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ABSTRACT:

The reconstruction of urban areas suffers from the dilemma of modeling urban structures in a generic or specific way, thus being too
unspecific or too restrictive. One approach is to model and to instantiate buildings as arbitrarily shaped polyhedra and to recognize
comprised man-made structures in a subsequent stage by geometric reasoning. To do so, we assume the existence of boundary represen-
tations for buildings with vertical walls and horizontal ground floors. To stay generic and to avoid the use of templates for pre-defined
building primitives, no further assumptions for the buildings’ outlines and the planar roof areas are made. Typically, roof areas are
derived interactively or in an automatic process based on given point clouds or digital surface models. Due to the mensuration process
and the assumption of planar boundaries, these planar faces are uncertain. Thus, a stochastic geometric reasoning process with statis-
tical testing is appropriate to detected man-made structures followed by an adjustment to enforce the deduced geometric constraints.
Unfortunately, city models usually do not feature information about the uncertainty of geometric entities. We present an approach to
specify the uncertainty of the planes corresponding to the planar patches, i.e., polygons bounding a building, analytically. This paves
the way to conduct the reasoning process with just a few assumptions. We explicate and demonstrate the approach with real data.

1. INTRODUCTION

1.1 Motivation

For the representation of urban scenes specific or generic mod-
els are conceivable, leading to the classical dilemma of being
too unspecific or too restrictive (Heuel and Kolbe, 2001). Spe-
cific models comprise object knowledge, for instance about man-
made structures, and can therefore directly be related to build-
ings. Parametric models, for instance, are often utilized for the
representation of buildings although they are unable to represent
objects of arbitrary shape. Therefore, buildings of arbitrary com-
plexity should be described by generic models. Especially bound-
ary representations are suitable representations for polyhedra. In
the context of 3D city modeling they are used, but actually often
obtained by converting parametric model instances.

Current research directions address the challenge to introduce
building shape knowledge without being too restrictive. The de-
tection of global regularities can be achieved for instance by clus-
tering or hierarchical decomposition of planar elements, followed
by a re-orientation and re-positioning to align the patches with
the cluster centers, cf. (Zhou and Neumann, 2012, Verdie et al.,
2015). Such approaches require specific thresholds and do not
exploit the uncertainty of the extracted elements. In (Xiong et al.,
2014, Xiong et al., 2015) the topological graph of identified roof
areas is analyzed to instantiate and to combine pre-defined low-
level shape primitives. Again, parametric models are avoided for
the sake of flexibility. The result is a boundary representation
with vertical walls and horizontal ground floor.

The instantiation of the building models is based on observations
which are inherently uncertain – which holds for automatic and
∗Corresponding author

semiautomatic acquisitions. This uncertainty results from the
measurements, wrong model assumptions, and wrong interpre-
tations or inferences. In the context of matching building models
with images this issue is pointed out in (Iwaszczuk et al., 2012).
Thus a geometric reasoning to detect and to enforce man-made
structures should take these uncertainties into account. In (Mei-
dow, 2014) the use of pre-defined primitives is replaced by the
recognition of man-made structures, i.e., geometric relations be-
tween adjacent roof areas. Geometric relations such as orthog-
onality or parallelism are found by statistical hypothesis testing
and then enforced by a subsequent adjustment of the roof planes.

An automatic reconstruction of buildings is most often derived
from airborne laser scanning data or aerial images. This offers
the possibility to specify the uncertainty of roof areas: The un-
certainty of the planes corresponding to the roof areas is a result
of the plane fitting procedure. However, if the input for the rea-
soning process is already a generic representation of the build-
ing, e.g., an arbitrary shaped polyhedron, the information about
the acquisition and its uncertainty is lost since 3D city models
usually do not come along with this information. In this case the
uncertainties of the planar patches bounding the building have
to be derived just from the given boundary representation of the
polyhedra. This is the main goal of this paper.

1.2 Contribution

We provide analytical expressions for the uncertainty of planes
corresponding to planar patches represented by 3D polygons.
These patches bound buildings as provided by 3D city mod-
els. By doing so, we consider multiply-connected regions, i.e.,
polygons or patches with holes, too. Examples are roof areas
with openings for dormer windows and buildings with a flat roof
around a courtyard.
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The approach is based on closed form solutions for the determi-
nation of moments for arbitrarily shaped 2D polygons (Steger,
1996b, Steger, 1996a). The idea is to replace the sums over point
coordinates occurring in the inverse covariance matrix, i.e., the
normal equation matrix, for plane fitting by integrals. This im-
plies the assumption that the points are distributed uniformly on
the planar patch. We extend this approach to multiply-connected
regions and to planar polygons embedded in 3D space. Method-
ologically, this is a refinement of the determination of the covari-
ance matrix for the centroid representation given a point cloud
representing a planar patch (Förstner and Wrobel, 2016, p. 397,
p. 436).

To demonstrate the feasibility and the usefulness of the approach,
we explicate a complete stochastic reasoning process for a build-
ing which comprises the determination of the planes’ uncertain-
ties, the inference of geometric relations, and eventually the en-
forcement of the deduced constraints by adjustment.

2. THEORETICAL BACKGROUND

After clarifying our notation, we present in Section 2.2 the cen-
troid representation for planes, the estimation of the correspond-
ing parameter values, and the estimation of the accompanying
covariance matrix. For the computation of the normal equation
matrix, sums of coordinate moments have to be computed. These
sums are then replaced in Section 2.4 by integrals to perform the
transition to analytical expressions for the uncertainty of plane
parameters given a 3D planar polygon.

2.1 Notation

We denote geometric 2D entities, namely points, with lower-
case letters and 3D entities, namely 3D points and planes, with
upper-case letters. For the representation of points, planes and
transformations we use also homogeneous coordinates. Homo-
geneous vectors and matrices are denoted with upright letters,
e.g., x or H, Euclidean vectors and matrices with slanted letters,
e.g., x or R. For homogeneous coordinates ‘=’ means an as-
signment or an equivalence up to a scaling factor λ 6= 0. We
distinguish between the name of a geometric entity denoted by a
calligraphic letter, e.g., x , and its representation, e.g., x or x. We
use the skew-symmetric matrix S(x) to induce the cross product
S(x)y = x × y of two vectors. The operation d = diag(D)
extracts the diagonal elements of the matrix D as vector d while
D = Diag(d) constructs the diagonal matrix D based on the vec-
tor d.

2.2 Plane Parameters and their Uncertainty given a 3D
Point Cloud

For the representation of an uncertain plane we utilize the cen-
troid form, as it naturally results from the best fitting plane
through a set of given points. The presentation comprises the cen-
troid X0 where the uncertainty of a point on the plane is smallest,
the rotation matrix R for the transformation of the plane into a lo-
cal coordinate system, the maximum and minimum variances σ2

α

and σ2
β of the plane’s normal, and the variance σ2

q of the position
of X0 across the plane. Thus the nine parameters compiled in{

X0,R; σ2
q , σ

2
α, σ

2
β

}
σ2
α ≥ σ2

β (1)

constitute a convenient representation (Förstner and Wrobel,
2016, p. 436).

Parameter Estimation For the estimation of the plane parame-
ters we consider the distances of the given I points Xi, i = 1 . . . I
to the best fitting plane A . Given a point X0 on A , the point-plane
distances read

d(Xi,A) = NT(Xi −X0) (2)

with the plane’s normal N and the points in Euclidean represen-
tation. With the squared distances of the least-squares method the
objective function is

L =

I∑
i=1

wd2(Xi,A) (3)

=
1

σ2
NT

(
I∑
i=1

(Xi −X0)(Xi −X0)T

)
N . (4)

We assume independent and identically distributed point coordi-
nates with the weight w = 1/σ2 for all observations. For the
estimation of plane parameters with individual weights for the
points, please refer to (Förstner and Wrobel, 2016, p. 436). Set-
ting the derivative to zero

∂L

∂XT
0

=
1

σ2
NT

(
I∑
i=1

(−2Xi + 2X0)

)
N = 0 (5)

reveals that the relation is fulfilled for the centroid X0 with the
coordinates

X0 =
1

I

I∑
i=1

Xi . (6)

For the determination of the plane’s orientation we compute the
eigendecomposition of the matrix of second centralized moments

M =

I∑
i=1

(Xi −X0)(Xi −X0)T (7)

= RΛRT =

3∑
k=1

λkrkr
T
k (8)

with the three eigenvalues λ1 ≥ λ2 ≥ λ3 in Λ =
Diag([λ1, λ2, λ3]) and the orthonormal matrix R = [r1, r2, r3].
The normal of the plane is then N = r3.

The third eigenvalue is the sum of the squared residuals, thus the
estimated variance of the point coordinates can be derived from

σ̂2 =
λ3

I − 3
(9)

assuming no outliers are present. If the redundancy I−3 is large
enough the estimated variance σ̂2 can be used to fix the weight
w.

In the following we assume, that the original point cloud data are
not available, and only the form of the planar patches is known;
hence we need to make assumptions on σ2 and the distribution of
the 3D points.

Uncertainty Estimation For the specification of the plane’s
uncertainty in form of a covariance matrix we centralize and ro-
tate the given points in a way that the best-fitting plane for the
resulting points is A′ = [0, 0, 1, 0]T, i.e., the XY-plane, and the
X- and the Y-axis correspond to the two major axes r1 and r2 of

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-67-2017 68



the moment matrix (7). The transformation is achieved by using
the centroid X0 and the rotation matrix R. The covariance matrix
is invariant w.r.t. this motion.

In the local coordinate system

Z′i = q + tan(α)X ′i + tan(β)Y ′i (10)

=
[

1 X ′i Y ′i
] [ q

tan(α)
tan(β)

]
(11)

holds for the Z-coordinate of a point X ′i , where α and β are the
angles between the plane’s normal and the Z-axis. With the Jaco-
bian Ji = [1, X ′i, Y

′
i ] for each observational equation the normal

equation matrix becomes

N = w

I∑
i=1

JT
i Ji (12)

or more explicit

N = w

I∑
i=1

 1 X ′i Y ′i
X ′i X ′i

2
X ′iY

′
i

Y ′i X ′iY
′
i Y ′i

2

 . (13)

Please note that the matrix N is diagonal due to the special use of
the coordinate system in the centroid, i.e.,

N = Diag ([N11, N22, N33]) (14)

= w

I∑
i=1

Diag
([

1, X ′i
2
, Y ′i

2
])

. (15)

The theoretical covariance matrix is Σ = N−1 and therefore di-
agonal, too. The variances of the estimated parameters q, α and
β are

σ2
q̂ = N−1

11 (16)

σ2
α̂ = σ2

tan(α̂) = N−1
22 (17)

σ2
β̂

= σ2
tan(β̂)

= N−1
33 (18)

for small angles α and β.

For the reasoning we need the uncertainty of the plane in the
global coordinate system as obtained by the transformation given
in the next paragraph.

2.3 Centroid representation to homogeneous representation

Given a plane A in the centroid representation (1), the homoge-
neous representation reads

A =

[
Ah

A0

]
=

[
N
−D

]
(19)

with the normal N being the third column of the rotation matrix
R and the origin’s distance D = NTX0 to the plane A . We
refer to Ah and A0 as the homogeneous and the Euclidean part
of the homogeneous coordinates A of the plane. The covariance
matrix for the plane A′ = [0, 0, 1, 0]T is then

ΣA′A′ = Diag
([
σ2
α, σ

2
β , 0, σ

2
q

])
. (20)

The point transformation Xi=HX′i with the motion matrix

H =

[
R X0

0T 1

]
(21)

leads to the plane transformation A = CA′ with the cofactor ma-
trix

C =

[
R 0

−XT
0R 1

]
(22)

of H, see (Förstner and Wrobel, 2016, p. 258). Thus the covari-
ance matrix of A is

ΣAA = C ΣA′A′CT. (23)

In the following we interpret the entries in the normal equation
matrix (13) as moments. Assuming a continuous distribution
function of the points defining a planar surface patch, we con-
sider the moments of arbitrary polygons.

2.4 Moments of Arbitrary Polygons

Assuming that all points in a region have the same weight and are
uniformly distributed, the normalized moments of order (m,n)
of a regionR are

γm,n =
1

A

∫ ∫
R
xmyn dxdy. (24)

For m=n = 0 we get γ0,0 = 1 since A is the area of the region
R. The normalized centralized moments are

µm,n =
1

A

∫ ∫
R

(x− x0)m(y − y0)n dxdy (25)

with the centroid coordinates x0 = γ1,0 and y0 = γ0,1. The
centralized second moments can readily be computed via

µxx = µ2,0 = γ2,0 − γ2
1,0 (26)

µyy = µ0,2 = γ0,2 − γ2
0,1 (27)

µxy = µ1,1 = γ1,1 − γ1,0γ0,1. (28)

Thus it is not necessary to compute these quantities explicitly if
the second moments are known (Steger, 1996b).

With the centralized second moments the normal equation matrix
(15) can be written as

N = wI Diag([1, µxx, µyy]). (29)

Using the equations for the moments of polygonal regions (Ste-
ger, 1996b), we determine the two moments µxx and µyy . This
is done by applying Green’s theorem which allows to replace the
area integrals by boundary integrals. By reducing the surface in-
tegral to a curve integral along the borders of the region R, rep-
resented by a polygon P , we are able to compute the integral as a
function of the polygon’s vertices:

Let P (x, y) andQ(x, y) be two continuously differentiable func-
tions on the two-dimensional regionR, and let b(t) be the bound-
ary of R. If b is piecewise differentiable and oriented such that
the interior is left of the boundary path, an integral over the re-
gionR can be reduced to a curve integral over the boundary B of
R in the following manner:∫ ∫

R

∂Q

∂x
− ∂P

∂y
dxdy =

∫
b

P dx+Q dy (30)
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P (x, y) Q(x, y) ∂P/∂y ∂Q/∂x

area A −y/2 x/2 −1/2 1/2

centroid x0 −xy 0 −x 0
coord. y0 0 xy 0 y

second γxx −x2y 0 −x2 0
moments γyy 0 xy2 0 y2

γxy −xy2/4 x2y/4 −xy/2 xy/2

Table 1. Decompositions for the computations of moments fol-
lowing (Steger, 1996b).

For polygons, i.e., closed sequences of K straight line segments
sk, k = 1, . . . ,K, the parametrization of the segment sk(t) is

x(t) = txk + (1− t)xk−1, t ∈ [0, 1] (31)

with the vertices xk and xk−1 of the k-th segment sk (edge). The
indices k are taken cyclically. Thus∫

b

P dx+Q dy =

K∑
k=1

∫
sk

P dx+Q dy (32)

holds for (30).

For the computation of the integral of the function F (x, y) =
xmyn over R, the function F (x, y) has to be decomposed into
∂Q/∂x and ∂P/∂y according to (30) which cannot be done
uniquely. Table 1 summarizes convenient decompositions for the
required moments, i.e., the area, the centroid coordinates, and
the centralized second moments of the regionR (Steger, 1996b).
A decomposition for arbitrary moments can be found in (Steger,
1996a).

Integration and using the decompositions listed in Table 1 yields
the following formulas. For details please refer to (Steger,
1996b). The polygon’s area is

A =

K∑
k=1

Ak with Ak =
xkyk+1 − xk+1yk

2
, (33)

taking index addition modulo K into account. The coordinates
of the centroid are

x0 =
1

3A

K∑
k=1

Ak (xk + xk+1) (34)

y0 =
1

3A

K∑
k=1

Ak (yk + yk+1), (35)

and the second (non-central) moments read

γxx =
1

6A

K∑
k=1

Ak
(
x2k + xkxk+1 + x2k+1

)
, (36)

γyy =
1

6A

K∑
k=1

Ak
(
y2k + ykyk+1 + y2k+1

)
(37)

γxy =
1

12A

K∑
k=1

Ak (xkyk+1 + 2xkyk

+2xk+1yk+1 + xk+1yk) (38)

The 2×2 matrix G of second moments is used in Section 3 to
compute a polygons’s orientation in 2D which will then be trans-

formed into the 3D space.

3. APPROACH

Based on the aforementioned concepts, we explicate our ap-
proach in detail. After the computation of uncertain planes be-
cause of given 3D polygons, we explain the subsequent geometric
reasoning consisting of hypothesis generation, statistical testing,
and adjustment.

3.1 Uncertainty of Planes

First of all, we determine the plane defined by the K vertices
{X1,X2, . . . ,XK} of the planar polygon embedded in 3D. The
plane’s normal vector Ah is (Mäntylä, 1988, p. 218)

Ah =

K∑
k=1

S(Xk)Xk+1, (39)

here in compact vector representation with Xk = [Xk, Yk, Zk]T

and index addition modulo K. For boundary representations
defining vertex points by the intersection of three or more planes,
three non-collinear vertices are sufficient, i.e.,

Ah = S(X3 −X1)(X2 −X1), (40)

to determine the normal. Figure 1 shows an example where this
assumption is violated. Several points are incident to two planes
only and hence no vertices.

For the point X defined by the mean coordinates X of the
vertices1, the incidence X ∈ A holds. Expressed in homo-
geneous coordinates, this reads XTA = 0 with the 3D point
X = [X,Y, Z, 1]T = [U, V,W, T ]T. Thus the plane’s Euclidean
part of A reads

A0 = −XT
Ah. (41)

To determine the moments of the polygon, we rotate the ver-
tices into a plane A ′′ with Z=const for all points, i.e., A′′ =
[0, 0, 1,−Z]T. This can be achieved for instance by means of the
smallest rotation (Förstner and Wrobel, 2016, p. 340)

Q = I3 −
(a + b)(a + b)T

1 + aTb
+ 2baT, a 6= −b (42)

from vector a= [0, 0, 1]T to vector b=N for the application at
hand. For horizontal ground floors N =[0, 0,−1]T holds and we
use Q = Diag([1,−1,−1]) as rotation matrix. The transformed
coplanar points are

X ′′k = QTXk with Z′′k = Z (43)

for all transformed points.

The plane A ′′ constitutes a 2D coordinate system and the poly-
gon’s vertices have coordinates (X ′′k , Y

′′
k ). We assume the poly-

gons to be possibly multiply-connected, i.e., they could enclose
holes. Therefore we have to distinguish between exterior and po-
tential interior boundaries, often denoted as rings. Figure 1 shows
an example from a data set with LoD2-buildings provided by the
Magistrat of the city of Linz, Austria (Linz, 2011). The build-
ings have been reconstructed by a semiautomatic approach with

1This is not to be confused with the centroid X0 of the polygon’s area.
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Figure 1. Building with the id 1277 from the Linz data-set. The
building’s floor has been modeled by a 2-connected polygon.

standard patterns, based on a digital surface model represented
by a point cloud and given building outlines. The building with
the ID 1277 features a courtyard, its floor has been modeled by
a 2-connected polygon with an exterior and an interior boundary
or ring.

With R rings representing a polygon, the polygon’s area is

A =

R∑
r=1

Ar (44)

with the signed areas Ar according to (33) for each ring. The
centroid of the polygon, being the normalized first moment, is

x0 =
1

3A

R∑
r=1

Kr∑
k=1

Akr
(
xkr + xk+1,r

)
(45)

with xkr=[X ′′kr, Y
′′
kr]

T =[xkr, ykr]
T being the k-th vertex of the

ring r with Kr vertices and edges, and the matrix M of normal-
ized second moments contains the elements

µxx =
1

6A

R∑
r=1

Kr∑
k=1

Akr
(
x2kr + xkrxk+1,r + x2k+1,r

)
, (46)

µyy =
1

6A

R∑
r=1

Kr∑
k=1

Akr
(
y2kr + ykryk+1,r + y2k+1,r

)
(47)

and

µxy =
1

12A

R∑
r=1

Kr∑
k=1

Akr
(
xkryk+1,r + 2xkrykr

+2xk+1,ryk+1,r + xk+1,rykr
)
. (48)

The matrix of centralized second moments reads

M ′′ = G − x0x
T
0 (49)

and its eigendecomposition M ′′ = UΛUT yields the eigenvec-
tors U = [u1,u2] and the two eigenvalues [λ1, λ2] = diag(Λ).
Observe, the eigenvalues λ1 and λ2 of the 2×2 matrix M ′′ in (49),
derived by integration, correspond to the eigenvalues λ1 and λ2

of the 3×3 matrix M in (7), derived by summation over all points.

The polygon’s centroid x0 on the plane A′′ = [0, 0, 1,−Z]T rep-

resented in the 3D space can then be back-transformed via

X0 = Q
[
x0

Z

]
(50)

to obtain the polygon’s centroid X0 in the 3D space. And even-
tually, the eigenvectors u1 and u2 in the plane A ′′ are rotated
according to

R = Q Diag(U, 1) = Q
[
u1 u2 0
0 0 1

]
(51)

to determine the rotation matrix R as part of the plane’s represen-
tation (1).

For the determination of the plane’s uncertainty we consider a
virtual scanning process yielding equally spaced points on the
plane. Given the area A of a polygon and a sampling distance ∆
in two orthogonal directions, the number of sampling points in
the polygon is S = A/∆2. Assuming a known, representative
weight w = 1/σ2 for all coordinates in (15), we get N11 = wS,
and therefore, using the eigenvalues of M ′′ in (49)

σ2
q =

(σ∆)2

A
(52)

σ2
α =

(σ∆)2

Aλ2
(53)

σ2
β =

(σ∆)2

Aλ1
. (54)

Obviously, just the product σ∆ of the assumed uncertainty σ of
the virtual sampling points and the spacing ∆ has to be specified
to compute the complete representation of the uncertain plane A
corresponding to a given polygon P . The uncertain plane in cen-
troid representation (1) is completely specified by (50), (51), (52),
(53) and (54).

3.2 Geometric Reasoning

For our boundary representation, we assume that each vertex is
defined by at least three planes intersecting in one point. Adja-
cent faces lying in the same plane will therefore evoke undefined
points. Thus in a pre-processing step we check the faces’ binary
relations encoded in the given boundary representation for iden-
tical planes and merge faces corresponding to the same plane.
Beyond that, we restrict ourselves to the relation orthogonality
as the most dominant geometric constraint. For further conceiv-
able constraints please refer to (Heuel, 2004) and (Förstner and
Wrobel, 2016, p. 304ff).

The space of hypotheses is given by all pairs of adjacent faces
represented by polygons. For the testing of geometric relations
please refer to (Förstner and Wrobel, 2016, p. 304ff). Once all
potential relations are tested, we have a set of constraints at hand.
These result from those hypotheses which could not be rejected
by the tests. For the concluding adjustment, a set of consistent,
i.e., non-contradicting, and non-redundant constraints is manda-
tory since redundant constraints will lead to singular covariance
matrices. Since we are dealing with imprecise and noisy observa-
tions, we have to face the possibility of non-rejected hypotheses
which are contradictory, too. We utilize the greedy algorithm pro-
posed in (Meidow and Hammer, 2016) and (Meidow et al., 2009)
to select a set of independent constraints automatically.
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4. EXPERIMENTS

For proving the usefulness of the approach we utilize a polyhedral
building model which has been instantiated based on an airborne
laser scan. Then we derive the uncertainty of the planes corre-
sponding to the faces of the boundary representation, perform the
geometric reasoning, determine a set of independent constraints,
and eventually conduct an adjustment to enforce the inferred con-
straints.

Model Instantiation In the data analysis step, the points of
the laser scan have been classified into roof and non-roof points.
Then the points representing roof areas have been grouped by uti-
lizing the RANSAC-based shape detector (Schnabel et al., 2007)
provided by the mesh processing software CLOUDCOMPARE.

Figure 2 shows points captured by a RIEGL LMS-Q560 scan-
ner representing the roof of a farmhouse and a corresponding
boundary representation. The reconstruction has been carried out
by initially performing a 2D triangulation and computing alpha-
shapes to determine the building’s outline. The triangles with
points of different planar point groups constitute the boundaries
of the roof sections. By analyzing the run of these borders we ob-
tained the interior roof structure, i.e., ridge lines, step-edges, and
roof valleys. All traversed lines have been simplified by vertex
decimation. The solid has been closed by assuming vertical walls
on top of the irregularly shaped outline.

The example shows the result of an analysis step, from the point
cloud to a polyhedral boundary model. In this paper we do not as-
sume the uncertainty of the resulting planar patches to be known.
However, we assume the standard deviations, except for a com-
mon factor, depend on their form.

As a result, we obtain a generic representation of the building.
Only for the non-observed building parts, i.e., the walls and the
floor, model assumptions are made. However, the result does not
provide any information about its uncertainty.

Reasoning After the determination of the planes’ uncertainties
according to Section 3.1, we determined the set of constraints
with a significance level of α = 0.05 (Section 3.2). Very small
or thin roof areas are usually very uncertain, too. Therefore, it is
likely that hypotheses with these areas involved are not rejected
and wrong constraints will be inferred. Thus, we suppress con-
straints with faces featuring areas smaller than 16 m2.

Figure 3 shows the boundary representation of the building with
the inferred constraints: 28 times orthogonality and 5 times iden-
tity have been detected. The numerous constraints for the ground
floor are not visualized for the sake of clarity.

A vertex of our boundary representation is defined by the inter-
section of at least three planes defined by the building’s faces.
Thus identical or almost identical planes will lead to indeter-
mination. Therefore we merge adjacent faces which have been
identified to lie in the same plane in a pre-processing step. Fig-
ure 4 shows the result of this simplification. After applying the
hypothesis testing with the new faces, a set of 20 orthogonality
constraints remain.

Some of the inferred 20 constraints are redundant. The greedy
algorithm identified a set of 15 independent constraints which are
depicted together with the adjusted, i.e., constrained, boundary
representation in Figure 5. Now the ridge lines and the eaves are
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Figure 2. Points of an airborne laser scan captured by a RIEGL
LMS-Q560 scanner and the deduced boundary representation in
two views. The points represent the roof areas of a farmhouse.

horizontal and the building’s outline is rectangular. Of course, the
detection and enforcement of further constraints such as identical
slopes for the roof areas is conceivable.

5. CONCLUSIONS AND OUTLOOK

We derived analytical expressions for the uncertainty of planes
corresponding to the planar patches bounding a polyhedron. This
paves the way to stochastic geometric reasoning for generic city
models, i.e., the detection and enforcement of man-made struc-
tures such as orthogonality, parallelism, or identity, e.g., for
groups of buildings.

The estimation of a plane’s uncertainty based on a given point
cloud yields a normal equation matrix. Assuming a continu-
ous distribution function for points defining a planar patch, we
interpret the entries in the normal equation matrix as moments
for arbitrarily shaped2 polygons. Furthermore, by considering
the signed areas of polygons we are able to cope with multiply-
connected polygons, i.e., polygons with interior boundaries defin-
ing holes.

2but not self-intersecting
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Figure 3. Derived constraints for the initial boundary representa-
tion with 19 faces, depicted in two views. 28 times orthogonality
(−) and 5 times identity (· · ·). The numerous constraints for the
floor are not depicted for the sake of clarity.

Expectedly, the uncertainty of a plane corresponding to a polygon
depends on the polygon’s shape, on its area A, on the sampling
distance ∆ of the equally distributed virtual sampling points, and
on the assumed uncertainty σ for the coordinates of the sampling
points. But just the product σ∆ has to be specified and the plane’s
uncertainty scales with these factors. For the successful applica-
tion of the approach, the specification of an appropriate, plausi-
ble weight w= 1/σ2 for the sampling point coordinates and the
specification of a sampling distance ∆ is crucial. Thus future in-
vestigations should try to estimate unknown variance factors, too.

For the application at hand, we performed a stochastic geometric
reasoning followed by an adjustment of the boundary representa-
tion. By considering just the relations orthogonality and identity,
already remarkable results are obtained for a real data set: the
building’s outline becomes rectangular and the building’s eaves
and ridge lines become horizontal.

The method for deriving the uncertainty of geometric entities as-
suming pre-specified densities of observations can easily be ap-
plied to other estimation problems. For standard configurations
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Figure 4. Two views of the boundary representation after merging
adjacent faces with identical planes (13 faces). 20 orthogonality
constraints have been detected.

the resulting algebraic expressions not only give insight into the
structure of the estimation problem but can be used to replace
otherwise unknown information about the precision of geometric
entities.
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