 
structures of some new buildings appeared in areas 3 to 7 and the 
constructions continued to the end of 2013. Since the second half 
of 2013, certain substructures had been added to the German 
Railway’s office complex in area 8. These additions seem vague 
in the GE images but are clearly revealed in our result.  
 
The last example demonstrates construction monitoring of single 
high-rise buildings (Figure 7). The left building’s main structure 
(area 1) had been erected in early 2013 and the remaining 
substructures were later complemented over time. In area 2, 
certain new storeys were built upon an existing building from low 
to high level in sequence along the magenta arrow (Figure 7(e)). 
This example shows that our technique is able to provide detailed 
spatiotemporal information about construction progress. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Construction monitoring of business district in patch 2 
(Figure 3). Areas 1 to 8 are used for in-depth analysis. GE images 
were acquired on (a) September 12, 2010 and (b) September 5, 
2014. (c) and (d): spatiotemporal change detection result in patch 
2 (Figure 4). 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7. Construction monitoring of single high-rise buildings 
in patch 3 (Figure 3). Areas 1 to 2 are used for in-depth analysis. 
GE images were acquired on (a) September 12, 2010, (b) May 20, 
2012, and (c) September 5, 2014. (d) and (e): spatiotemporal 
change detection result in patch 3 (Figure 4). 
 

6. OBJECT-BASED ANALYSIS 

Moving from point- to object-based analysis, we select two 
representative examples for discussion. The first example (Figure 
8) explores three new office buildings of Federal Ministry of the 
Interior. Buildings 2 and 3 were constructed in October 2013. We 
infer that their construction progresses were almost the same 
considering that the mean and SD of their emergence dates are 
close (these values refer to the break dates given in Table I). In 
more detail, the construction on building 2 (Mean: 23.3) was 

supposed to be finished a bit earlier than building 3 (Mean: 23.9), 
if anything. Compared with buildings 2 and 3, building 1 seems 
to be built one month later in November. In addition, the 
construction time of building 1 was supposed to be relatively long 
as its SD of emergence dates is larger than those of other two 
buildings. The second example (Figure 9) looks into a new high-
rise building (segment 1) and certain new storeys (segment 2) on 
an existing building. The new building was built in July 2013. 
Many substructures were added to the main structure, which had 
been completed in the early stage, randomly in space and time. 
This activity is credited to the temporal variation, i.e., SD of 2.7, 
during the construction. The new storeys were constructed 
roughly between July and August in 2013. The fact that these 
storeys were layered gradually from bottom to top gives rise to 
the temporal variation indicated by SD of 2.1. In summary, 
object-based analysis gives assistance in understanding of single 
construction events in an efficient way. If need be, detailed 
investigations on events of interest can resort to point-based 
analysis. 
 

 
(a) 

3  
(b) 

Figure 8. Spatiotemporal changes within area 1 in patch 1 (Figure 
5). (a) EBC points are clustered as segments 1, 2, and 3 that 
correspond to three new office buildings of Federal Ministry of 
the Interior. (b) Mean and SD of emergence dates (unit: bd 
defined in Table 1). Segment 1: Mean, 25.1; SD, 3.1. Segment 2: 
Mean, 23.3; SD, 2.2. Segment 3: Mean, 23.9; SD, 2.0.  
 

 
(a) 
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(b) 

Figure 9. Spatiotemporal changes in patch 3 (Figure 7). (a) EBC 
points are clustered as segment 1 (new high-rise building) and 
segment 2 (new storeys). (b) Mean and SD of emergence dates 
(unit: bd defined in Table 1). Segment 1: Mean, 18.4; SD, 2.7. 
Segment 2: Mean, 19.1; SD, 2.1. 
 

7. CONCLUSIONS 

Previously, we proposed a 4D change detection technique to 
detect spatial changes (3D) and occurrence times (1D). In this 
study, we apply our further developed method to enable 
construction monitoring in more detail. The aims of the three case 
studies are to monitor construction progress, business districts, 
and single buildings. As to construction monitoring, three main 
construction types, i.e., demolition, erection, and renovation, can 
be distinctly recognized along with change times that 
substructures are added or removed. Such spatiotemporal change 
information is able to be derived from a business district 
characterized by frequent and intensive building changes. In 
more detail, construction progress of single buildings can be 
obtained with spatiotemporal interpretations. One typical 
example in our test reveals that several storeys were built upon 
an existing high-rise building layer by layer. We demonstrate that 
object-based analysis is helpful for efficient understanding of 
single construction events. Then, point-based analysis targeting 
substructures can be conducted for more detailed investigation if 
necessary. In summary, our method is applicable to monitor 
building construction with detailed and comprehensive 
spatiotemporal information. For future works, we will work on a 
study area in Stuttgart, Germany, where many constructions, e.g., 
the main station and traffic lines, started since 2010 and require 
cost-effective monitoring approaches for municipal 
administration.  
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APPENDIX 

(a) 

(b) 
Figure A.1. Example of DBC point’s (a) temporal coherence 
sequence and (b) chance index sequence along with initial point 
labels.  

(a) 

(b) 
Figure A.2. Example of EBC point’s (a) temporal coherence 
sequence and (b) chance index sequence along with initial point 
labels.  
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