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ABSTRACT:

Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a
complex interplay of geometric, topological and semantic aspects. Given a binary image, representing the road class, centerlines of road
segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments
by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw
segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception
of what a street is. Further, we propose a two-step approach for chain-wise generalization. First, the chain is pre-segmented using
circlePeucker and finally, model selection is used to decide whether two neighboring segments should be fused to a new geometric
entity. Thereby, we consider both variance-covariance analysis of residuals and model complexity. The results on a complex data-set
with many traffic roundabouts indicate the benefits of the proposed procedure.

1. INTRODUCTION AND PREVIOUS WORK

Roads are very important entities of any geographic database.
Since they are man-made objects, road networks exhibit, often
and particularly in urban terrain, regular structures, e. g., straight
lines, circles, clothoids, ellipses, as well as orthogonality and
symmetry. However, automatic detection of these regularities
from airborne captured image or laser data is difficult. Occlusions
and shadows are probably the most intuitive challenges when one
thinks about road extraction. In fact, roads mostly are occluded
by tree crowns, balconies of buildings, or (groups of densely)
parking vehicles and their shadows. This is where semantics be-
comes relevant: Which obstacles can be ignored and which can-
not? A separation line between two highway directions may look
similar to a queue of trucks, hence, differentiation between both
groups of objects should ideally be made. The third aspect, valid
in case of aerial images, is that roads have often very homoge-
neous textures as well as moving objects; hence noise and outliers
often make acquisition of 3D information difficult. However, el-
evation data, extractable, for example by means of depth maps
(Rothermel et al., 2012), has turned out to be essential for recon-
struction of roads in urban terrain (Hinz and Baumgartner, 2003;
Wegner et al., 2015).

All these challenges let the automatically extracted road networks
– which are mostly stored in geographic bases in form of vec-
tor data for street centerlines – appear extremely wriggled and
should be corrected or generalized within a post-processing step.
There are several contributions related to generalization of road
networks but for most of them, Chaudhry and Mackaness (2006)
for example, data noise is not a significant problem. Our work
is more similar to (Bulatov et al., 2016b; Mena, 2006), where
segments are extracted from the actual sensor data and finally
generalized either by the well-known algorithm of Douglas and
Peucker (1973) or by higher order, e. g., Bézier curves. Both
modules (Douglas-Peucker and Bézier curves) were modified in
the way that the polygonal chains do not cross obstacles, such

as buildings and trees. There are two major drawbacks of this
approach: Neither variance-covariance error analysis was carried
out nor any kind of hypothesis testing which of two models – a
straight line or a smooth Bézier curve – is actually relevant for
the current segment. Besides, the approach was applied to very
short segments that are defined between two branch points result-
ing from a skeletonization algorithm. The effect of generalization
was thus barely visible, in particular, because segment endpoints
are fixed.

It is well-known, however, that for road nets, not only geomet-
ric but also topological correctness, that is, connectivity between
roads, becomes extremely relevant. Several authors (Türetken et
al., 2013; Wegner et al., 2015) exploited this fact for road extrac-
tion and in this work, we exploit topology for post-processing.
We establish neighborhoods between segments and generalize
chain-wise. The advantages are on the one hand semantic – since
the chains satisfy better the intuitive notion what a street is – and
on the other hand geometric, since more points are considered
for the upcoming generalization, increasing thus the redundancy.
The process of generalization itself consists of fitting geometric
primitives, namely, straight line segments, circle and ellipse arcs
into chains of points. We first create an over-segmentation of cir-
cular segments using a modified version of Douglas and Peucker
(1973) and finally merge neighboring segments using iterative
model selection.

We ought to mention that the problem of fitting geometric primi-
tives in pixel chains and 2D meshes has been extensively treated
in the past. For example, Günther and Wong (1990) propose the
so-called Arc Tree, which represents arbitrary shapes in a hierar-
chical data structure with small curved segments at the leaves of
a balanced binary tree. Moore et al. (2003) propose a method for
polygon simplification using circles. They aim at closed poly-
gons given by a set of 2D points. Finding ellipses in images
has attracted many researchers (Porrill, 1990; Patraucean et al.,
2012). But these works start from pixel-chains, which is not the
case in our application. We are interested in the more general
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problem of describing polygonal chains by sequences of straight
line, circle, and ellipse segments, a problem which was similarly
addressed in Albano (1974), however, neither enforcing ellipses,
nor looking for a best estimate for ellipses.

Most related to our approach is the work by Rosin and West
(1995) where segmentation of point sequences into straight lines
and ellipses is performed within a multistage process. Model se-
lection is done implicitly by evaluating a significance measure to
each proposed segment, which is based on its geometry, purely.
However, their criteria are non-statistical, thus, cannot easily be
adapted to varying noise situations. Ji and Haralick (1999) crit-
icize this and modified their idea by a hypothesis testing frame-
work. Again, these approaches are applied to images and pixel
chains, respectively.

The main contribution of this work is to combine the semantical
approach of fusing road segments and assuming that they – as
a typical man-made object – can be approximated by some geo-
metric primitives with the statistical approach of model selection
which allows to decide whether neighboring segments can be rep-
resented by a single primitive. The approach of model selection
is based on information theory since not only coordinates’ resid-
uals but also model complexity is taken into consideration. Note
that after the generalization, the data is not necessarily consistent
anymore; for example, lines and circles are not guaranteed to in-
tersect. However, the adjacency information is not lost and can be
used to create junctions of appropriate size so that the geometric
inconsistencies are not visible. This is exactly the way the road
networks are managed in most urban terrain simulation systems
and many other applications.

For reasons of completeness, we provide in Sec. 2 a brief sum-
mary of methods we applied in order to fit geometric primitives,
such as straight lines, circles, and ellipses. By ellipses, we strive
to approximate clothoides, which are more often employed to
provide a smooth transition of curvature for curvy road courses;
however, clothoids turn out to be less handy for the chain form-
ing module. The process of chain forming, applied once a raw
road network had been extracted from the classification result,
is explained in Sec. 3. In Sec. 4, we present our algorithm on
chain-wise generalization. Our results in Sec. 5 verify that road
networks generalized chain-wise with multiple primitives are vi-
sually more appealing than the results of segment-wise general-
ization with multiple attributes. In Sec. 6, main conclusions and
ideas for future work are provided.

2. BASICS

Given the set of N observed points X = {xn}, n = 1 . . . N ,
we aim at the best fitting straight line, circle or ellipse, which
we represent as homogeneous elements. In each case, we look
for the statistically best fitting parameter vector as well as its co-
variance. We need this when merging neighboring lines based
on their statistical properties. A detailed discussion of uncer-
tain homogeneous points and lines can be found in Förstner and
Wrobel (2016) and Meidow et al. (2009). We assume i.i.d. co-
ordinates of each point, sharing the same isotropic covariance
Σxnxn = σ2

nI2.

Straight Line In (Förstner and Wrobel, 2016, Sec. 9.4.2), it is
shown that the statistically best fitting line passes trough the cen-
troid of given points and that its direction is given by the principal
axis of their moment matrix. We obtain the estimated homoge-
neous coordinates of line l̂ and the covariance matrix Σl̂̂l.

Ellipse We use the homogeneous representation of conics to
express the parameters of the ellipse. Thereby, we represent con-
ics with the symmetric 3× 3-matrix

C =

 c11 c12 c13
c12 c22 c23
c13 c23 c33

 =

[
Chh ch0
cT0h c00

]
. (1)

Any point x = [x, y, 1]T on the conic fulfills xTCx = 0 .
For estimating the parameters we use the implicit polynomial
representation of the conic yT c = 0, with the vector of un-
knowns c = [c11, c12, c22, c13, c23, c33]T and the observa-
tions y = [x2, 2xy, y2, 2x, 2y, 1]T. To ensure the conic to
be an ellipse, |Chh| > 0 must be fulfilled. Thus, we impose the
quadratic constraint c11c22 − c212 = 1, which is a valid choice,
as the conic representation is homogeneous and all parameters
can be divided by any non-zero scale factor. This leads to a non-
linear Gauss-Helmert model. Using initial parameters estimated
by means of the direct method of Fitzgibbon et al. (1999), we
follow Wenzel (2016, Sec. 2.1.3, p. 47ff) to obtain the estimated
parameters ĉ of the conic and their covariance matrix Σĉĉ.

Circle A circle is a special regular conic for which the matrix
Chh ∝ I2 in (1). Instead of using the over-parametrized conic
representation, we represent circles by their implicit homoge-
neous equation zT p = 0, where we collect the coordinates of
a point x in a vector z =

[
x2 + y2, x, y, 1

]T and the param-
eters within vector p = [A, B, C, D]T, from which we easily
obtain the circles parameters, x0, y0, r. Note that setting A = 0
allows us to represent circles with infinite radius, thus, straight
lines. Given at least three observations, the resulting linear equa-
tion system can be solved using a SVD-based method, which we
refer on as direct method. Instead, we follow Förstner and Wro-
bel (2016, Sec. 3.6.2.5) and derive the covariance matrix of the
circles’ parameters [x0, y0, r] directly from observed points. Fi-
nally, using variance propagation, we yield estimated parameters
p̂ and the according covariance matrix Σp̂p̂.

3. ROAD-NET EXTRACTION AND CHAIN FORMING

Usually, classification results are represented by binary maps.
The first step of our pipeline thus consists of vectorizing these
maps. We obtain a set of polygonal chains, to which we will re-
fer as polylines. The result may appear noisy and thus, we must
filter out those polylines which do not correspond to our under-
standing of what a (part-of-a-)road is. These steps are explained
in Sec. 3.1. Our next task is fusion of the remaining polylines
into chains, which is done for two main reasons. Firstly, since the
polylines connect just neighboring junctions, the chains conform
better with our perception of street than the raw polyline. Think
about the Oxford Street in London. Its name remains the same
throughout its course, even though multiple side roads decom-
pose it into several polylines. Secondly, chains are more suitable
for generalization, since the whole geometry of the entity may be
captured. More details are explained in Sec. 3.2. The contents of
this section are visualized on a running example in Fig. 1.

3.1 Vectorization and Extraction of Road Polylines

A classification result is represented by the road-class binary im-
age B. We denote by ∂B its boundary, which we usually smooth
by morphological operations. Starting from B, we extract the
medial axis by means of skeletonization and finally, we apply the
vectorization tool of Steger (1998). The output of this method
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Figure 1: Main steps of chain forming algorithm. Left: vectoriza-
tion by means of medial axis; forbidden areas are indicated by the
golden color. Middle: The implausible segments are filtered out.
We also recommend fusing junctions (denoted by blue crosses) in
order to increase the number of neighbors for chain forming (right
image). Two segments are fused into a chain (cyan), because their
partial dominant direction were similar. The red segment is a side
road in this case. Chains and side roads are the main input for the
chain-wise generalization, see Sec. 4.

is a set of open polygonal chains, which we call polylines. An
endpoint of a polyline is always either a pixel on ∂B (usually,
any concavity), or a branch point, for which at least three points,
belonging to ∂B, have the same distance. In the first case, we re-
fer to the polyline endpoint as to a dead end while in the second
case, we denote it as a junction. Beside these two cases, a partic-
ular situation is observed if the polyline is closed, or, equally, if it
is homeomorphic to the circular line. In this situation, both dead
ends coincide with one of the vertices of the polyline.

To recognize whether a polyline endpoint is a dead end or a junc-
tion, the range-search procedure is applied. All endpoints are
clustered by means of the generalized DBSCAN algorithm (Sander
et al., 1998), which is the state-of-the-art tool for downsampling
point clouds. A junction is a cluster with at least three vertices.
The structure of junctions contains their 2D coordinates and the
corresponding incident polylines. Since every concavity of B
causes one polyline, discarding those road segments which ex-
hibit a suspicious geometric appearance (too short, too broad,
etc.) and at the same time do not contribute to the topologi-
cal functionality of the road net has been proposed in the liter-
ature (Mena, 2006; Bulatov et al., 2016b). Thus, the iterative
filtering procedure is based on polyline attributes, such as width,
length, type, etc., which are calculated according to Bulatov et al.
(2016a). More concretely, we delete within one iteration all poly-
lines of which at least one endpoint is not a junction and whose
length or width take on a suspicious value (e. g., the length below
2 m or width out of range [2 m; 50 m]). After every iteration,
the attributes are updated. In order to remove redundant loops,
for example, around isolated trees, an additional module was im-
plemented, however, not employed since we wish to demonstrate
the tools implemented in the next section to fit circle arcs.

3.2 Chain Forming

The previously discussed polylines serve, for the most part, as
connection links between the junctions and do not correspond
to the generally understood term of street. We wish to perform
fusion of polylines into chains in order to generalize them chain-
wise in the next step. The essential precondition of chain form-
ing is establishing – geometric and topological – similarities be-
tween the polylines, which is done using the attributes mentioned
in Sec. 3.1. That is, to find candidates for fusion, we have to
search for similar attributes between pairs of polylines. The nec-
essary condition for similarity is that two polylines are topolog-
ically neighboring; in other words, they must share a common

junction. This additionally simplifies the implementation since
all the remaining steps of the algorithm run over junctions. Given
two polylines gathered in a junction, the (dis)similarity of their
geometric attributes is denoted as cost. The smaller the cost, the
larger the likelihood of two polylines to be merged. After all
n(n−1)/2 costs are collected, where n is the number of polylines
converging to a junction, pairs of candidates with minimum cost
are collected for the upcoming fusion process. This may be done
either by a greedy algorithm or using the Hungarian Method. We
opted for the former one, our choice because of its simplicity and
because only a few values of n exceed 4. The order of vertices
of the merged polylines should be topologically correct. This
means on the one hand, reordering the polyline segments to be
fused and, on the other hand, flipping the order of points within
one polyline, if necessary.

In the rest of this section, we outline different methods for com-
paring geometric attributes keeping in mind that we want to iden-
tify both straight and circular chains. First of all, we established a
width gap: The necessary condition for two road segments to be
neighbors is that the width of the narrower one, denoted bywmin,
and that of the broader one, wmax, are similar, that is

(1− ε)wmax < wmin, where ε ≈ 0.5. (2)

This assumption is reasonable because a street usually has a con-
stant width throughout its course. Note that even though this
threshold may seem large, it is only a necessary condition. To
make this condition also sufficient, we investigated two promis-
ing methods: First, the partial dominant directions of two neigh-
boring polylines and second, the direct circle-fit method from
Sec. 2 within a RANSAC framework (circle-fit + RANSAC).

In order to estimate the partial dominant directions, we build for
each polyline a weighted histogram of directions modulo 180◦,
where the weights are proportional to the segments’ lengths. A
hill-and-dale analysis of the smoothed histograms yields, in es-
sential, the partial dominant directions. Our cost function is thus
given by the truncated absolute difference of the partial dominant
directions corresponding to the relevant junction (Fig. 1, right).
The more the dominant directions differ, the higher the cost.

For the second approach, the direct circle-fit method mentioned
in Sec. 2 is the core function for the RANSAC algorithm over
the union of vertices of both polylines. Here the dissimilarity is
given by the percentage of outliers. The advantage of this method
is that we can detect, consciously, circular structures around a
junction. The problem, however, is extension of chains over pairs
of polylines without storing the parameters of the fitted circles.
Note that numerous further cost functions can be devised. Be-
sides those mentioned in Bulatov et al. (2016a), we implemented
the circle-fit function from the minimum set (the junction and two
loose ends) of both polylines and measured once again the outlier
percentage to build the cost function. Clearly, this was by far less
accurate than the solution based on RANSAC. Alternatively, one
could compare the curvatures of the adjacent polylines. However,
the positions of vertices are often very noisy and, since building
the second derivatives is hardly known to be a numerically stable
process, we rejected this idea. Summarizing, partial dominant di-
rections and circle-fit + RANSAC, both preceded by the width
gap filter, are the best trade-offs between characterization of the
local course of the polyline near the junction and the point of view
of the numerical stability, for which possibly all vertices should
be considered.
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4. GENERALIZATION

Given the chains from road-net extraction, we wish to represent
them by sequences of straight line, circular, and ellipse segments.
The proposed method consists of two steps, described in subsec-
tions 4.1 and 4.2. Given the chains, we first iteratively segment
them into circular segments, which yields an over-segmentation.
Second, merging neighboring segments is performed based on
model selection. In this step, straight lines, circular arcs and
ellipses are estimated optimally in a least squares sense. This
way, we are more flexible representing curved courses than us-
ing straight lines, solely. It might be confusing that polylines
just connected to chains are segmented into smaller parts again,
which are then fused once more. Note that the chain-forming
procedure is based on topology and the streets attributes, while
pre-segmentation here is just based on the polylines geometry.
Over-segmentation is a natural side-effect of the algorithm and is
desired in order to generate proposals for later merging to larger
and potentialy more complex geometric objects, which are con-
sistent to the given raw data on one hand but generalizations in
terms of our intuition of streets on the other hand.

4.1 Segmenting Point Sequences into Circle Segments

The concept of chain segmentation into circle segments is based
on the circlePeucker algorithm (Wenzel and Förstner, 2013),
which is an adaption of the well known Douglas-Peucker algo-
rithm (Douglas and Peucker, 1973). The original algorithm is
designed to simplify polylines by recursively splitting a sequence
of polyline edges into larger edges until the distance of an elimi-
nated point to the corresponding edge is below a threshold t.

Instead of straight lines, circlePeucker uses circle segments
(Wenzel and Förstner, 2013). Given a sequence of points, it is
recursively partitioned into segments which approximate the ac-
cording points by a circular arc up to a pre-specified tolerance t.
If applicable, a segment is split at that point xn, where the dis-
tance to the circular arc is maximum. In order to enforce continu-
ity, they fix the start and endpoint of the segments and determine
the best fitting arc. As threshold t we use in our application half
of the width of the smallest street part involved in the relevant
group; the width gap mentioned in Eq. (2) widely guarantees uni-
formity of width values. As result we obtain a list of indices
which represent the endpoints of sought segments. This yields
the required partitioning of the original point sequence.

4.2 Merging Line Primitives Based on Model Selection

Given the preliminary, over-segmented partition of the chain, we
aim at a simplification by merging neighboring segments which
share the same geometric model instance. Deciding whether two
neighboring segments belong to the same model instance may be
based on a statistical hypothesis test. As these tests aim at re-
jecting the null hypothesis, they can be used as sieve for keeping
false hypotheses. Merging segments merely based on hypothesis
testing, however, fails due to the risk of accepting large changes
in geometry, in case the parameters of the proposed model are
uncertain. On the other hand, deciding which model fits the data
best, i. e., whether it should be approximated by a straight line,
circle or an ellipse, is a typical model selection problem.

The domain of models we use is {straight line, circle, ellipse},
which differ in the number of parameters. Here the term accu-
racy is related to the residuals, v, caused by deviations of the
points to the selected model. Let us consider a number of N

normally, i. d. observations l with covariance Σll. We are look-
ing for an U -dimensional parameter vector θ̂, whereby observa-
tions and parameters are related by the Gauss-Markov functional
model l + v̂ = f(θ̂). Using the usual definition Ω = v̂TΣ−1

ll v̂,
Schwarz (1978) derived the Bayesian Information Criterion

BIC = Ω + U lnN , (3)

as a criterion for model selection. The lower the complexity of the
model, given by the number of parameters U , the lower BIC. A
large number N of observations increases the relative precision
of the parameters and thus the reliability of the model. It can
be shown that the BIC is closely related to the description length
from information theory. Thus, we use these terms synonymously
and wish to minimize Eq. (3) to select the best model.

From the pre-segmentation, we only take the information which
points belong to the same segment and ignore the parameters of
the fitted circle segments. The final representation is achieved
by fitting straight line, circle and ellipse segments through chains
and side roads, respectively, using all points belonging to them.
Again, given a set of N observations X = {xn}, n = 1 . . . N ,
where we assume i. i. d. coordinates of each point, sharing the
same isotropic covariance Σxnxn = σ2

nI2, we aim at the best fit-
ting line l̂, circle p̂, or ellipse ĉ as described in Sec. 2. Thereby we
assume σn = 1 and take the threshold t, given above, as a priori
variance factor σ2

0 in order to scale the variance of observations.
For each model, we look for the statistically best fitting parameter
vector as well as its covariance by estimating the weighted sum
of squared residuals Ω =

∑
n v̂

2
n/σ

2
n as measure of precision and

the estimated variance factor σ̂2
0 = Ω/(N − U).

Let us assume a segmentation of points X = {Xm} into M seg-
ments. We call the current parameter vector of the m-th segment
θm. Thus, θm acts as placeholder for lm, pm or cm and includes
the number Um of parameters (2, 3, and 5 respectively) needed
to define the current model, which is our measure of complexity.
Initially, we select the best model for each segment by minimiz-
ing its description length in terms of the BIC

θ̂m = argmin
θm

BIC (Xm,θm) = argmin
θm

(Ωm + Um lnNm) , (4)

where Ωm = Ω (Xm,θm). We aim at merging neighboring seg-
ments by evaluating the gain of description length when fitting
a new model to the joined set of points. Assume that we al-
ready found models θ̂m and θ̂m+1 using the points Xm of seg-
ment m and Xm+1 of segment m + 1, respectively. We propose
the points of both segments to belong to a joined segment, thus,
Xm,m+1 = Xm ∪ Xm+1. Again, we select the best model, for
this potentially merged segment, by minimizing the BIC

θ̂m,m+1 = argmin
θm,m+1

BIC (Xm,m+1,θm,m+1) . (5)

The gain of description length is given by the difference between
the joint description length using the model θ̂m,m+1 obtained
with the merged segments Xm,m+1 and the sum of descriptions
lengths of both previous models θ̂m and θ̂m+1

∆BICm,m+1 = BIC
(

Xm,m+1, θ̂m,m+1

)
−
(

BIC
(

Xm, θ̂m
)

+ BIC
(

Xm+1, θ̂m+1

))
(6)

= Ωm,m+1 − (Ωm + Ωm+1) + Um,m+1 ln(Nm +Nm+1)

− (Um lnNm + Um+1 lnNm+1) .
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If ∆BICm,m+1 > 0 the description length of the merged segment
is shorter than the description length of two separate segments;
thus, they should be merged to reduce the overall complexity.

To evaluate the whole set of segments, we proceed in a greedy
manner. After initializing all segments by their best models in
terms of description length, we propose all neighboring segments
to be merged and select the according best model. From all neigh-
bored pairs which have a positive gain of description length, we
select the one with the largest gain. We update the segmentation,
such that one break point is removed. We iterate this process
until there are no more merging proposals with positive gain of
description length.

Finally, we inspect the estimated variance factors σ̂2
0 of the fi-

nally merged segments. If they deviate more than 10% from σ2
0 ,

the initial variance of observations was too optimistic or too pes-
simistic, respectively. Thus, we considered restarting the process,
using σ′0 = σ̂0 · σ0. Hence, the final segmentation adapts to the
given data and to the specific characteristic of each road segment.
We refer to this variant of generalization as adaptive version.

Note that the resulting partitioning may deviate from the original
junctions, as in the adjustment procedures the geometric elements
are not restricted to any particular points. However, the covari-
ance matrices for junction points – introduced at the beginning of
Sec. 2 – could be re-weighted in order to prevent the according
points changing their positions, in terms of their residuals. This
is part of our future work.

5. RESULTS

To evaluate the accomplished work, we considered the dataset
from the inner city of Munich, Germany. Given several aerial
panchromatic images enriched by near infrared channel, a dig-
ital surface model and an orthophoto were calculated using the
method of Rothermel et al. (2012). The resolution of the or-
thophoto was around 0.2 m. To perform classification, we first
computed the digital terrain model by a standard procedure, which
comprises extraction of several ground points followed by a spline
interpolation and is described in (Bulatov et al., 2014). Then we
excluded right away the set of forbidden pixels with implausible
values of relative elevation and NDVI. Finally, we extracted some
regions for training and evaluation procedure. Besides, we used
stripes computed from pairs of nearly parallel lines in orthophoto
to suppress the noise stemming from vehicles, traffic signals, etc.:
If at least a certain percentage of pixels belongs to the road class,
all other non-forbidden pixels are also assigned to the street class.
There are still many mis-classifications in this difficult dataset.
However, especially by choosing regions for training data extrac-
tion, we made sure that road pixels are extracted as correct as
possible in the regions around the traffic roundabouts since this is
where we want to demonstrate the performance of our algorithm.

In Fig. 2, we show two fragments of the dataset with classifi-
cation result, the extracted polylines (chains are omitted), and
the content of the shapefile obtained from a publicly available
source Geofabrik (2017). These images show on the one hand
the achievable accuracy of our street extraction module in com-
parison with the ground truth and on the other hand, the problem-
atic of the wriggled road courses, which we will improve next.
Thus, we will show in Sec. 5.1 the process of chain forming and
in Sec. 5.2, we assess the results of generalization.

Figure 2: Detailed view of the classification results, where non-
road class is emphasized by golden color, the input polylines, in
blue, and the “ground truth” represented by the content of the
OpenStreetMap shapefile, in red. Here, main and auxiliary roads
are depicted by solid and dashed lines, respectively.

5.1 Chain Forming

We show in Figs. 3-4 the performance of both strategies for dis-
similarity searching, namely by means of RANSAC outliers of
the circle-fit function and deviations in partial dominant direc-
tions. The polylines not belonging to any chain (equivalently, to
chain of cardinality one) will be denoted from here on as side
roads. They are omitted in Fig. 3 and marked by thin cyan lines
in Fig. 4. We see that the strategy based on fitting circles is bet-
ter suitable for searching circular regions than comparing partial
dominant directions. Thus, the circle in Fig. 4, right, has been
correctly determined. However, in general, the function based
on partial dominant direction tends to identify more natural street
courses, which is best visible in Fig. 3, right, otherwise chains
formed by straight lines become more easily interrupted. For re-
gions not reasonable for generalization, such as foot paths, high-
lighted in Fig. 4, right, both methods exhibit rather short and
senseless chains. Since only direct neighbors are considered for
chain forming, situations where small segments appear between
two junctions are undesirable, as well and should be avoided by
means of DBSCAN. It remains to say that circle-fit + RANSAC is
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Figure 3: Results of chain forming with neighborhood searching
function based on partial dominant directions (top) and on circle-
fit + RANSAC (bottom), visualized for the complete dataset (left)
and a for long street (right). The chains are given random, arbi-
trary colors. Side roads were omitted.

a slightly more time consuming strategy than the histogram anal-
ysis needed for estimation of partial dominant directions (around
20% of time) and the main problem of the latter method is made
up by noisy assignments of directions to the individual segments.

5.2 Generalization

We processed once the chains and once the side roads with the
adaptive and non-adaptive version of generalization. In what fol-
lows, the differences between the results as well as their depen-
dencies on the underlying function for neighborhood search will
be analyzed. We observe in Fig. 5 that by using the adaptive
version of generalization, straight line segments often tend to be
approximated by groups of circle arcs while circle arcs are likely
to be approximated by ellipses. This is due to the fact that model
selection tries to solve the trade-off between precision and model
complexity. Down scaling the assumed accuracy of observations
leads to smaller residuals and more complex geometries. We can
also see that the gap between the endpoints of a neighboring el-
lipse and a line is often smaller than in case of circles. Com-
ing to the comparison of underlying function for neighborhood
search, we see that after the approach based on partial dominant
directions, several circle arcs belonging to the traffic roundabout
in Fig. 5, top, are lost, however not many, and that the whole
circle could not be recognized in Fig. 5, third row. Application
of circle-fit + RANSAC allows extracting this circle completely
(within the non-adaptive approach). As a disadvantage, we can
see in Fig. 5, second row, some hallucinated circle and ellipse
arcs. Additionally as described in previous section, long straight
streets are sometimes interrupted and the slopes of the single re-
gression lines are not identical.

Figure 4: Detailed view of chain forming in case for two traf-
fic roundabouts, using partial dominant directions (top row) and
RANSAC (bottom row).

Probably, in order to get rid of some erroneous circle and ellipse
arcs, we should – apart from drastically improving the classifi-
cation result – consider clothoids instead of ellipses. They are
known to be an essential part of design of road geometries, they
have less degrees of freedom than ellipses and they would per-
fectly fit in our model estimation and selection procedure from
Sec. 2 and 4.

To demonstrate the advantages of fusion with respect to the pre-
vious approaches, Fig. 6 shows the results of application once of
the generalization module based on multiple primitives (circle-
fit-based, non-adaptive) but without fusion, visualized by dashed
red straight lines and yellow circle arcs and once the result of
polyline-wise Douglas-Peucker algorithm modified by Bulatov
et al. (2016b), shown by blue line segments. As expected, the
latter approach extremely compresses the number of vertices and
the junction positions remain fixed, yielding sometimes slant road
courses. This usually does not happen with red lines, since these
result, basically, from a regression procedure. However, junction
positions are not fixed anymore. Also, the former method tends
to recognize, where possible, circle arcs, which sometimes make
the road course more realistic, but sometimes stem clearly from
the noise. Besides, because there are usually not enough observa-
tions in a single polyline, these circle arcs were more difficult to
recognize than with chain-wise method visualized in Fig. 5 and
the traffic roundabouts are not recognized that clearly. Summa-
rizing, both alternatives do a fair job when it comes to general-
ize straight lines, however, in order to identify circular segments,
polyline fusion seems to be indispensable.

6. CONCLUSIONS AND OUTLOOK

This work aimed to identify and calculate geometric primitives,
such as straight line segments, circle and ellipse arcs within com-
plicated road networks. The instances of these road networks
are chains formed with raw polylines which have been identified
as neighbors using geometric and topological similarities. Two
possibilities in finding these similarities are to compare the par-
tial dominant directions or to check the percentage of inliers for
RANSAC with the circle-fit function taken as a basis. In both
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Figure 5: Detailed views of generalization results from two traffic
roundabouts. The output of non-adapted and adapted generaliza-
tion is shown, respectively, in the left and in the right images. The
output of partial dominant directions and circle-fit + RANSAC is
shown, respectively, in the top and in the bottom images. All el-
ements stemming from a chain are highlighted with solid lines
while the side roads are represented by dashed lines. We show
the resulting circle and the ellipses arcs as well as the straight
line segments by green, yellow, and red color, respectively.

cases, roads corresponding to both polylines are required to have
similar width and to share a junction. Using a greedy approach
based on model selection, we were able to identify the most of the
important traffic roundabouts and street courses; it should also
be mentioned that the whole generalization module has only one
data-dependent parameter, namely the threshold t. Unfortunately,
because of the noisy data and a lack of context information, it was
not always possible to trace the whole circle arc. Besides, after
applying the proposed procedure, the positions of junctions have
been shifted, and their adjustment would in general either destroy
the regular structures or require additional segments establishing
connections. In order to restrict junction points to their positions
during the generalization routine, we may change the covariance
matrix of observations, such that these points get a high precision.
This assumes a large enough number of observations to prevent
the normal equation system from rank deficiency and will be a
topic of our future work. Additionally, by luck, it is not critical in
most applications since a street has a non-negligible width and so
there remains some scope for a position of the junction. Instead,

Figure 6: Detailed views of generalization results using polyline-
wise (not chain-wise) alternative methods. Blue lines: Modified
Douglas and Peucker (1973) algorithm, yellow and red dashed
lines: Model selection approach from Sec. 4.

a smooth course of a road is very appealing for a simulation ap-
plication (Bulatov et al., 2014) and the traffic roundabouts can
be modeled appropriately. Besides, we wish to include in our fu-
ture work a more thorough quantitative evaluation of results using
ground truth data in form of shapefiles and more datasets.
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