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ABSTRACT:

This paper proposes a novel framework for the disocclusion of mobile objects in 3D LiDAR scenes aquired via street-based Mobile
Mapping Systems (MMS). Most of the existing lines of research tackle this problem directly in the 3D space. This work promotes an
alternative approach by using a 2D range image representation of the 3D point cloud, taking advantage of the fact that the problem of
disocclusion has been intensively studied in the 2D image processing community over the past decade. First, the point cloud is turned
into a 2D range image by exploiting the sensor’s topology. Using the range image, a semi-automatic segmentation procedure based on
depth histograms is performed in order to select the occluding object to be removed. A variational image inpainting technique is then
used to reconstruct the area occluded by that object. Finally, the range image is unprojected as a 3D point cloud. Experiments on real
data prove the effectiveness of this procedure both in terms of accuracy and speed.

1. INTRODUCTION

Over the past decade, street-based Mobile Mapping Systems
(MMS) have encountered a large success as the onboard 3D sen-
sors are able to map full urban environments with a very high
accuracy. These systems are now widely used for various appli-
cations from urban surveying to city modeling (Serna and Mar-
cotegui, 2013, Hervieu et al., 2015, El-Halawany et al., 2011,
Hervieu and Soheilian, 2013, Goulette et al., 2006). Several sys-
tems have been proposed in order to perform these acquisitions.
They mostly consist in optical cameras, 3D LiDAR sensor and
GPS combined with Inertial Measurement Unit (IMU), built on a
vehicle for mobility purposes (Paparoditis et al., 2012, Geiger et
al., 2013). They provide multi-modal data that can be merged in
several ways, such as lidar point clouds colored by optical images
or lidar depth maps aligned with optical images.

Although these systems lead to very complete 3D mapping of ur-
ban scenes by capturing optical and 3D details (pavements, walls,
trees, etc.), they often acquire mobile objects that are not persis-
tent to the scene. This often happens in urban environments with
objects such as cars, pedestrians, traffic cones, etc. As LiDAR
sensors cannot penetrate through opaque objects, those mobile
objects cast shadows behind them where no point has been ac-
quired (Figure 1, left). Therefore, merging optical data with the
point cloud can be ambiguous as the point cloud might repre-
sent objects that are not present in the optical image. Moreover,
these shadows are also largely visible when the point cloud is not
viewed from the original acquisition point of view. This might

Figure 1. One result of our proposed method. (left) original point cloud, (center) segmentation, (right) disocclusion.

end up being distracting and confusing for visualization. Thus,
the segmentation of mobile objects and the reconstruction of their
background remain a strategic issue in order to improve the un-
derstability of urban 3D scans. We refer to this problem as disoc-
clusion in the rest of the paper.

In real applicative contexts, we acknowledge that the disoccluded
regions might cause a veracity issue for end-users so that the re-
construction masks should be kept in the metadata. Using these
masks, further processing steps may then choose to process dif-
ferently disoccluded regions (e.g. kept for artefact-free visualiza-
tions or discarded during object extractions).

We argue that working on simplified representations of the point
cloud, especially range images, enables specific problems such as
disocclusion to be solved not only using traditional 3D techniques
but also using techniques brought by other communities (image
processing in our case).

In this work, we aim at presenting a novel framework for the fast
and efficient disocclusion of LiDAR point clouds. Our first con-
tribution is to provide a fast segmentation technique for dense and
sparse point clouds to extract full objects from the scene by lever-
aging the implicit range image topology (Figure 1, center). A
second contribution is to introduce a fast and efficient variational
method for the disocclusion of a point cloud using range image
representation while taking advantage of an horizontal prior with-
out any knowledge of the color or texture of the represented ob-
jects (Figure 1, right).
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The paper is organized as follows: after a review on related state-
of-the-art, we detail how the point cloud is turned into a range im-
age. In section 3, both segmentation and disocclusion aspects of
the framework are explained. We then validate these approaches
on different urban LiDAR data. Finally a conclusion and an open-
ing are drawn.

2. RELATED WORKS

The growing interest for MMS over the past decade has lead to
many works and contributions for solving problems of segmen-
tation and disocclusion. In this part, we present a state-of-the-art
on both segmentation and disocclusion.

2.1 Point cloud segmentation

The problem of point cloud segmentation has been extensively
addressed in the past years. Three types of methods have
emerged: geometry-based techniques, statistical techniques and
techniques based on simplified representations of the point cloud.

Geometry-based segmentation The first well-known method
in this category is region-growing where the point cloud is seg-
mented into various geometric shapes based on the neighboring
area of each point (Huang and Menq, 2001). Later, techniques
that aim at fitting primitives (cones, spheres, planes, cubes ...) in
the point cloud using RANSAC (Schnabel et al., 2007) have been
proposed. Others look for smooth surfaces (Rabbani et al., 2006).
Although those methods do not need any prior about the number
of objects, they often suffer from over-segmenting the scene and
as a result objects are segmented in several parts.

Statistical segmentation The methods in this category analyze
the point cloud characteristics (Demantke et al., 2011, Weinmann
et al., 2015, Brédif et al., 2015). They consider different prop-
erties of the PCA of the neighborhood of each point in order to
perform a semantic segmentation. It leads to a good separation
of points that belongs to static and mobile objects, but not to the
distinction between different objects of the same class.

Simplified model for segmentation MMS LiDAR point
clouds typically represent massive amounts of unorganized data
that are difficult to handle, different segmentation approaches
based on a simplified representation of the point cloud have been
proposed. (Papon et al., 2013) proposes a method in which the
point cloud is first turned into a set of voxels which are then
merged using a variant of the SLIC algorithm for super-pixels
in 2D images (Achanta et al., 2012). This representation leads
to a fast segmentation but it might fail when the scale of the ob-
jects in the scene is too different. Another simplified model of
the point cloud is presented by (Zhu et al., 2010). The authors
take advantage of the implicit topology of the sensor to repre-
sent the point cloud as a 2-dimensional range image in order to
segment it before performing classification. The segmentation is
done through a graph-based method as the notion of neighbor-
hood is easily computable on a 2D image. Although the provided
segmentation algorithm is fast, it suffers from the same issues as
geometry-based algorithms such as over-segmentation or inco-
herent segmentation. Moreover, all those categories of segmen-
tation techniques are not able to treat efficiently both dense and
sparse LiDAR point clouds e.g. point clouds aquired with high or
low sampling rates compared to the real-world feature sizes. In
this paper, we present a novel simplified model for segmentation
based on histograms of depth in range images.

2.2 Disocclusion

Disocclusion of a scene has only been scarcely investigated for
3D point clouds (Sharf et al., 2004, Park et al., 2005, Becker
et al., 2009). These methods mostly work on complete point
clouds rather than LiDAR point clouds. This task, also referred
to as inpainting, has been much more studied in the image pro-
cessing community. Over the past decades, various approaches
have emerged to solve the problem in different manners. Patch-
based methods such as (Criminisi et al., 2004) (and more re-
cently (Buyssens et al., 2015b, Lorenzi et al., 2011)) have proven
their strengths. They have been extended for RGB-D images
(Buyssens et al., 2015a) and to LiDAR point clouds (Doria and
Radke, 2012) by considering an implicit topology in the point
cloud. Variational approaches represent another type of inpaint-
ing algorithms (Chambolle and Pock, 2011, Bredies et al., 2010,
Weickert, 1998, Bertalmio et al., 2000). They have been extended
to RGB-D images by taking advantage of the bi-modality of the
data (Ferstl et al., 2013, Bevilacqua et al., 2017). Even if the
results of the disocclusion are quite satisfying, those models re-
quire the point cloud to have color information as well as the 3D
data. In this work, we introduce an improvement to a variational
disocclusion technique by taking advantage of a horizontal prior.

3. METHODOLOGY

The main steps of the proposed framework, from the raw point
cloud to the final result, are described in Figure 2. We detail each
of these steps in this section.

Figure 2. Overview of the proposed framework.

3.1 Range maps and sensor topology

The key point of the proposed approach is to work on a sim-
plified representation of the point cloud known as a 2D range
map. The acquired dataset simply consisted in a mapping of the
scene, the range map is obtained using the implicit topology of
the sensor. The fact that most raw LiDAR acquisitions offer an
intrinsic 2D sensor topology is rarely considered. Namely, Li-
DAR points may obviously be ordered along scanlines, yielding
the first dimension of the sensor topology, linking each LiDAR
pulse to the immediately preceding and succeeding pulses within
the same scanline. For most LiDAR devices, one can also order
the consecutive scanlines so as to consider a second dimension
of the sensor topology across the scanlines. 2D LiDAR sensors
(i.e. : featuring a single simultaneous scanline acquisition) gener-
ally send an almost constant number H of pulses per scanline (or
per turn for 360 degree 2D LiDARs), so that range measurements
may be organized in an image of size W × H , where W is the
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Figure 3. Example of a point cloud from the KITTI database
(top) turned into a range image (bottom). Note that the black

area in (b) corresponds to pulses with no returns.

number of consecutive scanlines and thus a temporal dimension.
3D LiDAR sensors are based on multiple simultaneous scanline
acquisitions (e.g. H = 64) such that scanlines may be stacked
horizontally to form an image, as illustrated in Figure 3.

Whereas LiDAR pulses are emitted somewhat regularly, many
pulses yield no range measurements due, for instance, to reflec-
tive surfaces, absorption or absence of target objects (e.g. in the
sky direction). Therefore the sensor topology is only a relevant
approximation for emitted pulses but not for echo returns, such
that the range image is sparse with undefined values where pulses
measured no echoes. Considering multi-echo datasets as a multi-
layer depth image is beyond the scope of this paper.

The sensor topology only provides an approximation of the im-
mediate 3D point neighborhoods, especially if the sensor moves
or turns rapidly compared to its sensing rate. We argue however
that this approximation is sufficient for most purposes, as it has
the added advantage of providing pulse neighborhoods that are
reasonably local both in terms of space and time, thus being ro-
bust to misregistrations, and being very efficient to handle (con-
stant time access to neighbors). Moreover, as LiDAR sensor de-
signs evolve to higher sampling rates within and/or across scan-
lines, the sensor topology will better approximate spatio-temporal
neighborhoods, even in the case of mobile acquisitions.

We argue that raw LiDAR datasets generally contain all the infor-
mation (scanline ordering, pulses with no echo, number of points
per turn...) to enable a constant-time access to a well-defined
implicit sensor topology. However it sometimes occurs that the
dataset received further processings (points were reordered or fil-
tered, or pulses with no return were discarded). Therefore, the
sensor topology may only be approximated using auxilliary point
attributes (time, θ, φ, fiber id...) and guesses about acquisition
settings (e.g. guessing approximate ∆time values between suc-
cessive pulse emissions).

In the following sections, the range image is denoted uR.

3.2 Point cloud segmentation

We now propose a segmentation technique based on range his-
tograms. For the sake of simplicity, we assume that the ground is
relatively flat and remove ground points by plane fitting.

Instead of segmenting the whole range image uR directly, we
first split this image in S sub-windows uRs , s = 1 . . . S of size

a. b.

Figure 4. Result of the histogram segmentation using (Delon et
al., 2007). (a) segmented histogram (bins of 50cm), (b) result in

the range image using the same colors.

Figure 5. Example of point cloud segmentation using our model
on various scenes.

Ws × H along the horizontal axis. For each uRs , a depth his-
togram hs of B bins is built. This histogram is automatically
segmented into Cs classes using the a-contrario technique pre-
sented in (Delon et al., 2007). This technique presents the advan-
tage of segmenting a 1D-histogram without any prior assumption,
e.g. the underlying density function or the number of objects.
Moreover, it aims at segmenting the histogram following an ac-
curate definition of an admissible segmentation, preventing over
and under segmentation from appearing. Examples of segmented
histograms are given in Figure 4.

Once the histogram of successive sub-images have been seg-
mented, we merge together the corresponding classes by check-
ing the distance between each of their centroids. Let us define the
centroid of the ith class Cis in the histogram hs of the sub-image
uRs as follows:

Cis =

∑
b∈Ci

s

b× hs(b)∑
b∈Ci

s

hs(b)
(1)

where b are all bins belonging to class Cis. The distance between
two classes Cis and Cjr , of two consecutive windows can be de-
fined as follows:

d(Cis, C
j
r) = |Cis − Cjr | (2)

Finally, we can set a threshold such that if d(Cis, C
j
r) ≤ τ , classes

Cis and Cjr should be merged. Results of this segmentation pro-
cedure can be found in Figure 5. We argue that the choice of
Ws, B and τ mostly depends on the type of data that is being
treated (sparse or dense). For sparse point clouds, B has to re-
main small (e.g. 50) whereas for dense point clouds, this value
can be increased (e.g. 200). In practice, we found out that good
segmentations may be obtained on various kind of data by setting
Ws = 0.5×B and τ = 0.2×B. Note that the windows are not
required to be overlapping in most cases, but for very sparse point
clouds, an overlap of 10% is enough to reach good segmentation.
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3.3 Disocclusion

The segmentation technique introduced above provides masks for
the objects that require disocclusion. As mentioned in the begin-
ning, we propose a variational approach to the problem of dis-
occlusion of the point cloud. The Gaussian diffusion algorithm
provides a very simple algorithm for the disocclusion of objects
in 2D images by solving partial differential equations. This tech-
nique is defined as follows:{

∂u
∂t
−∆u = 0 in Ω× (0, T )

u(0, x) = u0(x) in Ω
(3)

having u an image defined on Ω, t being a time range and ∆ the
Laplacian operator. As the diffusion is performed in every direc-
tion, the result of this algorithm is often very smooth. Therefore,
the result in 3D lacks of coherence as shown in Figure 7.b.

In this work, we assess that the structures that require disocclu-
sion are likely to evolve smoothly along the xW and yW axis of
the real world as defined in Figure 6. Therefore, we set ~η for
each pixel to be a unitary vector orthogonal to the projection of
zW in the uR range image. This vector will define the direction
in which the diffusion should be done to respect this prior. Note
that most of MLS systems provide georeferenced coordinates of
each point that can be used to define ~η.

We aim at extending the level lines of u along ~η. This can be
expressed as 〈∇u, ~η〉 = 0. Therefore, we define the energy
F (u) = 1

2
(〈∇u, ~η〉)2. The disocclusion is then computed as

a solution of the minimization problem infu F (u). The gradient
of this energy is given by ∇F (u) = −〈(∇2u)~η, ~η〉 = −u~η~η ,
where u~η~η stands for the second order derivative of u with re-
spect to ~η and ∇2u for the Hessian matrix. The minimization of
F can be done by gradient descent. If we cast it into a continuous
framework, we end up with the following equation to solve our
disocclusion problem:{

∂u
∂t
− u~η~η = 0 in Ω× (0, T )

u(0, x) = u0(x) in Ω
(4)

using previously mentioned notations. We recall that ∆u =
u~η~η + u~ηT ~ηT , where ~ηT stands for a unitary vector orthogonal
to ~η. Thus, Equation (4) can be seen as an adaptation the Gaus-
sian diffusion equation (3) to respect the diffusion prior in the
direction ~η. Figure 7 shows a comparison between the original
Gaussian diffusion algorithm and our modification. The Gaus-
sian diffusion leads to an over-smoothing of the scene, creating
an aberrant surface whereas our modification provides a result
that is more plausible.

Figure 6. Definition of the different frames between the LiDAR
sensor (xL, yL, zL) and the real world (xW , yW , zW ).

a.

b.

c.

Figure 7. Comparison between disocclusion algorithms. (a) is
the original point cloud (white points belong to the object to be
disoccluded), (b) the result after Gaussian diffusion and (c) the

result with our proposed algorithm.
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The equation proposed in (4) can be solved iteratively. The num-
ber of iterations simply depends on the size of the area that needs
to be filled in.

3.4 Range image to 3D point cloud

After the segmentation and the disocclusion, we need to turn the
range image back to the 3D space. For every point pi of the
original point cloud, we define poi and pei respectively the point
of emission and the point of echo of pi. We denote dorig(pi) the
original range of pi and drec(pi) its range after disocclusion. The
new coordinates pfinali of each point can be obtained using the
following formula:

pfinali = poi + (pei − poi )×
drec(pi)

dorig(pi)
(5)

The range image can then be easily turned back to a 3D point
cloud while including the disocclusion.

4. RESULTS

In this part, the results of the segmentation of various objects and
the disocclusion of their background are detailed.

4.1 Sparse point cloud

A first result is shown in Figure 8. This result is obtained for
a sparse point cloud (≈ 106 pts) of the KITTI database (Geiger
et al., 2013). A pedestrian is segmented out of the scene using
our proposed segmentation technique. The segmentation result
is used as a mask for the disocclusion of its background using
our modified variational technique for disocclusion. Figure 8.a
shows the original range image. In Figure 8.b, the dark region
corresponds to the result of the segmentation step on the pedes-
trian. For practical purpose, a very small dilatation is applied
to the mask (radius of 2px in sensor topology) to ensure that no
outlier points (near the occluder’s silhouette with low accuracy
or on the occluder itself) bias the reconstruction. Finally, Fig-
ure 8.c shows the range image after the reconstruction. We can
see that the disocclusion performs very well as the pedestrian has
completely disappeared and the result is visually plausible in the
range image.

In this scene, ~η has a direction that is very close to the x axis
of the range image and the 3D point cloud is acquired using a
panoramic sensor. Therefore, the coherence of the reconstruc-
tion can be checked by looking how the acquisition lines are con-
nected. Figure 9 shows the reconstruction of the same scene in
3 dimensions. We can see that the acquisition lines are properly
retrieved after removing the pedestrian. This result was generated
in 4.9 seconds using Matlab on a 2.7GHz processor. Note that a
similar analysis can be done on the results presented in Figure 1.

a. b. c.

Figure 8. Result of disocclusion on a pedestrian on the KITTI
database (Geiger et al., 2013). (a) is the original range image, (b)

the segmented pedestrian (dark), (c) the final disocclusion.
Depth scale is given in meters.

a.

b.

Figure 9. Result of the disocclusion on a pedestrian in 3D. (a) is
the original mask highlighted in 3D, (b) is the final

reconstruction.

4.2 Dense point cloud

In this work, we aim at presenting a model that performs well
on both sparse and dense data. Figure 10 shows a result of the
disocclusion of a car in a dense point cloud. This point cloud was
acquired using the Stereopolis-II system (Paparoditis et al., 2012)
and contains over 4.9 million points. In Figure 10.a, the original
point cloud is displayed with the color based on the reflectance
of the points for a better understanding of the scene. Figure 10.b
highlights the segmentation of the car using our model, dilated to
prevent aberrant points. Finally, Figure 10.c depicts the result of
the disocclusion of the car using our method.

We can note that the car is perfectly removed from the scene.
It is replaced by the ground that could not have been measured
during the acquisition. Although the reconstruction is satisfying,
some gaps are left in the point cloud. Indeed, in the data used
for this example, pulse returns with large deviation values were
discarded. Therefore, the windows and the roof of the car are not
present in the point cloud before and after the reconstruction as
no data is available.

4.3 Quantitative analysis

To conclude this section, we perform a quantitative analysis
of our disocclusion model on the KITTI dataset. The experi-
ment consists in removing areas of various point clouds in or-
der to reconstruct them using our model. Therefore, the original
point clouds can serve as ground truths. Note that areas are re-
moved while taking care that no objects are present in those lo-
cations. Indeed, this test aims at showing how the disocclusion
step behaves when reconstructing backgrounds of objects. The
size of the removed areas corresponds to an approximation of a
pedestrian’s size at 8 meters from the sensor in the range image
(20× 20px).
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a.

b.

c.

Figure 10. Result of the disocclusion on a car in a dense point
cloud. (a) is the original point cloud colorized with the

reflectance, (b) is the segmentation of the car highlighted in
orange, (c) is the result of the disocclusion.

The test was done on 20 point clouds in which an area was manu-
ally removed and then reconstructed. After that, we computed the
MAE (Mean Absolute Error) between the ground truth and the
reconstruction (where the occlusion was simulated) using both
Gaussian disocclusion and our model. We recall that the MAE is
expressed as follows:

MAE(u1, u2) =
1

N

∑
i,j∈Ω

|u1(i, j)− u2(i, j)| (6)

where u1, u2 are images defined on Ω with N pixels. Table
1 sums up the result of our experiment. We can note that our
method provides a great improvement compared to the Gaussian
disocclusion, with an average MAE lower than 3cm. This result
is largely satisfying as most of the structures to reconstruct were

Table 1. Comparison of the average MAE (Mean Absolute
Error) on the reconstruction of occluded areas.

Gaussian Proposed model

Average MAE (meters) 0.591 0.0279
Standard deviation of MAEs 0.143 0.0232

a. b.

c. d.

e. f.

Figure 11. Example of results obtained for the quantitative
experiment. (a) is the original point cloud (ground truth), (b) the
artificial occlusion in dark, (c) the disocclusion result with the
Gaussian diffusion, (d) the disocclusion using our method, (e)

the Absolute Difference of the ground truth against the Gaussian
diffusion, (f) the Absolute Difference of the ground truth against

our method. Scales are given in meters.

situated from 12 to 25 meters away from the sensor.

Figure 11 shows an example of disocclusion following this pro-
tocole. The result of our proposed model is visually very plau-
sible whereas the Gaussian diffusion ends up oversmoothing the
reconstructed range image which increases the MAE.

5. CONCLUSION

In this paper, we have proposed a novel approach for the segmen-
tation and the disocclusion of objects in 3D point clouds acquired
using MMS. This model takes advantage of a simplified repre-
sentation of the point cloud known as a range image. We have
also proposed an improvement of a classical imaging technique
that takes the nature of the point cloud into account (horizontal-
ity prior on the 3D embedding), leading to better results. The
segmentation step can be done in streaming any time a new win-
dow is acquired, leading to great speed improvement, constant
memory processing and the possibility of online processing dur-
ing the acquisition. Moreover, our model is designed to work
semi-automatically using very few parameters in reasonable com-
putational time. Finally, we have shown that this work performs
well in various cases, both on dense and sparse point clouds.
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Considering the range image derived from the sensor topology
enabled a simplified formulation of the problem from having to
determine an unknown number of 3D points to estimating only
the 1D depth in the ray directions of a fixed set of range im-
age pixels. Beyond simplifying drastically the search space, it
also provides directly a reasonable sampling pattern for the re-
constructed point set.

Although the average results of the method are more than accept-
able, it can underperform in some specific cases. Indeed, the seg-
mentation step first relies on the good extraction of non-ground
points, which can be tedious when the data quality is low. More-
over, when the object that needs to be removed from the scene is
hiding complex shapes, the disocclusion step can fail recovering
all the details of the background and the result ends up being too
smooth. This is likely to happen when disoccluding very large
objects.

In the future, we will focus on improving the current model to
perform better reconstruction by taking into account the neigh-
borhood of the background of the object to remove either by us-
ing a variational method or by extending patch-based method.
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