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ABSTRACT:

Highly automated driving (HAD) requires maps not only of high spatial precision but also of yet unprecedented actuality. Traditionally
small highly specialized fleets of measurement vehicles are used to generate such maps. Nevertheless, for achieving city-wide or even
nation-wide coverage, automated map update mechanisms based on very large vehicle fleet data gain importance since highly frequent
measurements are only to be obtained using such an approach. Furthermore, the processing of imprecise mass data in contrast to few
dedicated highly accurate measurements calls for a high degree of automation.
We present a method for the generation of lane-accurate road network maps from vehicle trajectory data (GPS or better). Our approach
therefore allows for exploiting today’s connected vehicle fleets for the generation of HAD maps. The presented algorithm is based
on elementary building blocks which guarantees useful lane models and uses a Reversible Jump Markov chain Monte Carlo method
to explore the models parameters in order to reconstruct the one most likely emitting the input data. The approach is applied to a
challenging urban real-world scenario of different trajectory accuracy levels and is evaluated against a LIDAR-based ground truth map.

1. INTRODUCTION

Technologies for autonomous vehicles (AV) and advanced driver
assistance systems (ADAS) are topics which are intensively in-
vestigated by many automotive OEMs and suppliers. While a
lot of upcoming function of AV and ADAS are heavily related
to a high accurate map (HAM) the challenges of map generation
become one of the main fields of interest but remain partially un-
solved so far. As a promising technique, crowd-sourcing methods
are in the limelight of many works concerned with fully auto-
mated map construction.

This paper presents a new approach for extending a street ac-
curate road network map to a lane accurate one using trajecto-
ries of GPS-monitored vehicle fleets. Reversible Jump Markov
chain Monte Carlo and simulated annealing are used to explore
the valid dimensions and configurations of a model representing
the lane graph to reach the one which most probably emitted the
input data.

The paper is organized as follows: Section 2 outlines the state of
the art of lane accurate road network generation. Section 3 intro-
duces the mathematical basics needed in our approach. Section 4
presents the basic models which are used by our subsequently de-
scribed lane accurate map generation algorithm. Section 5 details
the input data, namely the trajectory fleet measurement data in
three accuracy levels and a LIDAR based ground truth map of an
exemplary scenario. Finally, the results of our approach evaluated
against the ground truth map are presented. Section 6 concludes
the paper and presents possible future work.

∗Corresponding author

2. STATE OF THE ART

Since GPS is publicly available, various approaches for the fully
automated derivation of road network graphs from vehicle fleet
trajectories have been presented. This section gives an overview
of the state of the art of road and lane accurate map construction
in 2.1 and 2.2 respectively.

2.1 Road Accurate Map Construction

Since our approach of lane accurate map construction presented
in Section 4 is inseparable from the topic of road accurate map
construction we will first present the state of the art with re-
spect to the latter. To overcome the great diversity of approaches
Ahmed et al. (2015) introduced a categorization in three classes:
A) intersection linking, B) incremental track insertion and
C) point clustering. Algorithms of category A firstly transfer
detected curves and intersections into nodes in the graph and,
secondly, analyze the trajectories to identify the connections be-
tween nodes. This technique is used with remarkable results by
Karagiorgou and Pfoser (2012). Incremental track insertion algo-
rithms insert the trajectories to an empty map iteratively and up-
date the resulting graph at each iteration by using map matching
procedures. Finally, point clustering approaches as used by Bia-
gioni and Eriksson (2012) transform the input data into a point
cloud to subsequently cluster them for example into a density
based discretization image to identify the original graph.

2.2 Lane Accurate Map Construction

The categorization from Section 2.1 applies for lane accurate map
construction. Bruntrup et al. (2005) provide a generic approach
as a representative of the incremental track insertion algorithm.
Their system uses AI techniques for inferring the geometries and
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a cluster algorithm to generate the road map. As an intersec-
tion linking algorithm Schroedl et al. (2004) present an approach
which firstly divides the input in roads and intersections in order
to infer the roads and subsequently the lanes centerlines for each
portion.

3. MATHEMATICAL BASICS

In this section the mathematical basics of our approach are sum-
marized. Section 3.1 comprises the basic idea of Markov chain
Monte Carlo (MCMC) methods which constitutes the principle
of the subsequently presented Reversible Jump MCMC methods
(Section 3.2).

3.1 Markov chain Monte Carlo Methods

Monte Carlo methods are statistical algorithms which can be used
e.g. for the computation of large hierarchical models by generat-
ing representative random samples from the investigated function
or numerical approximations of integrals.

While there are different approaches to sample from low - dimen-
sional spaces like Importance Sampling (Hastings, 1970), Markov
chain Monte Carlo methods enable sampling from arbitrarily com-
plex distributions out of high - dimensional spaces. The main idea
of MCMC methods is to define a transition kernel T of a chain
which has the investigated function π as its stationary distribution
which can then be used to generate a sample.

A general MCMC method is the Metropolis-Hastings-Algorithm
(MH) (Hastings, 1970)(Metropolis et al., 1953). It generates a
possible new state θ′ of the Markov chain from a proposal distri-
bution q(·|θ) and decides whether or not to accept it. This proce-
dure is hereafter referred to as MH step. If the detailed balance
condition

T (θ′|θ)π(θ) = T (θ|θ′)π(θ′)

is satisfied, a stationary distribution exists and if the generated
chain stays irreducible and aperiodic (Meyn and Tweedie, 1993)
the chain converges to this distribution. The probability of ac-
cepting the new state is defined as

θ(t+1) =

{
θ′, if w ≤ r(θ(t), θ′)

θ(t), else

r(θ, θ′) = min

{
1,
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

}
(1)

w ∼ Uniform[0, 1].

Since the convergence requirements are fulfilled, π is the station-
ary function of the transition kernel T (θ(t+1)|θ(t)).

3.2 Reversible Jump Markov chain Monte Carlo Methods

MCMC methods are limited to problems of fixed dimension. In
order to enable dimension changes of θ, Green introduced the Re-
versible Jump MCMC (rjMCMC) methodology in (Green, 1995).
This method extends the general MCMC methods by transitions
in the kernel T between different state spaces.

Let Sk be the k-th state space and πk the target distribution de-
fined on the k-th space. The combined state space of the disjunct
spaces is defined as

S = ∪Kk=1({k} × Sk)

where the state θ ∈ Sk from the k-th space is written as (k, θ).
The transition kernel on S within each subspace is defined as

T ((k′, θ′)|(k, θ)) =

{
Tk if k = k′ (Section 3.1)
0 else .

Additionally to the transitions within a space Sk, inter-space tran-
sitions from Si to Sj can be implemented by defining a joint
space S′ where the spaces are complemented by additional com-
ponents so as to have the same dimension:

S′ = ({i} × Si × Ui) ∪ ({j} × Sj × Uj)

Uk = Rk,
dim(Si) + dim(Ui) = dim(Sj) + dim(Uj),∀i, j ∈ N0

Then, a bijective function τ : Si×Ui → Sj×Uj is defined which
relates two elements Θi = (i, θi, ui) and Θj = (j, θj , uj) by

τ(θi, ui) = (θj , uj).

The needed complementing components U are sampled from
ui ∼ qi(·|θi). If such a transition is chosen, ui is drawn and the
transition (θj , uj) = τ(θi, ui) to the new state (kj , (θj , uj)) is
evaluated and accepted with probability

(k(t+1), θ(t+1)) =

{
(kj , θj) if w ≤ b((ki, θi), (kj , θj))
(ki, θi) else

w ∼ Uniform[0, 1].

The detailed balance condition must still be satisfied for b(·, ·) to
ensure that π becomes the Markov chains stationary distribution.
This requires the following consideration:

Φ(Θi,Θj) = pi · πi(θi) · qi(ui|θi)
Φ(Θj ,Θi) = pj · πj(θj) · qj(uj |θj) · |Jτ |i| (2)

with Jτ |i =
∂τ(θi, ui)

∂(θi, ui)

are the probabilities of switching between the space Si and Sj
and pi/pj are those of choosing this move. The probabilities are
defined on the same space

Rdim(Si)+dim(Ui) = Rdim(Sj)+dim(Uj)

but in different variables. Thus, according to the transformation
theorem in (2) the determinant of the Jacobian of τ is multiplied
to scale the equations right.

According to (1) the acceptance probability of the transition is

b((ki, θi), (kj , θj)) =

min

{
1,
pj · πj(θj) · qj(uj |θj)
pi · πi(θi) · qi(ui|θi)

|Jτ |i|
}
.

4. APPROACH

In this section, we present our approach of lane accurate map con-
struction. The algorithm described in this subsection infers a lane
accurate road network from vehicle trajectories and a road accu-
rate map which can be derived by using one of the algorithms
mentioned in Section 2. Firstly, Section 4.1 states the models
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used to describe a lane accurate road and, subsequently, the con-
struction algorithm is explained in detail in Section 4.2.

4.1 Model

The models described in the following are able to map a general
traffic situation on lane level. To ensure that the models stay valid
and realistic they are subjected to restrictions which are imposed
by using a set of primitives and assembly rules. The overall model
is split into two different types of submodels, namely streets and
crossings which can be separated in the roadmap graph.

4.1.1 Street Model A street model is represented by a list
of nodes of the underlying road map (see Fig. 1 {S1, S2, S3}).
Any point along the road can be described by a parametrization
value υ ∈ [0.0, 1.0] as it can be seen in Fig. 1. Based on the
parametrization it is possible to define blocks on the road as it is
exemplarily shown in Fig. 1 with a gray box which extends from
the relative value 0.6 to 0.8. Thus, the absolute extension in me-
ters depends on the length of the road. A general block can then
be specified using the following parameters:

• Number of lanes
• Width of each lane
• Type of each lane marking (e.g. dashed, solid,...)
• Middle gap separating the opposite directions
• Curvature

In our work two different types of blocks are used. Firstly, a street
block describes a section with constant information regarding the
number of lanes as it is shown in Fig. 2a and Fig. 2b. Secondly,
a connector block extends the properties of a general block by a
connection permutation which makes up the difference between
two consecutive street blocks as it can be seen in Fig. 2c. Fig.
2d shows a composition of a street block with three lanes which
merges into a street block with two lanes via a connector block.
Finally, each block can be transformed into a graph representa-
tion, e.g. Fig. 2e shows the lane graph of Fig. 2d.

Since a block has its curvature as a variable property, the models
are not described by linear interpolations but by cubic Hermite
splines (Catmull and Rom, 1974) to get a smooth and realistic
representation of a road. The required values are the start- and
the endpoint of the block and the gradients in these points are
derived from the road accurate graph. The length of the gradient
vectors influences the form of the block.

0.0

1.0

0.6 - 0.8

S1

S2

S3

Figure 1. An exemplary street model referenced to {S1, S2, S3}
of the road accurate map and an exemplary block spanning from
the relative value 0.6 to 0.8. The filled bullets mark nodes and

the arrows mark edges of the road accurate graph.

4.1.2 Crossing Model A crossing model consists of an ac-
cessible area (asphalt) and connection lanes. It is defined by a
centroid point equivalent to the intersection node(s) of the road
accurate graph. Each attached road is connected by a cross sec-
tion with an incoming and outgoing part and a parameter describ-
ing the distance of the cross section to the centroid point as it

(a) Street block with one lane per
direction and without a gap.

(b) Street block with two lanes per
direction and a gap.

(c)
Connector
block with
expansion.

(d) Excerpt of a road consisting of a street block with
three lanes, a connector block and a street block with

two lanes.

(e) Lane accurate graph derived from the block model in Fig. 2d

Figure 2. Examples of specified block types.

is schematically shown in Fig. 3a. The connected road model
must end or start with a connector block, so it can make up the
difference in number of lanes if there is one. Each input can be
connected to any output by a connection lane which is again de-
scribed by cubic Hermite splines as it exemplarily shown in Fig.
3c. Finally, an intersection can be transformed to a lane accurate
graph, e.g. Fig. 3b shows the lane graph of Fig. 3c.

4.2 Map Construction

The main idea of the algorithm is to minimize a score function
Φ (Eq. 3) which assesses the deviation of the lane graph G from
the trajectories T where the minimization is performed using a
MCMC simulation. Since the deviation is measured on lane level,
a matching of the trajectories to the lane graph is necessary. This
is done by creating a Hidden Markov Model (HMM) with the
graph edges as hidden states and the trajectory points as emitted
observations which is solved by using the Viterbi Algorithm as it
is done in (Newson and Krumm, 2009). Using this, each model ξ
from the set Ξ of all crossings and streets can be evaluated against
the model’s lane graph Gξ.

Φ =
∑
ξ∈Ξ

Φξ =
∑
ξ∈Ξ

∑
t∈Tξ

∫
||Gξ(t(λ))− t(λ)||2 dλ (3)

Gξ(x) = arg min
p∈Gξ

||p− x||

where || · ||2 is a metric which uses the euclidean distance and the
difference in the driving direction angle. Tξ denotes the trajecto-
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(a) Schematic model of a
4-way intersection with four
cross sections with incoming

and outgoing parts.

(b) Lane accurate graph of the
intersection model of Fig. 3c

(c) 4-way intersection model with attached roads and connection
lanes (arrows) visible.

Figure 3. Intersection model

ries passing the model ξ. Since a trajectory is not a continuous
function but a list of m points the integral can be approximated
by a sum which results in

Φ̂ =
∑
ξ∈Ξ

Φ̂ξ =
∑
ξ∈Ξ

∑
t∈Tξ

mξ,e∑
n=mξ,s

||Gξ(tn)− tn||2 (4)

where mξ ≤ m points are matched to the regarded model ξ and
mξ,s denotes the first and mξ,e the last of them.

To formulate this as an RJMCMC problem which can be solved
by using the Metropolis-Hastings-Algorithm, (4) must be turned
into a posterior probability distribution π(·|·) of the model given
the data. Therefore, the approximated evaluation function (4) is
replaced by a function based on the probability that tn is recorded
from the matched edge of the graph or not.

π =
∏
ξ∈Ξ

∏
t∈Tξ

mξ,e∏
n=mξ,s

Υ(Gξ(tn)− tn)

As it is common practice the logarithmic values are summed up.

π =
∑
ξ∈Ξ

∑
t∈Tξ

mξ,e∑
n=mξ,s

log(Υ(Gξ(tn)− tn))

where Υ(·) is a probability formulation of the above mentioned
evaluation criteria depending on the used GNSS system. Addi-
tionally, the posterior probability distribution is modified by us-
ing a simulated annealing approach:

π(~x)→ π1/Tj (~x)

This modification is motivated by the approach of (Andrieu et al.,
2000) and causes a reduction in the acceptance probability of low
evaluated proposals in the MH step proportional to the number
of iterations. This forces the Markov chain towards the global
maximum of π.

Fig. 4 gives an overview of the iterative process. It states that
firstly a model (block or crossing) is selected. Secondly, an op-
eration is chosen independently from the current state based on
a uniform distribution and, finally, the MH step is performed by
the decision on acceptance or rejection. There are three levels
of operations, two of them are related to block models. Block-
level operations affect the internal properties of a block like the
number of lanes while Streetlevel operations affect the external
properties like the parametrization borders on the street. Regard-
ing the probability zo for choosing an operation 0 ≤ zo ≤ 1 and∑
zo = 1 applies. The add lane, remove lane, split block and

merge block operations are increasing or decreasing the dimen-
sion of the model θ by 1 while the other operations only vary the
existing parameters.

The overall algorithm can be summarized into the following steps:

1. Create a road accurate network from the input trajectory data

2. Transfer the network to parameterized models and initialize
all blocks and intersections

3. Each model: Iteration i

- Sample w ∼ Unif[0, 1]

- Select an operation depending on w (Fig. 4)

- Calculate the acceptance probability according to the
operation and perform a MH step

- Accept or reject the step. If the step is rejected, the
operation is reverted

4. Update the cooling function

5. i← i+ 1 and go to 3.

In the following, the operations are considered in detail and in
terms of unification hereafter a model ξ is in the context of RJM-
CMC referred to as a state θ (see Section 3.1 and 3.2).

Block level operations The operation adjust gap varies the dis-
tance between the opposite driving directions and adjust width
varies the width of a lane. Both of them are not changing the
model dimension and thus can be realized by performing an MH
step according to (1) with a random walk (uniform distribution)
as proposal function q.
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Figure 4. Abstract procedure of the optimization. In each
iteration firstly the model and secondly the operation is selected.

The operation add lane can add a new lane to a block on the right
or left side. Thus, the state is complemented by an additional lane
width. The initial lane width is sampled from a normal distribu-
tion which complies with the directive of urban traffic with public
bus service in accordance with (Baier et al., 2006) and applies to
our urban scenario.

The dimension transition function in accordance to Section 3.2 is
defined as

τb,add(θ, u) = (θ, u)

u ∼ N(3.25, 0.5)

and the add lane acceptance ratio is

bb,add((ki, θi), (kj , θj)) = min {1, B}

B =
zij · πj(θj)
zji · πi(θi)

·
|Jτ |i|√
2πσ2

b,add

· exp(− (u− µb,add)2

2σ2
b,add

)

In this case, the Jacobian matrix is 1. Similarly, a lane can be
removed the inverse way, therefore the acceptance ratio is

bb,rem(·|·) = min{1, B−1}

where u is replaced by the width of the removed lane.

Street level operations The operation adjust border varies the
parametrization borders of the block on the street level. Thus, the
block can be extended or shortened longitudinally. The operation
adjust lane varies the length of the direction vectors of the cubic
Hermite splines representing the centerline of a block. This way

the curvature of the street course can be influenced and therefore
a block can be adapted to a curve with arbitrary radius. The op-
eration split block can divide a block into two individual blocks.
This step generates a new block model with the same properties
as the original block, thus no special acceptance ratio but a slight
modification to the interpretation of the posterior distribution is
needed. Normally, the evaluation of the new and the old state
are compared in the MH step. However, in this case, the eval-
uation of the original block is compared with the average value
of the two resulting blocks. The other way around, the operation
merge block can unite two adjacent blocks into one and the MH
step deals with the average evaluation of the merged blocks on
the one hand and with the evaluation of the resulting block on the
other. All operations can be realized with a random walk proposal
function.

Crossing operations The crossing operations are equal to the
block- and streetlevel operations. Additionally, adjust area change
the parameters defining the spatial extension of the crossing. Thus,
this operation changes the surface of the intersection and can be
realized by a random walk proposal function.

5. RESULTS

In this section our algorithm is applied to a dataset in three dif-
ferent accuracy levels, which are described in Section 5.1. In
Section 5.2 the results are evaluated against a LIDAR based lane
accurate network map (Section 5.1.2).

5.1 Input Data

5.1.1 Trajectory Data To assess the quality of the results of
our algorithm we recorded ego trajectory data. The test vehi-
cle was equipped with an Applanix POS LV1 system compris-
ing a 220 channel GNSS receiver (GPS-17 component), a set of
Trimble 540 AP antennas, an inertial measurement unit (IMU-42
component) and a distance measurement instrument (DMI). Ad-
ditionally, we made use of the SAPOS2 services, a satellite refer-
ence service which can be used to increase the position accuracy.
This hard- and software setting enabled us to record the dataset
in three different accuracy levels. The first level comprises data
recorded with the GPS system only. In the second level, these
data are merged with the IMU und DMI data. Finally, the sec-
ond level data are merged with post processing data from SAPOS
to reach a high accuracy level. The dataset maps an inner city
scenario comprising two intersections and seven roads with high
traffic volume as it can be seen in Fig. 5a. Per level it consists
of 54 trips with an overall length of about 32km running at an
average speed of about 30km/h and is recorded in 1Hz . The
datasets reach an average position error of 1.65 m, 1.19 m and
0.20 m (data from Applanix system) in the three accuracy levels,
respectively.

5.1.2 Ground Truth Data For the evaluation, we use a high
accurate LIDAR based map3 which fulfills particularly high re-
quirements in accuracy. The used laser scanner has a measure-
ment error of about 2cm which results in combination with a
differential GPS system in an absolute geo-referenced position
error of 10cm . The map is generated semi-automatically, with a
considerable amount of human post-processing, out of the point

1POS LV 220 V5 System (http://www.applanix.com/)
2http://www.sapos.de/
3generated by http://www.3d-mapping.de/
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(a) Trajectory input data of the scenario (b) Exemplary reconstructions

Figure 5. Raw trajectory input data of the scenario and exemplary reconstructions as quantitative results.

cloud of the laser scanner and results in an NDS4 associated map
with lane accurate topological and geometrical information. The
map comprises the centerlines of the lanes which implies their
widths and is represented as a graph which implies the connec-
tivity.

5.2 Evaluation

In this subsection, the results produced by our algorithm, based
on level three input data, are qualitatively evaluated. To this end,
we matched the reconstructed map to the ground truth map to as-
sociate the streets and crossings respectively. Based on this, on
the one hand, the individual properties of the models are com-
pared to state a quality measure at the model level and, on the
other hand, the matching distance between the graphs is evalu-
ated as a general measure. These criteria will be applied in two
scales. Firstly, the mentioned measures will be applied to a sin-
gle street to consider an exemplary comparison of the individual
properties. Secondly, the whole scenario is taken into account to
assess its overall quality. Furthermore, we applied two path-based
comparison methods to evaluate the topology and geometry in a
sufficient way.

Regarding a single street from the third stage dataset of a length of
about 200 m, we analyzed the total error in terms of each param-
eter of the model. In Fig. 7 the street model is shown in a three di-
mensional context where the vertical dimension is the magnitude
of the error. Fig. 7a shows the ground truth and Fig. 7b the re-
constructed street. Fig. 6 presents the total matching error of the
lane’s centerlines of both graphs as a boxplot5 with a span from
0.03 m to 0.34 m, a mean of 0.2 m and a median of 0.15 m. In
Fig. 7c the error regarding the number of lanes can be seen. Ob-
viously, in the middle of the street the corresponding block is too
short which results in a missing lane error. This error is difficult to
avoid since the exact position of an upcoming lane can only be es-
timated from the trajectories. Overall this exemplary street model
reconstructed 92% of the road correctly regarding the property of
lane numbers. Fig. 7d shows the difference of the lane width of
the associated lanes. It is striking that in the right section where
a lane is missing the match of the lanes fails. In this case, the
upcoming lane is matched to a remaining one which results in
an error that is already detected (in the number of lane property).
There is one more conspicuous error in the most left block which
originates from a new lane in the ground truth map which is not
upcoming but appearing. This characteristic cannot be derived

4Navigation Data Standard, http://www.nds-association.org/
5Data division: bottom whisker: 0%, gray box: 25%-75%, black line

(median): 50%, black point: average value, upper whisker: 100%

from the trajectories only, thus, the error cannot be avoided. On
the remaining parts of the street, the matches are correct and the
error of the reconstructed lane widths is 0.2 m in average. Fi-
nally, Fig. 7e shows the error concerning the gap between the op-
posite driving directions. In this example, the gap’s shape is quite
complex and can be estimated with an average error of 0.4 m.

0.0

0.35
[m]

0.20
0.15

Figure 6. Matching error of the lane’s centerlines [m].
Min.: 0.03 m, Median: 0.15 m, Mean: 0.2 m, Max.: 0.34 m

Investigating a single street, the mentioned properties can be vi-
sualized as it is shown in Fig. 7. Regarding the whole scenario
these properties must be quantified and therefore Fig. 8 shows the
overall matching, lane width and middle gap error as boxplots.
To create these result datasets, each street model is discretized in
portions of 1 m length which are then evaluated. Fig. 8a states
an overall matching error out of [0; 1.75] m which implies, that
there is at least one perfect match of 0 m and one worse match
which is likely caused by a missing lane and thus is of the dimen-
sion of half a lane width. Fig. 8b presents the overall error of the
lane width estimation in the range of [−0.53; 0.75] m. Here, the
errors caused by mismatches of upcoming lanes as it is occurred
in Fig. 7d are filtered since these errors are already accounted
for in the matching error. This criteria is evaluated in both direc-
tions, which means, that a negative value implies a too narrow
reconstruction of the lane and the other way around respectively.
Finally, Fig. 8c shows the overall error of the middle gap estima-
tion out of [−0.37; 0.68] m which is evaluated in both directions
too. Overall, the quite low quantitative errors of the individual
properties and additionally the visual comparison of Fig. 7a and
7b show the large potential of the method for ADAS applications,
such as lane accurate route planning and navigation.

To investigate the structure of the generated lane accurate map,
we apply two path-based evaluation methods. Firstly, we project
all the input trajectories to both the reconstructed map and the
ground truth, using again the Viterbi algorithm. The resulting
associated paths are compared regarding their length difference
and the Hausdorff distance which can be computed by
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(a) Ground truth

(b) Reconstruction

(c) Number of lanes error (max. error: 1 lane)

(d) Lane width error (max. error: 2.8m)

(e) Middle gap error (max. error: 1m)

Figure 7. The ground truth street, the reconstructed street and the error, per model property
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Figure 8. Overall error

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

The result of the length comparison is shown in Fig. 9a. This
is a major measure of the topological similarity of the graphs. A
topological error like a missing street lane or crossing connec-
tion will result in a different path, usually of different length. In
comparison, geometrical errors will only have a minor impact. In
Fig. 9b the Hausdorff distance of the paths can be seen which is
a major measure of the geometrical similarity. Here, geometrical
errors like lane widths, middle gap or position errors will result
in an offset which increases the Hausdorff distance. Topologi-
cal errors have an impact too, because a significant different path
causes a great distance.

The presented results in Fig. 8 and Fig. 9 are generated based
on the level three accuracy dataset. The corresponding results of
the first dataset, comprising GPS data only, are summarized in
Table 1. The evaluations of the second dataset, comprising GPS,
IMU and DMI, are shown in Table 2.

Criteria Min. Median Mean Max.
Matching error 0.0 1.22 1.44 2.89
Lane width error -0.57 0.07 0.17 0.83
Middle gap error -1.17 0.0 0.34 1.96
Path length difference 0.44 3.72 4.89 13.30
Path Hausdorff distance 1.22 3.74 5.01 9.74

Table 1. Stage 1 (GPS) evaluation [m]

Criteria Min. Median Mean Max.
Matching error 0.0 1.01 1.18 2.71
Lane width error -0.49 0.07 0.16 0.74
Middle gap error -1.11 0.47 0.41 1.90
Path length difference 0.38 3.18 3.65 9.47
Path Hausdorff distance 0.83 3.53 4.65 7.97

Table 2. Stage 2 (GPS, IMU, DMI) evaluation [m]
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(a) Length difference of associated paths in the
reconstructed and the ground truth map [m].
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Figure 9. Path-based evaluation results

Accuracy Level Median error Mean error
Stage 1 0.65% 0.85%
Stage 2 0.55% 0.63%
Stage 3 0.13% 0.25%

Table 3. Relative error of path length differences (absolute error
in Table 1 & 2 and Fig. 9a)

Since the length difference error is a measure depending on the
individual trajectory it can be transformed to a relative error by
relating it to the trajectories length. The relative errors are shown
in Table 3 which states a path length difference error of less than
1% for each stage.

Overall, our algorithm produces satisfying results regarding mea-
sures of the internal properties and of the structural characteris-
tics. Some more results of a crossing and a street are shown in
Fig, 5b.

6. CONCLUSION AND FUTURE WORK

In this paper a new approach for the derivation of lane accu-
rate maps from vehicle fleet motion data is presented. Basing
on publicly available road network graphs, lane models as pa-
rameterized blocks on the roads and intersections are initialized.
The lane models are optimized and derived using a Reversible
Jump Markov chain Monte Carlo approach to explore the param-
eter space of the model in order to find the best possible fit be-
tween the input data and the model. To evaluate the approach
we recorded ego trajectory data of vehicles in three different ac-
curacy levels with an overall average position error of 1.65 m,
1.19 m and 0.20 m respectively. We applied the algorithm to the
input data and compared it to a LIDAR based ground truth map
by evaluating the individual properties of the models and different

path-based comparison methods. Both the qualitative and quanti-
tative analysis of the results states a large potential of the method
for generating data for ADAS applications out of vehicle fleet
sensor data. In the future, we plan to extend the options of the
block models catalogue to be able to cover individual situations.
Currently, a road consists of constant street blocks and variable
connection blocks which make it difficult to fit e.g. a temporar-
ily narrowed lane which could be handled by a special narrowed
street block. Additionally, the algorithm will be extended to de-
rive information about the type of road markings, e.g. dashed
lines from mono camera data.
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